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Abstract. This paper gives an introduction to dynamical systems and chaos. Among
other things it proves a remarkable theorem called the period 3 theorem and states the
more general Sarkovskii theorem.

1. Iterates and Orbits

Definition 1.1. Let S be a set and f a function mapping the set S into itself. i.e. f : S → S.
The functions f1, f2, ..., fn, ... are defined inductively as follows:
f1 = f
if fn−1 is known than fn = fn−1 ◦ f .
Each of these functions is said to be an iterate of f .

Definition 1.2. Let f : S → S. If x0 ∈ S then x0, f
1(x0), ..., fn(x0), ... is called the orbit

of x0. x0 is called the seed of the orbit.

Definition 1.3. Let f : S → S. A point a ∈ S is said to be a fixed point of f if f(a) = a.

2. Fixed Points and Periodic Points

Definition 2.1. Let f : S → S. A point a ∈ S is said to be eventually fixed if a is not a
fixed point, but some point on the orbit of a is a fixed point.

Example 2.2. Let f = x2, S = R, x0 = −1. We can see that f(x0) = 1 6= x0 but f2(x0) =
1 = f(x0) hence the point 1 which is on the orbit of x0 is fixed and therefore x0 is eventually
fixed.

Definition 2.3. Let f : S → S. A point x ∈ S is said to be periodic if there exists a
positive integer p such that fp(x) = x. If m is the least n ∈ N such that fn(x) = x then m
is called the period of x.
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Example 2.4. Let f = x2 − 1. If x0 = 0 than f(x0) = −1 and f2(x0) = f(−1) = 0.
Therefore x0 is periodic with period 2.

Definition 2.5. Let f : S → S. The point x0 ∈ S is said to be eventually periodic if x0

is not periodic, but some point in the orbit of x0 is periodic.

Example 2.6. Let f = x2 − 1 again. If we look at x0 = 1 than we have f(x0) = 0 and we
have already seen than x = 0 is periodic with period 2 for this function. See 2.4.

3. Attracting and Repelling Fixed Points

Definition 3.1. Let a be a fixed point of f : R → R. The point a is said to be an
attracting fixed point if there is an open interval I containing a such that if x ∈ I, then
fn(x) → a as n →∞.

Definition 3.2. Let a be a fixed point of f : R → R. The point a is said to be a repelling
fixed point if there is an open interval I containing a such that if x ∈ I and x 6= a, then
there exists an integer n such that fn(x) /∈ I.

Example 3.3. Let f(x) = x3. f(x) has three fixed points: −1, 1, 0. 0 is an attracting fixed
point and −1, 1 are repelling fixed points.

Definition 3.4. A fixed point that is neither attracting nor repelling is called a neutral
fixed point.

4. Bifurcation

Remark 4.1. One could ask if any continuous function f : S → R has a fixed point where
S ⊆ R. The answer to that is obviously no. An easy example to this is the function
f(x) = x + 1 that obviously has no fixed points. However for S = [0, 1] we can state the
following theorem.

Theorem 4.2. Let f be a continuous mapping from [0, 1] into [0, 1]. Then there exists a
point z ∈ [0, 1] such that f(z) = z.

Proof. The proof uses The Weierstrass Intermediate Value Theorem. If f(0) = 0 or f(1) = 1
then the theorem is obvious. We will assume that f(0) > 0 and f(1) < 1.
Let g : [0, 1] → R be defined by g(x) = x − f(x). g is continuous, g(0) = −f(0) < 0 and
g(1) = 1−f(1) > 0. Therefore by a corollary from Weierstrass Intermediate Value Theorem
there exists z ∈ [0, 1] such that g(z) = 0 i.e. f(z) = z. �

The following theorems will give a simple way of establishing whether a fixed point is
attracting repelling or neutral for ”well behaved functions”.

Theorem 4.3. Let S be an interval in R and a be a point in the interior of S. Furthermore,
let a be a fixed point of a function f : S → R. If f is differentiable at the point a and
|f ′(a)| < 1, then a is an attracting fixed point of f .

Proof. As |f ′(a)| < 1, we have |f ′(a)| < k < 1 where k = |f ′(a)|+1
2 .

By definition, f ′(a) = lim
x→a

f(x)−f(a)
x−a . There exists δ > 0 and interval I = [a− δ, a + δ] such

that |f(x)−f(a)
x−a | ≤ k for all x ∈ I with x 6= a.

Since a is a fixed point f(a) = a. So we get |f(x)− a| ≤ k|x− a|, ∀x ∈ I.
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noting that k < 1 the last result implies that f(x) is closer to a than x. Therefore, we get
that f(x) ∈ I. So we can repeat the argument using f(x) instead of x. We get:

|f2(x)− a| ≤ k|f(x)− a| ∀x ∈ I

Combining this two results we get:

|f2(x)− a| ≤ k2|x− a| ∀x ∈ I

Since |k| < 1 k2 < 1. We can repeat the argument again and we can obtain by induction

|fn(x)− a| ≤ kn|x− a| ∀x ∈ I and ∀n ∈ N

As |k| < 1, lim
n→∞

kn = 0. By the result this implies that fn(x) → a as n →∞. And we have
proved that a is an attracting point. �

Theorem 4.4. Let S be an interval in R and a be a point in the interior of S. Furthermore,
let a be a fixed point of a function f : S → R. IF f is differentiable at a and |f ′(a)| > 1,
than a is a repelling fixed point of f .

Proof. Same as the proof of the previous theorem. �

Definition 4.5. A Quadratic Map is a function Qc : R → R where c ∈ R and Qc(x) =
x2 + c.

Remark 4.6. Quadratic maps are a family of functions with the surprising feature that the
dynamics of Qc changes as c changes.

Theorem 4.7. The first Bifurcation Theorem. Let Qc be the quadratic function for
c ∈ R.

(1) If c > 1
4 , then all orbits tend to infinity. That is, ∀x ∈ R , (Qc)n(x) → ∞ as

n →∞.
(2) If c = 1

4 , then Qc has exactly one fixed point at x = 1
2 and this is a neutral fixed

point.
(3) If c < 1

4 , then Qc has two fixed points a+ = 1
2(1+

√
1− 4c) and a− = 1

2(1−
√

1− 4c).
• The point a+ is always repelling.
• If −3

4 < c < 1
4 , than a− is attracting.

• If c < −3
4 , then a− is repelling.

Definition 4.8. Let f be a function mapping the set S into itself. If the point x ∈ S has
period m, then the orbit of x is {x, f(x), ..., fm−1(x)} and the orbit is called an m-cycle.

Definition 4.9. Let a be a periodic point of a function f : S → S of period m, for some
m ∈ N. a is clearly a fixed point of fm : S → S. a is said to be an attracting period
point of f if it is an attracting fixed point of fm. Similarly a is said to be a repelling
period point if f if it is a repelling fixed point of fm.

Theorem 4.10. The Second Bifurcation Theorem Let Qc be the quadratic function
for c ∈ R.

(1) If −3
4 ≤ c < 1

4 , then Qc has no 2-cycles.
(2) If −5

4 < c < −3
4 , then Qc has an attracting 2-cycle, {q−, q+}, where q+ = 1

2(−1 +√
−4c− 3) and q− = 1

2(−1−
√
−4c− 3).

(3) If c < −5
4 , then Qc has a repelling 2-cycle {q−, q+}.
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5. The Magic of Period 3: Period 3 Implies Chaos

In this section we wish to prove the period 3 theorem. The period 3 theorem was proved
in 1975 by Yorke and Li (see [4]). We will first prove some helpful lemmas.

Lemma 5.1. If f : R → R then for every interval I ⊂ R f(I) is also an interval

Proof. This is a result of the fact that a continuous mapping maps connected sets to con-
nected sets, and that all connected sets in R are intervals. �

Lemma 5.2. Let a, b ∈ R with a < b and f : I = [a, b] → R a continuous function. If
f(I) ⊇ I f has a fixed point in I.

Proof. We define f [I] = [c, d] where c < a and d > b. There exists two points s, t ∈ [a, b]
such that f(s) = c ≤ a ≤ s and f(t) = d ≥ b ≥ t otherwise f(I) will not cover I.
We define g(x) : I → R as follows: g(x) = f(x) − x. g(x) is continuous and g(s) ≤ 0,
g(t) ≥ 0. By Weirstrass Intermediate value theorem we get that there exists a point a ∈ I
such that g(a) = 0 → f(a) = a and a is a fixed point of f in I. �

Remark 5.3. Note that this is a generalization of the theorem about the interval [0, 1] proved
in 4.2.

Lemma 5.4. Let a, b ∈ R with a < b. Let f : [a, b] → R be a continuous function and
f([a, b]) ⊇ J = [c, d], for c, d ∈ R with c < d. Then there exists a subinterval I ′ = [s, t] of
I = [a, b] such that f(I ′) = J .

Proof. We first observe that c and d are closed sets and since f([a, b]) ⊇ J = [c, d] and f is
continuous we get that f−1{c} and f−1{d} are non empty closed sets. Therefore there is a
largest number s such that f(s) = c.
We first assume that there is x > s such that f(x) = d. Therefore there is a smallest
number t such that t > s and f(t) = d. Now we suppose in contradiction that there is
a y ∈ [s, t] such that f(y) < c. If so we can look at the interval [y, t] and by Weirstrass
intermediate value theorem we get that there is z > y > s such that f(z) = c in contradiction
with s maximality. In a similar fashion we can deduce that there is no y ∈ [s, t] such that
f(y) > d. We get that f([s, t]) contains no points outside the interval [c, d] and by Weirstrass
intermediate value theorem we get that f [s, t] covers [c, d], therefore f [s, t] = [c, d] = J as
required.
We now assume that there is no x > s such that f(x) = d. Let s′ be the largest number
that f(s′) = d. Clearly s′ < s. Let t′ be the smallest number such that t′ > s′ and f(t′) = c.
Just like the argument before we can deduce that f([s′, t′]) = [c, d] J as required.

�

We can now turn to state and prove the period 3 theorem

Theorem 5.5. {The Period 3 Theorem} Let f : R → R be a continuous function. If f
has a point of period 3, then for each n ∈ N it has a periodic point of period n.

Proof. There exists a point a ∈ R such that f(a) = b, f(b) = c and f(c) = a where
a 6= b 6= c. We shall consider the case where a < b < c, the other cases are dealt similarly.
We define I0 = [a, b] and I1 = [b, c]. Using 5.1 we get that f(I0) ⊇ I1. Using 5.1 again
we can get that f(I1) ⊇ I0 ∪ I1. If we apply 5.4 on this result we get that there exists an
interval A1 ⊆ I1 such that f(A1) = I1. Note that f(A1) = I1 ⊇ A1, using 5.4 again will
give us A2 ⊆ A1 such that f(A2) = A1.
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So far we have A2 ⊆ A1 ⊆ I1 and f2(A2) = I1.
We now use induction to extend this result. Lets assume that for n− 3 there exists a series
An−3 ⊆ An−4... ⊆ A2 ⊆ A1 ⊆ I1 and f(Ai) = Ai−1 ∀2 ≤ i ≤ n − 2 and f(A1) = I1. Now
using 5.4 again we can get An−2 ⊆ An−3 such that f(An−2) = An−3. Using this result we
get that fn−2(An−2) = I1 and An−2 ⊆ I1.
Now noting that f(I0) ⊇ I1 ⊇ An−2 we can have a closed interval An−1 ⊆ I0 such that
f(An−1) = An−2. Finally as f(I1) ⊃ I0 ⊇ An−1 there is a closed interval An ⊆ I1 such that
f(An) = An−1.
Putting the above parts together we get that ∀2 ≤ i ≤ n f(Ai) = Ai−1 and fn(An) = I1.
Now using the fact that An ⊂ I1 and using 5.2 we get that there is a point x0 ∈ An such
that fn(x0) = x0, i.e. x0 is a periodic point of f of period n. We now have to show that x0

period is n.
Lets assume in contradiction that x0 is a periodic point of period k where k < n. We notice
that f(x0) ∈ An−1 ⊆ I0 and ∀2 < i < n f i(x0) ∈ I1. Now I0∩I1 = {b}. We first assume that
f(x0) 6= b. If so we get that fk(x0) = x0 by assumption and therefore fk+1(x0) = f(x0) ∈ I0

in contradiction to the fact that f i(x0) ∈ I1∀2 < i < n. Now we show that f(x0) 6= b. We
assume in contradiction that f(x0) = b. We see that f2(x0) = f(b) = a /∈ I1. Therefore we
get that for any n ≥ 3 there exists a point x0 such that x0 has a period n of f .
We now deal with the case n = 1. We use the fact that f(I1) ⊇ I1 and by 5.2 we get that
there is a fixed point of f in I1.
Now we deal with the case n = 2. We have that f(I0) ⊇ I1 and f(I1) ⊇ I0. Using 5.4
there is a closed interval B ⊆ I0 such that f(B) = I1. Now f2(B) ⊇ I0, using 5.2 we
get there exists a point x1 ∈ B such that f2(x1) = x1. Now x1 ∈ B ⊆ I0 = [a, b] and
f(x1) ∈ f(B) ⊆ I1 [b, c]. Moreover x1 6= b as f2(b) = f(c) = a 6= b. Therefore x1 is of
period 2.
This completes the proof of the period 3 theorem. �

We now state a more general theorem called the Sarkovskii theorem (see [5]). This result
is a generalization of the period 3 theorem. It was proved earlier in 1964 though remained
unnoticed.

Definition 5.6. Sarkovskii’s ordering of the natural numbers. We introduce the
following ordering of the natural numbers by Sarkovskii.

3, 5, 7, 9, ...

2 · 3, 2 · 5, 2 · 7, ...

22 · 3, 22 · 5, 22 · 7, ...

23 · 3, 23 · 5, 23 · 7, ...
...

..., 2n, 2n−1, ...., 22, 21, 1

We now state the Sarkovskii theorem

Theorem 5.7. Sarkovskii’s Theorem Let f : R → R be a continuous function. If f has
a point of period n and n precedes k in Sarkovskii’s ordering of the natural numbers, then
f has a periodic point of period k.

Remark 5.8. Note that as the number 3 is the first number if Sarkovskii’s ordering this
theorem gives the Period 3 Theorem and is a generalization.

The amazing thing is that the converse of Sarkovskii’s theorem is also true.
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Theorem 5.9. Converse of Sarkovskii’s Theorem. let n ∈ N and l precedes n in
Sarkovskii’s ordering of the natural numbers. Then there exists a continuous function f :
R → R which has a periodic point of period n, but no periodic point of period l.

6. Chaotic Dynamical Systems

This section will give an introduction to Chaotic Dynamical Systems.

Definition 6.1. Let (X, d) be a metric space and f : X → X a continuous mapping of the
set X to itself. Then (X, f) is said to be a dynamical system.

Definition 6.2. Let (X, d) be a metric space and f : X → X a mapping of X into itself.
Then the dynamical system (X, f) is said to be transitive if there exists x0

∫
X such that

the orbit of x0 i.e. {x0, f(x0), ...., fn(x0), ...} is dense in X.

Definition 6.3. The dynamical system (X, f) is said to be chaotic if

(1) the set of all periodic points of f is dense in the set X, and

(2) (X,f) is transitive.

Definition 6.4. The dynamical system (X, f) is said to depend sensitively on initial
conditions if there exists β > 0 such that for any x ∈ X and any ε > 0 there is n ∈ N and
y ∈ X with d(x, y) < ε such that d(fn(x), fn(y)) > β.

Theorem 6.5. When X = R every chaotic dynamical system depends sensitively on initial
conditions.

Remark 6.6. In fact until 1992 depending sensitively on initial conditions was a part of a
chaotic dynamical system definition given by Devaney (see [1]). However in 1992 it was
proven by Banks Davis Stacey Brooks and Cairns that this property follows our definition
(see [2]).

Remark 6.7. A paper that generalizes this result to more general case is the ”Note on Sen-
sitivity of Semigroup Actions” by E. Kontorovich and M. Megrelishvili (see [6]). This paper
gives a sufficient condition for a dynamical system defined using a topological semigroup
actions to be sensitive.

Definition 6.8. Let (X1, d1) and (X2, d2) be metric spaces and (X1, f1) and (X2, f2) dy-
namical systems. Then (X1, f1) and (X2, f2) are said to be conjugate dynamical sys-
tems if there is a homeomorphism h : (X1, d1) → (X2, d2) such that f2 ◦ h = h ◦ f1 i.e.
f2(h(x)) = h(f1(x)) ∀x ∈ X1. The map h is called the conjugate map.

Remark 6.9. The concept of conjugate map and conjugate dynamical systems gives an
equivalence between dynamical systems. Many times analysis of complex dynamical system
is possible by showing that it is conjugate to a different dynamical system which properties
are already studied.

Remark 6.10. The following commutative diagram illustrates the concepts of conjugate
maps.

a

h

��

f1 // b

h
��

c
f2 // d
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Where a, b ∈ X1 and c, d ∈ X2.

Theorem 6.11. Let (X1, f1) and (X2, f2) be conjugate dynamical systems, where h is the
conjugate map.

(1) A point x ∈ X1 is a fixed point of f1 in X1 ⇐⇒ h(x) is a fixed point of f2 in X2.
(2) A point x ∈ X1 is a periodic point of period n ∈ N of f1 in X1 ⇐⇒ h(x) is a

periodic point of period n of f2 in X2.
(3) The dynamical system (X1, f1) is chaotic ⇐⇒ the dynamical system (X2, f2) is

chaotic.

Proof. Parts (1) and (2) are obvious. We will prove part (3). Lets assume that (X1, f1) is
chaotic. Let P be the set of periodic points of f1. As (X1, f1) is chaotic, P is dense in X1.
As h is continuous, it is h(P ) is dense in h(X1) = X2. As h(P ) is the set of all periodic
points if (X2, f2), it follows that (X2, f2) satisfies condition 1 in definition 6.3.
To complete the proof we need to show that (X2, f2) is transitive. We know that there
exists x0 ∈ X1 such that its orbit x0, f(x0), ..., fn(x0), ... is dense in X1. We know that the
orbit of h(x0) will be dense in X2 as the map h is a homeomorphism and h maps an orbit
of the point x0 to the orbit of the point h(x0). Hence the point h(x0) ∈ X2 has an orbit
dense in X2. �
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