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(To appear in: Annals of the New York Academy of Sciences, volume 788 (1996),

pp. 64-70, PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS (TENTH

SUMMER CONFERENCE AT AMSTERDAM))

Free topological groups over (semi)group actions

M.G. Megrelishvili (Levy)*

Department of Mathematics and Computer Science

Bar-Ilan University, 52 900 Ramat-Gan, ISRAEL

Abstract. We study equivariant embeddability into G-groups. A new regionally prox-

imal type relation introduced in the paper gives a necessary condition providing some

counterexamples. We establish also some su�cient conditions (for locally compact acting

semigroups G, for instance) improving results of M.Eisenberg and J. de Vries.

Introduction.

Our aim is to investigate the following question.

Question. Let a topological (semi)group G act continuously on a space X: When can

X be equivariantly embedded (or at least, G-mapped non-trivially) into a topological

group P in such a way that G continuously acts on P by endomorphisms (hence, by

automorphisms if G is a group)?

For the particular case when P is a linear G-space see de Vries [11] and the references

there.

The question leads us to the de�nition of the free topological G-group over a

(semi)group action (see De�nition 1). Our main result is Theorem 6 which enubles

us to �nd compact coset G-spaces G=H such that the free topological G-group over

G=H is trivial. Roughly speaking, this means that every continuous G-map of G=H

into a G-group P would be \collapsed" into a point. This happens, for example, when

G=H = S

n

is the n-dimensional sphere where G is the group of all autohomeomor-

phisms of S

n

endowed with the compact open topology. The main tool will be a new

\regionally proximal type" relation (De�nition 2) which generalizes the classical notion

from topological dynamics.

Eisenberg [3] has shown that if a locally compact group G acts continuously on

a Tychono� space X then the induced \lifted" action G � A(X) ! A(X) (which is
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separately continuous for arbitrary G) on the free Abelian topological group A(X) is

jointly continuous. A similar result, if A(X) is replaced by the free locally convex space

L(X) is also true. This was remarked without proof in [3]. De Vries [11] proved it

by categorical methods. We establish that analogous results remain true for the free

topological group F (X) considering an arbitrary locally compact topological semigroup

G:

Conventions.

Recall that a G-space or alternatively, a topological transformation (semi)group

(abbreviated: tts, ttg) is a system hG;X;�i in which G is a topologized (semi)group,

X is a topological space and � : G � X ! X; �(g; x) = gx is a continuous action. As

usual, this means that (gh)x = g(hx) for every g; h 2 G and every x 2 X. If G has an

identity e (i.e., if G is a monoid) then we require ex = x for every x 2 X: A g-transition

is the mapping �

g

: X ! X; �

g

(x) = gx and an x-orbit mapping is the mapping

�

x

: G! X; �

x

(g) = gx: A G-space X will be called a G-group orG-endomorphic if X

is a topological group and each �

g

is a group endomorphism. If G is a group we use the

term: G-automorphic. In the case of a linear space X and linear �

g

� s, we obtain the

known de�nition of a linear G-space [11].

The �lter of all neighborhoods (nbd's) at a point x in a space X is denoted by

N

x

(X): If � is a compatible uniformity on a topological space X; then for every " 2 �

and A � X denote by "(A) the set fy 2 X

�

�

(x; y) 2 "; x 2 Ag: Subsets A;B will be

called "-near if "(A) \ "(B) 6= ;:

We denote the greatest compatible uniformity by �

max

:

Due to [10], the left, right and upper uniformities on a topological group will be

denoted by L; R; L _R respectively.

We say that an action � : G � X ! X is locally uniformly equicontinuous if for

every g 2 G there exists V 2 N

g

(G) such that f�

g

g

g2V

is uniformly equicontinuous.

Main results.

As usual, for a topological spaceX denote by F (X); A(X); L(X) the free topological

group, the free Abelian topological group and the free locally convex space respectively.

De�nition 1. Let hG;X;�i be a tts:We will say that an endomorphic triple hG;F

�

(X); ~�i

with a continuous G-mapping i

�

: X ! F

�

(X) is the free topological G-group over X; if

for every continuous G-mapping ' : X ! P to an endomorphic G-space P there exists

a unique continuous G-homomorphism ~' : F

�

(X) ! P such that ~' � i

�

= ': If � is a

uniformity on X; then considering uniform G-mappings and the upper uniformities on

topological groups, we obtain the de�nition of the uniform free topological G-group over

(X;�): The corresponding universal morphism is denoted by i

�

: (X;�)! F

�

(X;�):

The (uniform) free locally convex G-space L

�

(X) (respectively : L

�

(X;�))can be

analogously de�ned.
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An obvious equivariant generalization of the standard product procedure shows that

the just de�ned free G-objects always exist. However, it turns out that the embedding

problem for i

�

is much more complicated. We start with the well known de�nition from

topological dynamics.

Let hG;X;�i be a tts; � be a uniformity on X and S � G: A pair (a; b) 2 X �X

is called regionally S-proximal [1] and is indicated: (a; b) 2 Q

S

; if for every " 2 � and

arbitrary nbd's O

1

2 N

a

(X); O

2

2 N

b

(X) there exists g 2 S such that gO

1

and gO

2

are

"-near. Otherwise, (a; b) is said to be regionally S-distal. X is called regionally S-distal

if Q

S

= �

X

: = f(x; x)

�

�

x 2 Xg: The following de�nition seems to be new.

De�nition 2. (i) We say that a pair (a; b) 2 X �X is regionally S-pseudoproximal and

write : (a; b) 2 Q

p

S

(or: (a; b) 2 Q

p

S

(X;�)) if there exists a �nite set

fa = x

0

; x

1

; : : : ; x

n

= bg with the following property:

(�

S

) for every " 2 � and arbitrary nbd's O

i

2 N

x

i

(X); i 2 f0; 1; : : : ; ng there exists

g 2 S such that gO

i

and gO

i+1

are "-near, for every i 2 f0; 1; : : : ; n � 1g:

(ii) Let G be a monoid.A pair (a; b) will be called regionally �-pseudoproximal if

(a; b) 2 Q

p

V

for every V 2 N

e

(G): This de�nes a relation Q

p

�

= \fQ

p

V

�

�

V 2 N

e

(G)g:

If Q

p

�

= X � X or Q

p

�

= �

X

; then we say that X is regionally�-pseudoproximal, or

regionally �-pseudodistal respectively.

Obviously, Q

p

S

and Q

p

�

are re
exive symmetric relations on X and always Q

S

� Q

p

S

;

Q

p

�

� Q

p

S

: In general, Q

S

6= Q

p

S

; and Q

p

�

6= Q

p

S

:

Example 3. Let G

n

= fh 2 H(I)

�

�

h(x

i

) = x

i

; x

i

=

i

n

; i 2 f0; 1; : : : ; ngg be the

topological subgroup of H(I): Consider the ttg hG

n

; I; �i and the canonical uniformity

on I: Then, for every natural n � 3; the elements 0 and 1 are regionally G

n

-distal. On

the other hand, every pair (a; b) 2 I � I is regionally �-pseudoproximal. In particular,

Q

G

n

is a proper subset of Q

p

G

n

for each n � 3:

Example 4. De�ne the homeomomorphism h : I ! I by the rule

h(x) =

8

>

<

>

:

3x

2

; 0 � x �

1

3

1

3

+

1

3

p

3x� 1;

1

3

� x �

2

3

3x

2

� 4x+ 2;

2

3

� x � 1:

Consider the cyclic group G = fh

n

g

n2Z

and the natural action G � I ! I: Since

0;

1

3

;

2

3

; 1 are �xed then clearly (0; 1) =2 Q

G

: On the other hand, elementary computations

show that Q

p

G

= I � I. Note also that Q

p

�

= �

X

if G is discrete.

Lemma 5. If f : (X

1

; �

1

)! (X

2

; �

2

) is a uniform G-mapping, then (f�f)(Q

p

S

(X

1

; �

1

)) �

Q

p

S

(X

2

; �

2

) and (f � f)(Q

p

�

(X

1

; �

1

)) � Q

p

�

(X

2

; �

2

):In particular, if (X;�) is regionally

�-pseudodistal, then every uniform G-subspace (Y; �j

Y

) is regionally �-pseudodistal.
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Theorem 6. Let G be a topologized monoid.Then every G-group hG; (X;�); �i is

regionally�-pseudodistal for each � 2 fL;R;L _Rg:

Proof. First we consider the case � = R: Assuming the contrary, take a pair (a; b) 2 Q

p

�

of distinct elements. Since X is a Hausdor� topological group and � is continuous, then

we can choose nbd's V

0

2 N

e

(X); U 2 N

e

(G) such that

V

0

\ g(V

0

ab

�1

) = ; 8 g 2 U (1)

Since Q

p

�

� Q

p

U

; then (a; b) 2 Q

p

U

: Consider a �nite set fx

0

; x

1

; : : : ; x

n

g satisfying

De�nition 2. Choose symmetric nbd's V

1

; V

2

2 N

e

(X) with the properties:

x

0

x

�1

i

V

2

2

� V

1

x

0

x

�1

i

8 i 2 f0; 1; : : : ; ng (2)

V

n+1

1

� V

0

(3)

Due to De�nition 2(i), we pick for " : = f(x; y) 2 X�X

�

�

xy

�1

2 V

2

g an element g 2 U

such that g(V

2

x

i

) and g(V

2

x

i+1

) are V

2

-near with respect to the right uniformity R on

X: More precisely, there exist �nite sequences fp

0

; p

1

; : : : ; p

n�1

g; fq

1

; q

2

; : : : ; q

n

g in V

2

such that g(p

i

x

i

)(g(q

i+1

x

i+1

))

�1

2 V

2

for every i 2 f0; 1; : : : ; n� 1g.

Since �

g

is an endomorphism, then

g(p

i

x

i

x

�1

i+1

q

�1

i+1

) 2 V

2

8 i 2 f0; 1; : : : ; n� 1g (4)

Consider the element

z = g(p

0

x

0

x

�1

1

q

�1

1

) g(p

1

x

1

x

�1

2

q

�1

2

) � � � g(p

n�1

x

n�1

x

�1

n

q

�1

n

):

Since V

2

� V

1

by (2), then (4) and (3) imply z 2 V

n

2

� V

n

1

� V

0

: Clearly,

z = g(p

0

x

0

x

�1

1

(q

�1

1

p

1

)x

1

x

�1

2

(q

�1

2

p

2

) � � � (q

�1

n�1

p

n�1

)x

n�1

x

�1

n

q

�1

n

)

and, q

�1

i

p

i

2 V

�1

2

V

2

= V

2

2

for each i 2 f1; : : : ; n � 1g: Using (2) and the trivial can-

cellations of the form x

0

x

�1

i

x

i

x

�1

i+1

= x

0

x

�1

i+1

; (1 � i � n � 1) after n � 1 steps we

get

z 2 g(p

0

V

n�1

1

x

0

x

�1

n

q

�1

n

) � g(V

n

1

x

0

x

�1

n

q

�1

n

):

Using (2) (for i = n); we obtain

z 2 g(V

n+1

1

x

0

x

�1

n

) = g(V

n+1

1

ab

�1

) � g(V

0

ab

�1

):

Thus, z 2 V

0

\ g(V

0

ab

�1

); which contradicts (1). This proves the case � = R:

For � = L; use the G-unimorphism (X;L) ! (X;R); x ! x

�1

and if � = L _ R,

use Lemma 5 for the uniform G-mapping f = 1

X

: (X;L _R)! (X;R): �
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Theorem 7. Let G be a topologized monoid and let (X;�) be a �-pseudoproximal G-

space. Then every uniform G-mapping (X;�) ! (Y; �) into a G-group Y is constant

for each � 2 fL;R;L _ Rg:In particular, the free uniform G-group F

�

(X;�) is cyclic

and discrete.

Proof. Combine Lemma 5 and Theorem 6. �

Example 8. Let X = I

n

be the n-dimensional cube, or let X = S

n

be the n-dimensional

sphere (in both cases n 2 N). Denote by H(X) the group of all autohomeomorphisms

of X endowed with the compact open topology. Then hH(X);X; �i is a regionally

�-pseudoproximal ttg with respect to the unique uniformity on X: Then, by Theorem

7, the free topological G-group F

�

(X) is cyclic and discrete. It is remarkable that by

E�ros's Theorem [2], S

n

is a coset space of H(S

n

): If X = I then the example answers

the question posed by the author in [4, Problem 1.14].

Question 9. Under which conditions is the G-space G=H automorphizable (= G-

subspace of an automorphic G-space) ?

This is so, for example, if H is a neutral [10] subgroup. Indeed, in such cases,

Theorem 5.8 and Proposition 7.7 from [10] imply that the action �

`

of G on G=H is

uniformly equicontinuous with respect to the quotient uniformity L=H: Therefore, by

[7, Th.1.2] (or by our Proposition 12) G=H is even G-linearizable.

Question 10. Under which conditions does the free uniform G-group F

�

(X;�) coincide

with the free uniform group F (X;�) over X?

Lemma 11. (For a stronger version for groups, see [5, Lemma 2.1]). Let an action

� : G�X ! X be locally uniformly equicontinuous with respect to a uniformity � on X

and let orbit mapping �

y

: G ! X be continuous for each y 2 Y; where Y is dense in

X: Then � is continuous.

Proposition 12. Let � : G �X ! X be a continuous and locally uniformly equicon-

tinuous action on a uniform space (X;�): Then F

�

(X;�) = F (X;�) and L

�

(X;�) =

L(X;�):

Proof. Let ~� : G � F (X;�) ! F (X;�) be the lifted action. Clearly, each g-transition

~�

g

is continuous. Since X algebraically generates F (X;�), then the continuity of or-

bit mappings �

x

: G ! X and of group operations in F (X;�) imply that for each

w 2 F (X;�) the orbit mapping ~�

w

: G ! F (X;�) is continuous. From the construc-

tive description of a neighborhood system of the identity in F (X;�) [8] follows that

V acts L _ R-uniformly equicontinuously on F (X;�);provided that V acts uniformly

equicontinuous on (X;�): By Lemma 11, ~� is continuous.Obviously, this implies that

F

�

(X;�) = F (X;�): Essentially the same proof works for L(X;�) using [9]. �
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Pestov [6] proved the continuity of the associated action ~� : G � F

b

�

(X) ! F

b

�

(X)

for the uniformly equicontinuous group action � : G � X ! X; where F

b

�

(X) denotes

the free uniform balanced (i.e., L = R) group in a variety �: For an analogous \lifting"

Theorem for a modi�cation of the free locally convex spaces, see [7, Th. 1.2].

Lemma 13. Every continuous action � of a locally compact topological semigroup G

on a Tychono� space X is locally �

max

-uniformly equicontinuous.

Proof. Let a system S = fd

k

g

k2K

of pseudometrics generate �

max

and let B be the

system of all compact subsets in G: Consider the family S

B

= fd

C

k

�

�

k 2 K; C 2 Bg

where

d

C

k

(x; y) = supfd

k

(gx; gy)

�

�

g 2 Cg:

The compactness of C and the continuity of � imply that the system f�

g

�

�

g 2 Cg is

d

k

-equicontinuous for every k 2 K: Then it is easy to see that uniformity � generated by

the system S

B

[S is compatible with the original topology. If A;B 2 B then A �B 2 B :

Eventually, the given action is locally �-uniformly equicontinuous. Finally, observe that

the maximality of �

max

and the inclusion �

max

� � imply �

max

= �: �

Theorem 14. For every continuous action � of a locally compact topological semigroup

G on a Tychono� space X holds F

�

(X) = F (X); A

�

(X) = A(X); L

�

(X) = L(X).

Proof. It is well known that F (X;�

max

) = F (X); A(X;�

max

) = A(X) and L(X;�

max

) =

L(X): So we can apply Proposition 12 and Lemma 13. �
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