$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/2391469$

READS

83

Eberlein Groups

Preprint · April 1998

Source: CiteSeer

CITATIONS 0 1 author: Michael Megrelishvili Bar Ilan University 88 PUBLICATIONS 1,445 CITATIONS SEE PROFILE

All content following this page was uploaded by Michael Megrelishvili on 19 July 2017.

Eberlein Groups

by Michael G. Megrelishvili Department of Mathematics and Computer Science Bar-Ilan University Ramat-Gan, 52900, Israel

ABSTRACT. We show that the algebra W(G) of all weakly almost periodic functions generates the given topology on a Hausdorff topological group G (say, *Eberlein group*) if and only if there exists a reflexive Banach space X such that G is a topological subgroup of the group Is(X) of all linear isometries of X endowed with the strong operator topology. For this purpose we establish a general result on coincidence of the strong and weak operator topologies on Is(X) for arbitrary reflexive X. The proof is based on the Ellis-Lawson joint continuity theorem and our recent result about continuity of dual group actions on Asplund spaces. In the last part we discuss two possible ways finding non-Eberlein groups using uniformly universal Banach spaces or minimal topological groups.

§1. Introduction.

Let S be a semitopological semigroup, that is, a topologized semigroup with a separately continuous multiplication. We will denote by C(S) the commutative C^* algebra of all bounded continuous complex valued functions on S. For each $s \in S$, the right translation maps R_s of C(S) into itself are defined by

$$R_s f(x) = f(xs)$$
 for all $x \in S$.

Recall some basic facts about weak almost periodicity (see [Eb], [LG], [BJM], [R1]). A function $f \in C(S)$ is weakly almost periodic if the orbit of f, that is, the set

$$Sf := \{R_sf \mid s \in S\}$$

is relatively weakly compact in C(S). The set W(S) of all such functions is a closed S-invariant subalgebra of C(S). If S is compact, then W(S) = C(S). Moreover, the compactification $u: S \to S^w$, induced by the algebra W(S), is the universal semitopological semigroup compactification of S.

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX

AMS Subject Classification: 54H15, 22A20, 43A65, 46B10

 $Key\ words\ and\ phrases.$ Compact semitopological semigroup, weakly almost periodic, Ellis-Lawson theorem.

If $(X, \| \|)$ is a Banach space, we denote by $(L(X), \| \|)$ the algebra of all bounded linear operators $X \to X$. The dual Banach space of X will be denoted by X^* . We use the following notation:

$$B(X) := \{ x \in X \mid ||x|| \le 1 \}$$

Cont(X) := $\{ s \in L(X) \mid ||s|| \le 1 \}$.

The group of all linear isometries of X will be denoted by Is(X). The strong, strong^{*} and weak operator topology (which we denote respectively by T_s, T_{s^*} and T_w) on L(X) is the weakest topology generated respectively by the system of maps:

- (1) $\{\tilde{x}: L(X) \to X, \ \tilde{x}(s) = sx \mid x \in X\},\$
- (2) $\{\tilde{f}: L(X) \to X^*, \ \tilde{f}(s)(x) = f(sx) \mid f \in X^*\},\$
- (3) $\{\psi_{x,f} : L(X) \to \mathbb{R}, \ \psi_{x,f}(s) = f(sx) \mid x \in X, f \in X^*\}.$

If a subset P of L(X) is endowed with one of the following subspace topologies $T_s \mid_P, T_{s^*} \mid_P, T_w \mid_P$, then often we indicate this by writing P_s, P_{s^*} and P_w , respectively. Analogously, a subset A of X endowed with its usual weak topology is denoted by A_w . $L(X)_s, L(X)_{s^*}, L(X)_w$ are always Hausdorff semitopological semigroups.

Fact 1.1. (Banach-Bourbaki Theorem) A Banach space X is reflexive iff B(X) is weakly compact.

Fact 1.2. The semitopological semigroup $Cont(X)_w$ is compact iff X is reflexive.

Proof. The compactness of $Cont(X)_w$ for a reflexive X is well-known (see, for instance [LG, Th. 3.1]). The converse implication follows from Fact 1.1, taking into account that for any fixed vector x_0 with $||x_0|| = 1$, the map

$$\operatorname{Cont}(X)_w \to B(X)_w, \quad s \to sx_0$$

is continuous and *onto*. Indeed, take a continuous functional f on X such that $f(x_0) = 1$ and ||f|| = 1. For every $z \in B(X)$ assign to the pair (f, z) the following linear operator

$$A_{f,z} \colon X \to X, \quad A_{f,z}(x) = f(x)z$$

Clearly, $A_{f,z}$ is a contraction of X moving x_0 into z.

The following result is well known for Hilbert spaces.

Theorem 1.3. Let X be a reflexive Banach space. Then the strong and weak operator topologies coincide on Is(X).

Proof. In [Me1, Corollary 6.9] we have already proved that the reflexivity of X guarantees the continuity of the dual action of Is(X) on X^* . This leads (see [Me1, Corollary 6.11] to the equality $T_s \mid_{Is(X)} = T_{s^*} \mid_{Is(X)}$. Therefore, for our purposes it suffices to show that $T_{s^*} \mid_{Is(X)} \subseteq T_w \mid_{Is(X)}$.

Consider the canonical separately continuous semigroup action

$$\alpha \colon \operatorname{Cont}(X)_w \times B(X)_w \to B(X)_w.$$

The reflexivity of X guarantees that $B(X)_w$ and $Cont(X)_w$ are compact. Therefore we can apply the *Ellis-Lawson Theorem* [La, Corollary 5.2] which implies that α is jointly continuous at each point (g, x), where g is an arbitrary unit of Cont(X) and x is an arbitrary point of B(X). Thus, the restricted group action

$$\alpha' \colon Is(X)_w \times B(X)_w \to B(X)_w$$

is jointly continuous. Let $f \in X^*$. Clearly, the restricted map $f \mid_{B(X)} : B(X)_w \to \mathbb{C}$ is continuous. Using the joint continuity of α' and the compactness of $B(X)_w$, we obtain that for a given $\varepsilon > 0$ and $g_0 \in Is(X)$ there exists a neighborhood $O(g_0)$ of g_0 in $Is(E)_w$ such that

$$|f(gx) - f(g_0x)| < \varepsilon$$

for every $x \in B(X)$ and $g \in O(g_0)$. Or, equivalently,

$$\|fg - fg_0\|^* < \varepsilon$$

for every $g \in O(g_0)$. This means that the orbit map

$$\tilde{f} \colon Is(X)_w \to X^*$$

is continuous for every $f \in X^*$. Therefore, $T_{s^*} \mid_{I_s(X)} \subseteq T_w \mid_{I_s(X)}$, as required. \Box

Remark 1.4. In general, $T_s \mid_{I_s(X)} \neq T_w \mid_{I_s(X)}$. The following general construction, providing many counterexamples, is based on an idea of Helmer [H, Ex. 13]. Let Y be a compact Hausdorff space and let G be a subgroup of the group H(Y) of all autohomeomorphisms of Y. Denote by G_p the group G endowed with the topology of pointwise convergence. Then the evaluation map $\alpha \colon G_p \times Y \to Y$ is separately continuous. Consider the induced action

$$\pi \colon G \times C(Y) \to C(Y), \qquad (g \circ f)(y) = f(g^{-1}y)$$

and the induced injective group homomorphism $j: G \to Is(X)$, where X = C(Y). Now, suppose that α is not jointly continuous and G is a k-space (for example, in [H, Ex. 13], G is the topological group of all rationals and Y is the square $[-1,1]^2$). Then, by Grothendieck's classical result [G, Th. 5], the map $j: G_p \to Is(X)_w$ is compact-preserving and, hence, continuous by our assumption on G. It is easy to show that $T_w \mid_{j(G)} \neq T_s \mid_{j(G)}$. Indeed, assuming the contrary, we will obtain that the restricted dual action

$$\pi_B^* : G_p \times B(X^*)_{w^*} \to B(X^*)_{w^*} , \qquad (g \circ \psi)(f) = \psi(g^{-1} \circ f)$$

is continuous, where $B(X^*)_{w^*}$ is the unit ball of X^* endowed with the weak^{*} topology. Then the original action α (being canonically equivalent to a subaction of π_B^*) is jointly continuous. This contradicts our assumption.

Remark 1.5. In general, $T_s \mid_{I_s(X)} \neq T_{s^*} \mid_{I_s(X)}$. Indeed, it is well known that there are many continuous norm invariant continuous linear group actions on Banach spaces X such that the corresponding dual actions on X^* are not continuous. Consider, for example, $X = \ell_1$ and define a subgroup $S(\mathbb{N})$ of $Is(X)_s$ consisting of all permutations of "coordinates." Then the dual action of $S(\mathbb{N})$ on $\ell_1^* = m$ is not continuous. Hence, it is not even true that $T_{s^*} \mid_{I_s(X)} \subseteq T_s \mid_{I_s(X)}$. For arguments in the case of X = C[0, 1], see [Me1]. Note also that if X is Asplund (by Stegall's result [St], it is equivalent to saying that the dual X^* has the Radon-Nikodym property), then, necessarily, $T_{s^*} \mid_{I_s(X)} \subseteq T_s \mid_{I_s(X)}$ (cf. [Me1, Corollary 6.9]).

§2. Compact semitopological semigroups "live" in reflexive spaces.

For every reflexive Banach space X, the semitopological semigroup $Cont(X)_w$ is compact. The aim of this section is to show

Theorem 2.1. Let (S, τ) be a compact Hausdorff semitopological semigroup. Then there exists a reflexive Banach space X such that (S, τ) is a subsemigroup of the compact semitopological semigroup $Cont(X)_w$.

Proof. Without loss of generality, we can assume that S has the identity e. Consider the natural monoid action

$$\alpha \colon S \times C(S) \to C(S) \qquad \alpha(s, f) = sf = R_s(f).$$

Clearly, each s-translation $\alpha^s = R_s$ is continuous. Moreover, by [G, Th. 5], each orbit map

$$\alpha_f \colon S \to C(S) \ , \qquad s \mapsto sf$$

is weakly continuous (see [LG]). Therefore, for every fixed $f \in C(S)$, the orbit Sf is weakly compact. Denote by E_f the Banach subspace of C(S) linearly and topologically generated by Sf. Since a^s is continuous for every $s \in S$, E_f is S-invariant. By the Hahn-Banach Theorem, the weak topology of E_f is the same as its relative weak topology as a subset of C(S). In particular, Sf is weakly compact in E_f . By the Krein-Smulian Theorem, the convex hull $co(-Sf \cup Sf) = W$ of the weakly compact symmetric subset $-Sf \cup Sf$ is relatively weakly compact. That is, the (weak) closure of W in E_f is weakly compact. Since W is a convex, bounded and symmetric subset of E_f , we can apply the factorization procedure discovered by Davis, Figiel, Johnson and Pelczynski [DFJP]. For each natural n, set

$$U_n = 2^n W + 2^{-n} B(E_f).$$

Let $|| ||_n$ be the gauge of the set U_n . That is,

$$||x||_n = \inf \{\lambda > 0 \mid x \in \lambda U_n\}.$$

(1) $|| ||_n$ is a norm on E_f equivalent to the given norm || || of E_f ;

(2) For $x \in E_f$, let

$$N(x) = \left(\sum_{n=1}^{\infty} \|x\|_{n}^{2}\right)^{1/2},$$

and let

$$X_f = \{ x \in E_f \mid N(x) < \infty \}.$$

Denote by $j: X_f \to E_f$ the inclusion map;

(3)
$$f \in Sf \subseteq W \subseteq B(X_f);$$

(4) (X_f, N) is a Banach space and $j: X_f \to E_f$ is a continuous linear injection;

(5) X_f is reflexive;

(6) The restriction of $j: X_f \to E_f$ on each bounded subset A of X_f induces a homeomorphism of A and j(A) in the weak topologies.

Proof. Consider the weak closure $cl_w(A)$ of A in X_f . By the reflexivity of X_f , the set $cl_w(A)$ is weakly compact. Hence, j, being weakly continuous and injective, induces a homeomorphism of $cl_w(A)$ and $j(cl_w(A))$ with respect to the weak topologies. This proves assertion (6).

(7) $N(sx) \leq N(x)$ for every $x \in X_f$ and every $s \in S$.

Proof. It suffices to show that $||sx||_n \leq ||x||_n$ for every $n \in \mathbb{N}$. By our construction $sW \subseteq W$ and $sB(E_f) \subseteq B(E_f)$ (R_s is a contraction of E_f). Then, from $x \in \lambda(2^nW + 2^{-n}B(E_f))$ we obtain that $sx \in \lambda(2^n(sW) + 2^{-n}s(B(E_f))) \subseteq \lambda(2^nW + 2^{-n}B(E_f))$. Hence, $||sx||_n \leq ||x||_n$, as required. This proves assertion (7).

As a corollary, we get that X_f is an S-invariant subset of E_f . Therefore, the restricted action

$$\alpha_f \colon S \times X_f \to X_f$$

is well-defined.

(8) For every $z \in X_f$, the orbit map

$$\tilde{z} \colon S \to X_f \quad , \qquad \tilde{z}(s) = sz$$

is weakly continuous.

Proof. Indeed, by assertion (7), the orbit $\tilde{z}(S) = Sz$ is an N-normed bounded subset in X_f . Our assertion follows from (6) (for A = Sz), taking into account that $\tilde{z}: S \to E_f$ is weakly continuous.

By (7), for every $s \in S$, the translation map $\alpha_f^s \colon X_f \to X_f$ is a linear contraction of (X_f, N) . Therefore, we get the map

$$\gamma_f \colon S \to \operatorname{Cont}(X_f) \quad , \quad \gamma_f(s) = \alpha_f^s.$$

Now, directly from (8) we obtain

(9) $\gamma_f \colon S \to \operatorname{Cont}(X_f)_w$ is a continuous monoid homomorphism.

Now we are ready to construct the desired reflexive Banach space X. Consider the family $F = \{X_f \mid f \in C(S)\}$ of reflexive Banach spaces and the family

$$\{\gamma_f \colon S \to \operatorname{Cont}(X_f) \mid f \in C(S)\}$$

of monoid homomorphisms. Define X as the ℓ_2 -product (cf. [Da, p. 35] or [NP, p. 743]), $X = \prod_2 X_f$ of the family F. Recall that it is the space of all functions $x = (x_f)$ such that $x_f \in X_f$ for each $f \in C(S)$, and the norm on X is defined by

$$||x|| = \left(\sum_{f \in C(S)} ||x_f||^2\right)^{1/2} < \infty.$$

Then (X, || ||) is reflexive. Moreover, $(\prod_2 X_f)^* = \prod_2 X_f^*$ and the corresponding pairing for $x = (x_f) \in \prod_2 X_f$, $h = (h_f) \in \prod_2 X_f^*$ is defined by

$$h(x) = \sum_{f \in C(S)} h_f(x_f).$$

Now we define a linear representation of S in X as the ℓ_2 -product of old representations. Precisely, we define

$$\gamma \colon S \to \operatorname{Cont}(X) \quad , \quad \gamma(s)(x_f) = (sx_f).$$

First observe that by assertion (7), X is well-defined. Clearly, γ is a monoid homomorphism. By assertion (9) and the above-mentioned description of X^* , it is easy to show that γ is weakly continuous. In order to establish that γ is the desired embedding, by the compactness of S, we have only to show that γ is injective. Equivalently, it suffices to check that $\{\gamma_f \mid f \in C(S)\}$ separates the points of S. Let s_1, s_2 be distinct points of S. Choose a continuous function $f \in C(S)$ with $f(s_1) \neq f(s_2)$. Since $(s_1f)(e) = f(s_1)$ and $(s_2f)(e) = f(s_2)$, it follows that s_1f and s_2f are distinct elements of C(S) and of E_f . Moreover, by our construction, $X_f \subseteq$ E_f and s_1f, s_2f both belong to X_f (see assertion (3)). Therefore, $\gamma_f(s_1) \neq \gamma_f(s_2)$. This implies that $\gamma(s_1) \neq \gamma(s_2)$, as required. \Box

Remark 2.2. In Theorem 2.1 we may choose X as having the same topological weight as S. That is, w(X) = w(S). Indeed, we can easily modify the second part of the proof, taking the family $\{X_f \mid f \in P\}$, where P separates the points of S.

§3. Eberlein groups and Ruppert's problem.

Recall that for every semitopological semigroup S, the compactification $u: S \to S^w$ induced by the algebra W(S) is just the universal semitopological compactification of S.

Definition 3.1. We say that G is an *Eberlein group* if one of the following equivalent conditions holds:

- (i) W(G) separates the points from the closed sets;
- (ii) $u: G \to G^w$ is a topological embedding;
- (iii) G is a topological subgroup of a compact semitopological semigroup.

For instance, every Hausdorff locally compact group is Eberlein.

Problem 3.2. (Ruppert [R1, p.114-115]) Find a Hausdorff topological group which is not Eberlein.

This problem is open even in the case when G is algebraically isomorphic to \mathbb{Z} (cf. [R2]).

Every topological group G is a topological subgroup of $Is(X)_s$ for a certain Banach space X (take, for example, $X = C_r(G)$, the space for all right uniformly continuous functions on G (as in Teleman [T])). The natural question is: how good may X be? When X may be Asplund or even reflexive? It turns out that the case of a reflexive X gives a characterization of Eberlein groups. Indeed, by combining Theorem 2.1 and Theorem 1.3 we obtain

Theorem 3.2. For every topological group G TFAE:

- (i) G is an Eberlein group;
- (ii) G is a topological subgroup of $Is(X)_s$ for a certain reflexive Banach space X.

Below we discuss some related results and questions (having independent interest) which may help resolve Ruppert's problem.

Proposition 3.3. Let G be a separable metrizable group and let $U_{\ell}(G)$ denote its left uniform structure. If G is Eberlein, then $(G, U_{\ell}(G))$, as a uniform space, is embedded into a separable reflexive Banach space Y.

Proof. By Theorem 3.2, G is a topological subgroup of $Is(X)_s$ for a certain reflexive Banach space X. Proceeding as in [Me2, Counterexample 3.13], without loss of generality we may suppose that X is separable. By the definition of the strong operator topology, the system of all orbit maps on G generates the uniformity $U_{\ell}(G)$. Since G is second countable, we may suppose that there exists a sequence z_n in X such that the corresponding sequence of orbit maps

$$\tilde{z}_n \colon G \to X \quad , \quad \tilde{z}_n(g) = g z_n$$

generates $U_{\ell}(G)$. Moreover, we may suppose that $||z_n|| = 2^{-n}$. Consider the ℓ_2 -product $\prod_2 X_n = Y$ of the family $\{(X_n, || ||_n) \mid n \in \mathbb{N}\}$, where each $(X_n, || ||_n)$ is a copy of (X, || ||). Clearly, Y is a reflexive Banach space. Since $||z_n|| = 2^{-n}$, it is easy to show that the diagonal product map

$$\gamma \colon G \to \prod_{2} X_n = Y, \qquad \gamma(g) = (gz_n)$$

provides the desired uniform embedding.

We say that a separable Banach space U is uniformly universal if every separable Banach space, as a uniform space, can be uniformly embedded into U. Aharoni [Ah] proved that c_0 is uniformly universal. In response to a question by Yu. Smirnov, in 1969 Enflo [En] found a separable metrizable uniform space which is not uniformly embedded into a Hilbert space. That is, ℓ_2 is not uniformly universal. However, it is not clear if here "Hilbert" may be replaced by "reflexive."

Question 3.4. (a) Is it true that $C[0, 1], c_0$ (or any other uniformly universal space) is a uniform subset of a certain reflexive Banach space?

(b) Equivalently, is it true that there exists a uniformly universal reflexive Banach space?

Note that if c_0 is an Eberlein group, then, by Theorem 3.2 and Proposition 3.3, there exists a uniformly universal reflexive Banach space. Note also that there is no *Lipschitz embedding* of c_0 into a reflexive Banach space [Ma]. For additional results in the theory of uniform (or Lipschitz) Banach embeddings, we refer to the survey of J. Lindenstrauss [Li].

In order to explain another possible link to Problem 3.2, let us recall that a Hausdorff topological group G is said to be *minimal* [Step] if there is no strictly coarser Hausdorff group topology on G.

Question 3.5. (Arhangel'skij (cf. [Di], [Me2]) Is it true that every Hausdorff topological group G is a quotient of a minimal topological group?

The following proposition implies a positive answer to Question 3.5 in the case of an Eberlein group.

Proposition 3.6. Every Eberlein group is a group retract of a minimal topological group.

Proof. In [Me1, Theorem 6.12] we proved that, if X is an Asplund space, then every topological subgroup G of $Is(X)_s$ is a group retract of a minimal topological group. Now apply Theorem 3.2.

If the answer to Arhangel'skij's question or to Question 3.4 is negative, then this will provide the solution to Ruppert's problem.

Acknowledgement. The author would like to thank A. Leiderman and V. Pestov for providing valuable information and for many stimulating discussions.

E-mail: megereli@macs.biu.ac.il

References

- [Ah] I. Aharoni, Every separable Banach space is Lipschitz equivalent to a subset of c₀, Israel J. of Math. 19 (1974), 284-291.
- [BJM] J.F. Berglund, H.D. Junghenn and P. Milnes, Analysis on Semigroups, Canadian Math. Soc. (1989), Wiley-Interscience Publication.

- [Da] M. Day, Normed Linear Spaces, Springer-Verlag, 1973.
- [Di] D. Dikranjan, *Recent advances in minimal topological groups*, Topology and Appl., (to appear).
- [Eb] W.F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math Soc. 67 (1949), 217-240.
- [En] P. Enflo, On a problem of Smirnov, Ark. Math. 8 (1969), 107-109.
- [G] A. Grothendieck, Critéres de compacité dans les espaces functionelles généraux, Amer.
 J. Math. 74 (1952), 168-186.
- [H] D. Helmer, Continuity of affine semigroup actions, Semigroup Forum **21** (1980), 153-165.
- [La] J.D. Lawson, Joint continuity in semitopological semigroups, Illinois J. Math. 18 (1974), 275-285.
- [LG] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
- [Li] J. Lindenstrauss, Uniform embeddings, homeomorphisms and quotient maps between Banach spaces (a short survey), Preprint.
- [Ma] P. Mankiewicz, On differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29.
- [Me1] M. Megrelishvili (Levy), Fragmentability and continuity of semigroup actions, Semigroup Forum, (to appear).
- [Me2] _____, Group representations and construction of minimal topological groups, Topology and Appl. 63 (1995), 1-21.
- [NP] I. Namioka and R.R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750.
- [R1] W. Ruppert, Compact semitopological semigroups: An intrinsic theory, Lecture Notes in Math. 1079 (1984), Springer-Verlag.
- [R2] _____, On signed a-adic expansions and weakly almost periodic functions, Proc. London Math. Soc. (3) 63 (1991), 620-656.
- [St] C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property, Israel J. Math. **29** (1978 pages 408-412).
- [Step] R. Stephenson, Minimal topological groups, Math. Ann. 192 (1971), 193-195.
- [T] S. Teleman, Sur la représentation linéare des groupes topologiques, Ann. Sci. Ecole Norm. Sup. 74 (1957), 319-339.