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A Tikhonov G-space not admitting a compact Hausdorff
G-extension or G-linearization

M.G. Megrelishvili

We preserve the terminology of [ l ] - [ 5 ] .

Proposition 1. There exists a Tikhonov G-space not admitting equivariant compact extensions.

Proof. Let / = [0; 1] be a numerical interval, let Homeo(/) be the group of homeomorphisms of/
in the topology of uniform convergence, let S = {1/n: η £ Ν }, and let

Gi — {g £ Homco (/): for all s t S , gs = s).

Then Gj is a closed subgroup of Homeo(/). The natural action aj : Gy χ / -* / is continuous. It has
countably many orbits. All points of S and the point ο are fixed. All the remaining orbits are the
intervals of the form (l/(n+ 1); 1/n), where n e N . The point ο has a base consisting of invariant
neighbourhoods [0; l/«), η e N.

(1) If {Ok: k ξ Ν } is a system of open neighbourhoods of ο in the space/ such that [GOh] ~ Oh +l

for all k e N, then Ohn + I = /, where k0 is a natural number such that [o; l/k0] £_ O\.
Let {(Gn, / „ . α,,): η ζ Ν } be a countable system of continuous transformation groups, where

each (Gn, In, an) is a copy of the action (Gj, /, aj). We form a special sum (G, X, a), where
X = φ {/η: η £ Ν } is the topological sum with the natural embeddings in :In^X and the group
G = Π {Gn: η 6 Ν } is a product of topological groups with the natural projections j n : G -» Gn.
The action of α is defined in the following natural manner:

«(if, *) = «„„ («„„(/«„ (if). *o))

where? 6 G, a; 6 i n o ( / n o ) . and ino(xo) = a:·

We now form a set Υ by identifying, in X, all "null" points, that is, we define an equivalence
relation whose only non-trivial equivalence class is the set {tn(o): η ζ Ν}. This "singular" point of Υ
will be denoted by w. Let ρ : X -<• Κ be the canonical projection. We define a topology on Y, where
a neighbourhood base of W is the system {A^(w)\ k ζ Ν } with

Ah(w)=U{p(inlo; I/A)): η ζ Ν).

At all other points we take the usual neighbourhoods. It is easy to verify that Υ is homeomorphic to
the so-called metrizable hedgehog /(x 0 ) with countably many thorns (see [4]).

We define an action a of G on Y. Every point of the set p~i(w) is fixed. Therefore, there exists
a unique action α on Κ under which ρ is equivariant. Formally,

<£{g, a) = p(a{g, p~x(a))), where (g, a)£GxY.

Every A^w) is an invariant set under a. Therefore, a is continuous at points of the form (g, n),
where j e G . The continuity of a at the remaining points is obvious. Hence Υ is a Tikhonov G-space
and w(G) = iv(Y) = x0, dim Υ = 1, and G is complete in the sense of Raikov. We prove that the
G-space Υ is of the desired kind. We first recall the following definition.

Definition [1], [3]. A continuous function / : X -»• R defined on a G-space X is said to be a-uniform
if for any ε > 0 there exists a neighbourhood U(e) of the identity such that

I 1(x) — f(gx) I < ε for all g ζ U(e) and all χ 6 X.

Theorem [1], [3]. A G-space X admits equivariant compact extensions if and only if the a-uniform
functions on X separate points and closed sets.

It turns out that in the G-space Υ the closed set /•' = {p(in(\)): n £ Ν} of all "end-points"
cannot be separated from the point w by any α-uniform function. We assume the contrary. Let
/ : Υ -» [0; 1] be an α-uniform function such that/(w) = 0 and f(F) = 1. The definition of an
α-uniform function implies the existence of a sequence {On (w)) of open neighbourhoods of u1 and of
a sequence of neighbourhoods of the identity such that

(2) {V,,(«·)} On Π F =• 0 and \VnOn) Ξ Ο,, + 1 for all « 6 N.
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By the definition of the local base at w, for any ICQ e Ν we have A)t (ir) c= Oi(w). Since

G = Π {Gn: n ζ Ν}, there exists n 0 e Ν such that ti I < k < ko+ 1, η > n0, then /n(Kfc) = Gn.

Using property (1) of the action aj and the fact that the restriction of a to each "needle" p(/m) is

equivalent to α 1 ; we see that Of, ("') contains U {p(im(Im))'· η Ξ3= n^and, in particular, Ο^0+1(ιν)

intersects F, which contradicts (2).

Proposition 2. There exists a Tikhonov G-space admitting no G-linearization.

This assertion follows immediately from Proposition 1 and the following theorem.

Theorem. Every linear G-space has compact G-extensions.

Proof. We showed in [5] that a G-space X has compact G-extensions exactly when there exists a
quasibounded [5] uniformity on X. It remains to verify that the natural uniformity is quasibounded
on every linear G-space.

Proposition 3. There exists a continuous action of a zero-dimensional compact metrizable group G on
a l-dimensional G-space X with a countable base such that dim βςΧ = 2, where $QX is a maximal
compact G-extemion.

There exists a continuous action <*j of a zero-dimensional compact metrizable group G| ona
l-dimensional compact space X\ such that the dimension of the orbit space is equal to two [3]. Let
{(Gn, X n , an)} be a countable system of copies of the action αχ. It turns out that the special sum
(UGn, φ Χη, α) (see the proof of Proposition 1) is the desired action.

Remark. Propositions 1 and 2 answer questions of de Vries [2], and Proposition 3 answers a question
of Yu.M. Smiinov. For the special sum, see [2].

In conclusion, the author expresses his gratitude to Yu.M. Smirnov for his attention to this work.
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