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Eberlein Groups

by

Michael G. Megrelishvili

Department of Mathematics and Computer Science

Bar-Ilan University

Ramat-Gan, 52900, Israel

Abstract. We show that the algebra W (G) of all weakly almost periodic functions

generates the given topology on a Hausdor� topological groupG (say, Eberlein group)

if and only if there exists a re
exive Banach space X such that G is a topological

subgroup of the group Is(X) of all linear isometries of X endowed with the strong

operator topology. For this purpose we establish a general result on coincidence of the

strong and weak operator topologies on Is(X) for arbitrary re
exive X. The proof

is based on the Ellis-Lawson joint continuity theorem and our recent result about

continuity of dual group actions on Asplund spaces. In the last part we discuss two

possible ways �nding non-Eberlein groups using uniformly universal Banach spaces

or minimal topological groups.

x1. Introduction.

Let S be a semitopological semigroup, that is, a topologized semigroup with a

separately continuous multiplication. We will denote by C(S) the commutative C

�

-

algebra of all bounded continuous complex valued functions on S: For each s 2 S,

the right translation maps R

s

of C(S) into itself are de�ned by

R

s

f(x) = f(xs) for all x 2 S:

Recall some basic facts about weak almost periodicity (see [Eb], [LG], [BJM],

[R1]). A function f 2 C(S) is weakly almost periodic if the orbit of f; that is, the

set

Sf :=

�

R

s

f

�

�

s 2 S

	

is relatively weakly compact in C(S): The setW (S) of all such functions is a closed

S-invariant subalgebra of C(S): If S is compact, then W (S) = C(S): Moreover,

the compacti�cation u : S ! S

w

; induced by the algebra W (S); is the universal

semitopological semigroup compacti�cation of S:

AMS Subject Classi�cation: 54H15, 22A20, 43A65, 46B10
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If (X; k k) is a Banach space, we denote by (L(X); k k) the algebra of all

bounded linear operators X ! X: The dual Banach space of X will be denoted by

X

�

: We use the following notation:

B(X) := fx 2 X

�

�

kxk � 1g

Cont(X) := fs 2 L(X)

�

�

ksk � 1g:

The group of all linear isometries ofX will be denoted by Is(X): The strong, strong

�

and weak operator topology (which we denote respectively by T

s

; T

s

�

and T

w

) on

L(X) is the weakest topology generated respectively by the system of maps:

(1) f~x : L(X)! X; ~x(s) = sx

�

�

x 2 Xg;

(2) f

~

f : L(X)! X

�

;

~

f(s)(x) = f(sx)

�

�

f 2 X

�

g;

(3) f 

x;f

: L(X)! R;  

x;f

(s) = f(sx)

�

�

x 2 X; f 2 X

�

g:

If a subset P of L(X) is endowed with one of the following subspace topologies

T

s

�

�

P

; T

s

�

�

�

P

; T

w

�

�

P

; then often we indicate this by writing P

s

; P

s

�

and P

w

,

respectively. Analogously, a subset A of X endowed with its usual weak topology

is denoted by A

w

. L(X)

s

; L(X)

s

�

; L(X)

w

are always Hausdor� semitopological

semigroups.

Fact 1.1. (Banach-Bourbaki Theorem) A Banach space X is re
exive i� B(X)

is weakly compact.

Fact 1.2. The semitopological semigroup Cont(X)

w

is compact i� X is re
exive.

Proof. The compactness of Cont(X)

w

for a re
exive X is well-known (see, for

instance [LG, Th. 3.1]). The converse implication follows from Fact 1.1, taking

into account that for any �xed vector x

0

with kx

0

k = 1; the map

Cont(X)

w

! B(X)

w

; s! sx

0

is continuous and onto. Indeed, take a continuous functional f on X such that

f(x

0

) = 1 and kfk = 1. For every z 2 B(X) assign to the pair (f; z) the following

linear operator

A

f;z

: X ! X; A

f;z

(x) = f(x)z

Clearly, A

f;z

is a contraction of X moving x

0

into z. �

The following result is well known for Hilbert spaces.

Theorem 1.3. Let X be a re
exive Banach space. Then the strong and weak

operator topologies coincide on Is(X):

Proof. In [Me1, Corollary 6.9] we have already proved that the re
exivity of X

guarantees the continuity of the dual action of Is(X) on X

�

. This leads (see [Me1,

Corollary 6.11] to the equality T

s

�

�

Is(X)

= T

s

�

�

�

Is(X)

: Therefore, for our purposes

it su�ces to show that T

s

�

�

�

Is(X)

� T

w

�

�

Is(X)

:
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Consider the canonical separately continuous semigroup action

� : Cont(X)

w

�B(X)

w

! B(X)

w

:

The re
exivity of X guarantees that B(X)

w

and Cont(X)

w

are compact.

Therefore we can apply the Ellis-Lawson Theorem [La, Corollary 5.2] which im-

plies that � is jointly continuous at each point (g; x), where g is an arbitrary unit

of Cont(X) and x is an arbitrary point of B(X): Thus, the restricted group action

�

0

: Is(X)

w

� B(X)

w

! B(X)

w

is jointly continuous. Let f 2 X

�

: Clearly, the restricted map f

�

�

B(X)

: B(X)

w

! C

is continuous. Using the joint continuity of �

0

and the compactness of B(X)

w

; we

obtain that for a given " > 0 and g

0

2 Is(X) there exists a neighborhood O(g

0

) of

g

0

in Is(E)

w

such that

jf(gx) � f (g

0

x)j < "

for every x 2 B(X) and g 2 O(g

0

): Or, equivalently,

kfg � fg

0

k

�

< "

for every g 2 O(g

0

): This means that the orbit map

~

f : Is(X)

w

! X

�

is continuous for every f 2 X

�

. Therefore, T

s

�

�

�

Is(X)

� T

w

�

�

Is(X)

, as required. �

Remark 1.4. In general, T

s

�

�

Is(X)

6= T

w

�

�

Is(X)

. The following general construction,

providing many counterexamples, is based on an idea of Helmer [H, Ex. 13]. Let

Y be a compact Hausdor� space and let G be a subgroup of the group H(Y ) of all

autohomeomorphisms of Y: Denote by G

p

the group G endowed with the topology

of pointwise convergence. Then the evaluation map � : G

p

� Y ! Y is separately

continuous. Consider the induced action

� : G� C(Y )! C(Y ); (g � f)(y) = f(g

�1

y)

and the induced injective group homomorphism j : G! Is(X); where X = C(Y ):

Now, suppose that � is not jointly continuous and G is a k-space (for example, in

[H, Ex. 13], G is the topological group of all rationals and Y is the square [�1; 1]

2

).

Then, by Grothendieck's classical result [G, Th. 5], the map j : G

p

! Is(X)

w

is

compact-preserving and, hence, continuous by our assumption on G: It is easy to

show that T

w

�

�

j(G)

6= T

s

�

�

j(G)

: Indeed, assuming the contrary, we will obtain that

the restricted dual action

�

�

B

: G

p

�B(X

�

)

w

�

! B(X

�

)

w

�

; (g �  )(f) =  (g

�1

� f)
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is continuous, where B(X

�

)

w

�

is the unit ball of X

�

endowed with the weak

*

topology. Then the original action � (being canonically equivalent to a subaction

of �

�

B

) is jointly continuous. This contradicts our assumption.

Remark 1.5. In general, T

s

�

�

Is(X)

6= T

s

�

�

�

Is(X)

: Indeed, it is well known that

there are many continuous norm invariant continuous linear group actions on Ba-

nach spaces X such that the corresponding dual actions on X

�

are not continuous.

Consider, for example, X = `

1

and de�ne a subgroup S(N) of Is(X)

s

consisting of

all permutations of \coordinates." Then the dual action of S(N) on `

�

1

= m is not

continuous. Hence, it is not even true that T

s

�

�

�

Is(X)

� T

s

�

�

Is(X)

: For arguments

in the case of X = C[0; 1]; see [Me1]. Note also that if X is Asplund (by Stegall's

result [St], it is equivalent to saying that the dual X

�

has the Radon-Nikodym

property), then, necessarily, T

s

�

�

�

Is(X)

� T

s

�

�

Is(X)

(cf. [Me1, Corollary 6.9]).

x2. Compact semitopological semigroups \live" in re
exive spaces.

For every re
exive Banach space X; the semitopological semigroup Cont(X)

w

is compact. The aim of this section is to show

Theorem 2.1. Let (S; � ) be a compact Hausdor� semitopological semigroup.

Then there exists a re
exive Banach space X such that (S; � ) is a subsemigroup of

the compact semitopological semigroup Cont(X)

w

:

Proof. Without loss of generality, we can assume that S has the identity e: Con-

sider the natural monoid action

� : S � C(S)! C(S) �(s; f) = sf = R

s

(f):

Clearly, each s-translation �

s

= R

s

is continuous. Moreover, by [G, Th. 5], each

orbit map

�

f

: S ! C(S) ; s 7! sf

is weakly continuous (see [LG]). Therefore, for every �xed f 2 C(S); the orbit

Sf is weakly compact. Denote by E

f

the Banach subspace of C(S) linearly and

topologically generated by Sf: Since a

s

is continuous for every s 2 S; E

f

is S-

invariant. By the Hahn-Banach Theorem , the weak topology of E

f

is the same as

its relative weak topology as a subset of C(S): In particular, Sf is weakly compact

in E

f

: By the Krein-Smulian Theorem, the convex hull co(�Sf [ Sf) = W of the

weakly compact symmetric subset �Sf [Sf is relatively weakly compact. That is,

the (weak) closure of W in E

f

is weakly compact. Since W is a convex, bounded

and symmetric subset of E

f

; we can apply the factorization procedure discovered

by Davis, Figiel, Johnson and Pelczynski [DFJP]. For each natural n, set

U

n

= 2

n

W + 2

�n

B(E

f

):

Let k k

n

be the gauge of the set U

n

: That is,

kxk

n

= inf f� > 0

�

�

x 2 �U

n

g:
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Then, using [DFJP, x2] we obtain:

(1) k k

n

is a norm on E

f

equivalent to the given norm k k of E

f

;

(2) For x 2 E

f

; let

N(x) =

 

1

X

n=1

kxk

2

n

!

1=2

;

and let

X

f

= fx 2 E

f

�

�

N(x) <1g:

Denote by j : X

f

! E

f

the inclusion map;

(3) f 2 Sf �W � B(X

f

);

(4) (X

f

; N) is a Banach space and j : X

f

! E

f

is a continuous linear injection;

(5) X

f

is re
exive;

(6) The restriction of j : X

f

! E

f

on each bounded subset A of X

f

induces a

homeomorphism of A and j(A) in the weak topologies.

Proof. Consider the weak closure cl

w

(A) of A in X

f

: By the re
exivity of X

f

;

the set cl

w

(A) is weakly compact. Hence, j; being weakly continuous and injec-

tive, induces a homeomorphism of cl

w

(A) and j(cl

w

(A)) with respect to the weak

topologies. This proves assertion (6).

(7) N(sx) � N(x) for every x 2 X

f

and every s 2 S:

Proof. It su�ces to show that ksxk

n

� kxk

n

for every n 2 N: By our construction

sW � W and sB(E

f

) � B(E

f

) (R

s

is a contraction of E

f

). Then, from x 2

�(2

n

W + 2

�n

B(E

f

)) we obtain that sx 2 �(2

n

(sW ) + 2

�n

s(B(E

f

))) � �(2

n

W +

2

�n

B(E

f

)): Hence, ksxk

n

� kxk

n

; as required. This proves assertion (7).

As a corollary, we get that X

f

is an S-invariant subset of E

f

: Therefore, the

restricted action

�

f

: S �X

f

! X

f

is well-de�ned.

(8) For every z 2 X

f

, the orbit map

~z : S ! X

f

; ~z(s) = sz

is weakly continuous.

Proof. Indeed, by assertion (7), the orbit ~z(S) = Sz is an N -normed bounded

subset in X

f

: Our assertion follows from (6) (for A = Sz), taking into account that

~z : S ! E

f

is weakly continuous.

By (7), for every s 2 S, the translation map �

s

f

: X

f

! X

f

is a linear contrac-

tion of (X

f

; N): Therefore, we get the map




f

: S ! Cont(X

f

) ; 


f

(s) = �

s

f

:

Now, directly from (8) we obtain
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(9) 


f

: S ! Cont(X

f

)

w

is a continuous monoid homomorphism.

Now we are ready to construct the desired re
exive Banach space X: Consider

the family F = fX

f

�

�

f 2 C(S)g of re
exive Banach spaces and the family

f


f

: S ! Cont(X

f

)

�

�

f 2 C(S)g

of monoid homomorphisms . De�ne X as the `

2

-product (cf. [Da, p. 35] or [NP,

p. 743]), X =

Q

2

X

f

of the family F: Recall that it is the space of all functions

x = (x

f

) such that x

f

2 X

f

for each f 2 C(S); and the norm on X is de�ned by

kxk =

0

@

X

f2C(S)

kx

f

k

2

1

A

1=2

<1:

Then (X; k k) is re
exive. Moreover, (

Q

2

X

f

)

�

=

Q

2

X

�

f

and the corresponding

pairing for x = (x

f

) 2

Q

2

X

f

; h = (h

f

) 2

Q

2

X

�

f

is de�ned by

h(x) =

X

f2C(S)

h

f

(x

f

):

Now we de�ne a linear representation of S in X as the `

2

-product of old

representations. Precisely, we de�ne


 : S ! Cont(X) ; 
(s)(x

f

) = (sx

f

):

First observe that by assertion (7), X is well-de�ned. Clearly, 
 is a monoid

homomorphism. By assertion (9) and the above-mentioned description of X

�

; it is

easy to show that 
 is weakly continuous. In order to establish that 
 is the desired

embedding, by the compactness of S; we have only to show that 
 is injective.

Equivalently, it su�ces to check that f


f

�

�

f 2 C(S)g separates the points of S:

Let s

1

; s

2

be distinct points of S: Choose a continuous function f 2 C(S) with

f(s

1

) 6= f(s

2

): Since (s

1

f)(e) = f(s

1

) and (s

2

f)(e) = f(s

2

); it follows that s

1

f and

s

2

f are distinct elements of C(S) and of E

f

: Moreover, by our construction, X

f

�

E

f

and s

1

f; s

2

f both belong to X

f

(see assertion (3)). Therefore, 


f

(s

1

) 6= 


f

(s

2

):

This implies that 
(s

1

) 6= 
(s

2

); as required. �

Remark 2.2. In Theorem 2.1 we may choose X as having the same topological

weight as S: That is, w(X) = w(S): Indeed, we can easily modify the second part

of the proof, taking the family fX

f

�

�

f 2 Pg; where P separates the points of S:

x3. Eberlein groups and Ruppert's problem.

Recall that for every semitopological semigroup S, the compacti�cation u : S !

S

w

induced by the algebra W (S) is just the universal semitopological compacti�-

cation of S:
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De�nition 3.1. We say that G is an Eberlein group if one of the following

equivalent conditions holds:

(i) W (G) separates the points from the closed sets;

(ii) u : G! G

w

is a topological embedding;

(iii) G is a topological subgroup of a compact semitopological semigroup.

For instance, every Hausdor� locally compact group is Eberlein.

Problem 3.2. (Ruppert [R1, p.114-115]) Find a Hausdor� topological group which

is not Eberlein.

This problem is open even in the case when G is algebraically isomorphic to Z

(cf. [R2]).

Every topological group G is a topological subgroup of Is(X)

s

for a certain

Banach space X (take, for example, X = C

r

(G), the space for all right uniformly

continuous functions on G (as in Teleman [T])). The natural question is: how good

may X be ? When X may be Asplund or even re
exive? It turns out that the case

of a re
exive X gives a characterization of Eberlein groups. Indeed, by combining

Theorem 2.1 and Theorem 1.3 we obtain

Theorem 3.2. For every topological group G TFAE:

(i) G is an Eberlein group;

(ii) G is a topological subgroup of Is(X)

s

for a certain re
exive Banach space

X:

Below we discuss some related results and questions (having independent in-

terest) which may help resolve Ruppert's problem.

Proposition 3.3. Let G be a separable metrizable group and let U

`

(G) denote

its left uniform structure. If G is Eberlein, then (G;U

`

(G)); as a uniform space, is

embedded into a separable re
exive Banach space Y:

Proof. By Theorem 3.2, G is a topological subgroup of Is(X)

s

for a certain

re
exive Banach space X: Proceeding as in [Me2, Counterexample 3.13], without

loss of generality we may suppose that X is separable. By the de�nition of the

strong operator topology, the system of all orbit maps on G generates the uniformity

U

`

(G): Since G is second countable, we may suppose that there exists a sequence

z

n

in X such that the corresponding sequence of orbit maps

~z

n

: G! X ; ~z

n

(g) = gz

n

generates U

`

(G): Moreover, we may suppose that kz

n

k = 2

�n

: Consider the `

2

-

product

Q

2

X

n

= Y of the family f(X

n

; k k

n

)

�

�

n 2 Ng; where each (X

n

; k k

n

) is

a copy of (X; k k): Clearly, Y is a re
exive Banach space. Since kz

n

k = 2

�n

; it is

easy to show that the diagonal product map


 : G!

Y

2

X

n

= Y; 
(g) = (gz

n

)
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provides the desired uniform embedding. �

We say that a separable Banach space U is uniformly universal if every sepa-

rable Banach space, as a uniform space, can be uniformly embedded into U . Aha-

roni [Ah] proved that c

0

is uniformly universal. In response to a question by Yu.

Smirnov, in 1969 En
o [En] found a separable metrizable uniform space which is

not uniformly embedded into a Hilbert space. That is, `

2

is not uniformly universal.

However, it is not clear if here \Hilbert" may be replaced by \re
exive."

Question 3.4. (a) Is it true that C[0; 1]; c

0

(or any other uniformly universal space)

is a uniform subset of a certain re
exive Banach space?

(b) Equivalently, is it true that there exists a uniformly universal re
exive

Banach space?

Note that if c

0

is an Eberlein group, then, by Theorem 3.2 and Proposition

3.3, there exists a uniformly universal re
exive Banach space. Note also that there

is no Lipschitz embedding of c

0

into a re
exive Banach space [Ma]. For additional

results in the theory of uniform (or Lipschitz) Banach embeddings, we refer to the

survey of J. Lindenstrauss [Li].

In order to explain another possible link to Problem 3.2, let us recall that a

Hausdor� topological group G is said to be minimal [Step] if there is no strictly

coarser Hausdor� group topology on G:

Question 3.5. (Arhangel'skij (cf. [Di], [Me2]) Is it true that every Hausdor�

topological group G is a quotient of a minimal topological group?

The following proposition implies a positive answer to Question 3.5 in the case

of an Eberlein group.

Proposition 3.6. Every Eberlein group is a group retract of a minimal topological

group.

Proof. In [Me1, Theorem 6.12] we proved that, if X is an Asplund space, then

every topological subgroup G of Is(X)

s

is a group retract of a minimal topological

group. Now apply Theorem 3.2. �

If the answer to Arhangel'skij's question or to Question 3.4 is negative, then

this will provide the solution to Ruppert's problem.
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