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Abstract. We shall present Banach and Brouwer fixed point theorems and some
of their applications in analysis and differential equations. We shall also discuss
some of the generalizations of Brouwer fixed point theorem for general topological
spaces.

1. The Banach fixed point theorem

Definition 1.1. Let (X, d) be a metric space, let f : X → X
be a function, then we say that f is a contraction mapping
on X if f satisfies the following condition:
There is a real number 0 ≤ q < 1 such that, for every x, y ∈ X
d(f (x), f (y)) ≤ qd(x, y).

Examples 1.2. 1. Every differentiable function f : R → R
which satisfies |f ′(x)| ≤ q,∀x ∈ R for some real q, (0 ≤ q < 1)
is a contraction.
(This follow immediately by Lagrange mean value theorem).
2. Let A : Rn → Rn be a n×n matrix, suppose that A satisfies∑n

i=1 ||(Ri)||2 ≤ q < 1 where Ri is the i row of A, then A is a
contraction with respect to the usual norm on Rn.
(This follows from the Cauchy-Schwarz inequality).
3. Define F : C[0, 1] → C[0, 1] (where C[0, 1] is equipped with
the sup norm) by the formula F (f )(x) =

∫ x

0 f (t)dt.
define G = F ◦ F , then G is a contraction, one can see that
G(f )(x) =

∫ x

0

∫ t

0 f (s)dsdt.
we shall see that ||G(f )|| ≤ 1

2||f || , ∀f ∈ C[0, 1].
(This is sufficient by the linearity of G), indeed, we have:

||G(f )|| = supx∈[0,1] |
∫ x

0

∫ t

0 f (s)dsdt| ≤ supx∈[0,1]

∫ x

0

∫ t

0 |f (s)|dsdt

≤ supx∈[0,1]

∫ x

0

∫ t

0 ||f ||dsdt = ||f || supx∈[0,1]

∫ x

0

∫ t

0 dsdt =

||f || ∫ 1

0

∫ t

0 dsdt = 1
2||f ||.

Theorem 1.3. Let (X, d) be a complete metric space, if
f : X → X is a contraction, then f has a fixed point.
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(i.e. a point x ∈ X which satisfies f (x) = x) and this point
is unique.

Proof. If f is a contraction, then there is a real number 0 ≤ q <
1 which satisfies d(f (x), f (y)) ≤ qd(x, y) for every x, y ∈ X .
Choose a point x0 ∈ X and define a sequence (xn)∞n=1 by the
recursion xn+1 = f (xn), for every n we have d(xn, xn+1) ≤
qnd(x0, x1), hence, for k > n ≥ 0 we get:
0 ≤ d(xn, xk) ≤ d(xn, xn+1) + .. + d(xk−1, xk) ≤
qnd(x0, x1)+..+qk−1d(x0, x1) = qn(1+q+..+qk−n−1)d(x0, x1) ≤
qn(1 + q + q2 + ..)d(x0, x1) = qnd(x0, x1)

1
1−q = qn · α

Where α is independent of n, thus qn · α → 0 as n →∞.
Thus (xn)∞n=1 is a Cauchy sequence, but we have assumed that
X is complete, hence the sequence converge.
Assume that xn → x, then f (x) = f (lim xn) = limf (xn) =
lim xn+1 = x. (Every contraction is in particular continuous.)
Thus x is a fixed point of f . To prove uniqueness let’s as-
sume that f (x) = x, f (y) = y, where x, y ∈ X , then we
have d(x, y) = d(f (x), f (y)) ≤ qd(x, y), so we must have
d(x, y) = 0 which means that x = y. ¤

We shall give now an important application of the previous
theorem.

Theorem 1.4. Let f : [a, b]× (−∞,∞) → R be a continu-
ous function, suppose that f also satisfies Lipschitz condi-
tion in the y variable, i.e, there exist M > 0 such that

|f (x, y1)− f (x, y2)| ≤ M |y1 − y2| ∀x ∈ [a, b].

If (b − a)M < 1, then for every x0 ∈ [a, b], y0 ∈ (−∞,∞)
there exist a unique solution to the following differential
equation:

y′ = f (x, y) , y(x0) = y0 (x, y) ∈ [a, b]× (−∞,∞)
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Proof. The differential equation y′ = f (x, y) , y(x0) = y0 is
equivalent to the following integral equation:

y(x) = y0 +

∫ x

x0

f (t, y(t))dt.

Define the map A : C[a, b] → C[a, b] by the formula

(A(y))(x) = y0 +

∫ x

x0

f (t, y(t))dt , y ∈ C[a, b].

We will show that A is a contraction (with C[a, b] equipped
with the sup norm), Let y1, y2 ∈ C[a, b], then:
||A(y1)−A(y2)|| = supx∈[a,b] |

∫ x

x0
[f (t, y1(t))−f (t, y2(t))]dt| ≤

supx∈[a,b]

∫ x

x0
|f (t, y1(t))− f (t, y2(t))|dt

≤ supx∈[a,b]

∫ x

x0
M |y1(t)− y2(t)|dt

≤ M supx∈[a,b]

∫ x

x0
||y1 − y2||dt ≤ M(b− a)||y1 − y2||.

But (b− a)M < 1, thus A is a contraction.
Since C[a, b] is complete (with the sup norm), by the previous
theorem we get that A has a unique fixed point y. This y will
satisfies the integral equation y(x) = y0 +

∫ x

x0
f (t, y(t))dt.

¤

2. The Brouwer fixed point theorem

Before introducing the Brouwer fixed point theorem we shall
give a few definitions and lemmas.

Definition 2.1. A function f : A → Rm(A ⊂ Rn an open
set) is differentiable at a ∈ A if we can write

f (a + x) = f (a) + (Df
a)(x) + ra(x)
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where Df
a : Rn → Rm is a linear map and ra(x) = ◦(||x||). In

general, a function f : A → Rm is of class C1 if f is differen-
tiable at every point of A and the function
Df : A → Hom(Rn,Rm) a 7→ (Df

a) is continues.

Remark 2.2. From advanced calculus it is known that
(Df

a) = ( ∂fi
∂xj

(a)), j = 1...n, i = 1...m.

Hence, f is of class C1 in A if and only if f have continues
partial derivatives in A.

Lemma 2.3. If A is an open convex set of Rn ,f : A → Rm

differentiable in A and sup{||Df
a|| : a ∈ A} = M < ∞,

then we have the following inequality:

||f (y)− f (x)|| ≤ M ||y − x|| ∀x, y ∈ A

Lemma 2.4. (The open mapping theorem) If A ⊂ Rn is
an open set and f : A → Rm is of class C1 and satisfies
rank(Df

x) = m for all x ∈ A, then f is an open mapping.
(i.e for every open set G ⊂ A, f (G) is an open set in Rm).

Lemma 2.5. If A is a n × n matrix and ||A|| < 1 then
Det(I + A) > 0.

Proof. Define the polynomial g(x) = Det(I + xA), if
Det(I + A) ≤ 0,then we have g(0) = Det(I) = 1 and
g(1) ≤ 0. Hence we have x0 ∈ (0, 1] which satisfies g(x0) = 0,
or Det(I + x0A) = 0. Hence we have v ∈ Rn, v 6= 0 which
satisfies (I + x0A)v = 0, or −v = x0Av, thus we have
||v|| = ||x0Av|| ≤ x0||A||||v|| < x0||v|| which is a contradic-
tion.

¤
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Theorem 2.6. (The Brouwer fixed point theorem)
Let B(0, 1) ⊂ Rn be the closed unit ball. Then if
f : B(0, 1) → B(0, 1) is a continuous function, then f has
a fixed point.

Proof. It turns out that it suffice to prove the theorem only for
C1 functions which are defined on a neighborhood of B(0, 1)
(i.e, function which are defined on B(0, r), r > 1, where r is
dependent on the function).
Indeed, if the theorem true for C1 functions and false for some
continuous function g : B(0, 1) → B(0, 1), then we denote
ε = 1

3minx∈B(0,1)||g(x)− x||, from our assumption ε > 0.
From Weierstrass approximation theorem we can find a
polynomial h : Rn → Rn such that:

||g(x)− h(x)|| < ε ∀x ∈ B(0, 1)

.
Define f (x) = h(x)

1+ε , then f map B(0, 1) to itself (because
g map B(0, 1) to itself). Now f is defined on all of Rn and
is of class C1, and for x ∈ B(0, 1) we have:
||f (x)−x|| = ||(g(x)−x)− (g(x)−h(x))− (h(x)−f (x))|| ≥
||g(x)− x|| − ||g(x)− h(x)|| − ||h(x)− f (x)|| =
||g(x)−x||−||g(x)−h(x)||−ε||f (x)|| ≥ ||g(x)−x||−2ε > 0.
So f also does not have a fixed point. Contradiction.
Now we have arrived to the main step of the theorem, we will
prove that there is no f of class C1, defined on a neighborhood
of B(0, 1) and satisfying

f (B(0, 1)) = ∂B(0, 1), f (x) = x , ∀x ∈ ∂B(0, 1)

.
For if such f exist, we define (on the domain of f ) the functions
h(x) = f (x)− x
f t(x) = x + th(x) = (1− t)x + tf (x), t ∈ [0, 1].
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Now h is zero on ∂B(0, 1) and hence f t(x) = x on ∂B(0, 1).
Since h is of class C1 we have M = maxx∈B(0,1)||Dh

x|| < ∞.
From Lemma 2.3 ||h(x)−h(y)|| ≤ M ||x−y|| (x, y ∈ B(0, 1)).
Hence, for t ∈ [0, 1

M ), f t is one to one on B(0, 1), because
if f t(x) = f t(y) then:
||x− y|| = t||h(x)− h(y)|| ≤ tM ||x− y||, but tM < 1
and hence we must have x = y.
From the definition of f t we have for all t ∈ [0, 1], x ∈ B(0, 1)

D(f t)
x = I + tDh

x.

If t ∈ [0, 1
M ), ||tDh

x|| < 1, hence from Lemma 2.5, J(f t)
x > 0,

which means that Rank(D(f t)
x) = n, hence from Lemma 2.4,

for all t ∈ [0, 1
M ) f t(B0(0, 1)) is an open set which contained in

B(0, 1) and hence f t(B0(0, 1)) ⊆ B0(0, 1).
We will in fact prove that f t(B0(0, 1)) = B0(0, 1), otherwise,
there is some point e ∈ B0(0, 1)\f t(B0(0, 1)), suppose J is the
segment which connect e with some point g ∈ f t(B0(0, 1)).
There is some point b in this segment such that

b ∈ ∂f t(B0(0, 1)) = Clf t(B0(0, 1))\f t(B0(0, 1)).

from the continuity of f we have Clf t(B0(0, 1)) ⊆ f t(B(0, 1)).
Hence

b ∈ f t(B(0, 1))\f t(B0(0, 1)) = f t((B(0, 1))\B0(0, 1))

= f t(∂B(0, 1)) = ∂B(0, 1)

.
(where in the first passage we use the fact that f t is one to one
when t ∈ [0, 1

M ) and in the third passage we use the fact that
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f t is the identity on the boundary).
Hence we have e, g ∈ B0(0, 1) and b a point between e and g
such that b ∈ ∂B(0, 1) which is a contradiction to the convexity
of B0(0, 1).
Now, for every t ∈ [0, 1

M ) f t(B0(0, 1)) = B0(0, 1) and
f t(∂B(0, 1)) = ∂B(0, 1), thus, for those t, f t is a homeomor-
phism from B(0, 1) to itself. We have shown also that
J(f t)

x > 0 ∀x ∈ B(0, 1), hence:

P (t) =
∫

B(0,1) J(f t)
xdx = V (f t(B(0, 1))) = V (B(0, 1)). Hence

P (t) is a constant polynomial for t ∈ [0, 1
M ), hence P is con-

stant for every t ∈ [0, 1]. In particular, for t = 1 we have:
V (B(0, 1)) = P (1) =

∫
B(0,1) J(f1)

xdx =
∫

B(0,1) Jf
xdx. But we

have assumed that f (B(0, 1)) = ∂B(0, 1), thus:

< f (x), f (x) >= 1, ∀x ∈ B(0, 1),

hence:

<
∂f (x)

∂xi
, f (x) >= 0, 1 ≤ i ≤ n

(here we use the fact that f is of class C1). But f (x) 6= 0 and
hence Jf

x = 0 and
∫

B(0,1) Jf
xdx = 0 which is a contradiction.

Now, the proof of our theorem is immediate, for if
f : B(0, r) → B(0, 1) (r > 1) is of class C1 and doesn’t have a
fixed point in B(0, 1), we can define a function h from B(0, r)
to B(0, 1) such that h(B(0, 1)) = ∂B(0, 1), h ≡ I on ∂B(0, 1)
which correspond to each x ∈ B(0, 1) the intersection point of
∂B(0, 1) with the ray starting at f (x) and passes through x.
It is easy to see that h is of class C1 and can be defined on a
neighborhood of B(0, 1) which contradicts our main step. ¤
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3. Generalizations of Brouwer fixed point
theorem

Definition 3.1. A topological space X is said to have the fixed
point property, if for every continuous mapping f : X → X ,
there exist a p ∈ X with f (p) = p.

Examples 3.2. If we define the Hilbert cube as
C = {(xn)n|xn ∈ R, xn ≤ 1

n}, then C has the fixed point
property. Indeed, let T : C → C be a continues map.
Define Pn : C → C be the map defined by:

Pn([x1, ..., xn, xn+1, ...]) 7→ [x1, ..., xn, 0, 0, ....]

The set Cn = Pn(C) is homeomorphic to the closed unit ball in
Rn. Since the mapping pn ◦ T |Cn : Cn → Cn is continuous, the
Brouwer theorem implies that it has a fixed point yn ∈ Cn ⊂ C.
Hence if T (yn) = [T1, ..., Tn, Tn+1, ...], then
[T1, ..., Tn, 0, ...] = [yn,1, ..., yn,n, 0...] = yn, so we have

|yn − T (yn)| =
√∑∞

i=n+1 Ti
2 ≤

√∑∞
i=n+1

1
i2
.

Since C is compact, yn has a convergent subsequence. The limit
of this sequence is clearly a fixed point of T.

We turn now to prove the main theorem in this section, the
Kakutani theorem, but first we need a definition.

Definition 3.3. A family F of linear transformations on a
linear topological space X is said to be equicontinuous on a
subset K of X if for every neighborhood V of the origin in X
there is a neighborhood U of the origin such that if k1, k2 ∈ K
and k1 − k2 ∈ U then F (k1 − k2) ⊆ V , that is:
T (k1 − k2) ∈ V for all T ∈ F.

Theorem 3.4. (Kakutani) Let K a be non empty compact
convex subset of a locally convex linear topological space X,
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and G be a group of linear mappings which is equicontinuous
on K and such that G(K) ⊆ K. (i.e, T (K) ⊆ K, ∀T ∈ G).
Then there is a point p ∈ K such that T (p) = p , ∀T ∈ G.

Proof. By Zorn’s lemma, K contains a minimal non-empty
compact convex subset K1 such that G(K1) ⊆ K1.(for every
chain of non-empty compact convex sets A1 ⊇ A2 ⊇ A3 ⊇ ...
which satisfies G(Ai) ⊆ Ai we can define B = ∩iAi which is
convex, compact, non-empty and satisfies G(B) ⊆ B and hence
B can be taken as an upper-bound).
If K1 contains only one point, then our proof is complete. If
this is not the case, the compact set K1 − K1 contains some
point other than the origin, thus there is a neighborhood V of
the origin such that V does not contain K1 −K1.
X is locally convex, hence there is a convex neighborhood V1 of
the origin such that αV1 ⊆ V for |α| ≤ 1. By the equicontinu-
ity of G on the set K1, there is a neighborhood U1 of the origin
such that if k1, k2 ∈ K and k1−k2 ∈ U1 then G(k1−k2) ⊆ V1.
Define U2 = convexhull(G(U1)), since G is a group G(U2) =
U2 and by the linearity of G we have G(Cl(U2)) = Cl(U2).
Let δ = inf{a|a > 0, aU2 ⊇ K1 −K1}, and define U = δU2.
It follows that for each 0 < ε < 1 the set K1 −K1 is not con-
tained in (1− ε)Cl(U), while K1 −K1 ⊆ (1 + ε)U.
The family of open sets {1

2U + k}, k ∈ K1 is a covering of K1.
Let {1

2U + k1, ..,
1
2U + kn} be a finite sub-covering and let

p = (k1+..+kn)/n. If k is any point in K1, then ki−k ∈ 1
2U for

some i between 1 and n. Since ki−k ∈ (1+ ε)U for 1 ≤ i ≤ n
and ε > 0, we have p ∈ n−1(1

2U + (n− 1)(1 + ε)U) + k.
Substituting ε = 1

4(n−1) we have p ∈ (1 − 1
4n)U + k for each

k ∈ K1. Now let K2 = K1 ∩ (∩k∈K1((1− 1
4n)Cl(U) + k)).

K2 6= ∅ because p ∈ K2 and since (1 − 1
4n)Cl(U) does not

contain K1 −K1,K2 6= K1.
Since K2 is closed it is compact and it’s clearly convex. Further,
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since T (aCl(U)) ⊆ aCl(U) for T ∈ G, we have
T (aCl(U) + k) ⊆ aCl(U) + Tk for T ∈ G,k ∈ K1,
but T (K1) ⊆ K1, hence, Tk = k′ for some k ∈ K1 and thus
T (aCl(U) + k) ⊆ aCl(U) + k′, and for every k′ ∈ K1 there is
some k ∈ K1 such that T (k) = k′ (T (K1) = K1, because G is
a group). Hence T (aCl(U) + k) ⊆ aCl(U) + k′ and in the end
we get that ∩k∈K1T (aCl(U) + k) ⊆ ∩k∈K1aCl(U) + k.
This implies that G(K2) ⊆ K2, which is a contradiction to the
minimality of K1.
Thus K1 contains only one point and this point is a fixed point
for the group G. ¤
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