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To appear in the Proc. of Orsatty Conference, Padova, Italy, 1997, Abelian

groups, Modules and Topology, Lecture Notes in Pure and Appl. Algebra, Marcel

Dekker.

G-Minimal Topological Groups

Michael Megrelishvili

Department of Mathematics and Computer Science

Bar-Ilan University, 52 900 Ramat-Gan, Israel

Abstract. We study sufficient conditions for G-minimality of topological G-groups

X and minimality of semidirect products XhG arising under some natural construc-
tions.

Introduction.

A Hausdorff topological group X is called minimal [S] if it does not admit a

strictly coarser Hausdorff group topology. The development of the theory of mini-

mal topological groups is described in the monograph [DPS] and in several survey

articles [CHR], [D2]. Here we discuss only facts that directly concern the present

paper. It was shown by Stephenson [S] that every locally compact abelian minimal

group must be compact. Nevertheless, every locally compact abelian Hausdorff

group is a group retract of a locally compact minimal group (see [M]). The first

example of a locally compact (noncompact) minimal group was found by Dierolf

and Schwanengel [DS]. They proved that the semidirect product RhR+ of the mul-

tiplicative group R+ of all positive real numbers with R is minimal. Later Remus

and Stoyanov [RS] established the minimality of RnhH for every closed subgroup

H of GL(n,R) which contains all diagonal matrices with positive entries.

In the present article we generalize these results in several directions. In section

1 we show that for every normed space X there exists an abelian subgroup H

of GL(X) such that X h H is minimal. This result helps us to establish that

there exists one and only one nontrivial group topology on X which preserves the

continuity of the action of GL(X) on X. At the same time, the question about

minimality of X hGL(X) is still open even for Hilbert space X = `2.

In section 2 we prove that if a locally compact abelian Hausdorff group X

contains a copy of the circle group T = R/Z, then X hAut(X) is minimal.
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Section 3 is devoted to the following general question:

Question. For which topological fields K and subgroups H of GL(n,K) are the

groups Kn h H minimal? In particular, when is K h K× minimal (here K× =

K \ {0})?

This question leads us to the important class of locally retrobounded division

rings introduced by Nachbin [N].

In the last section, resolving a question of Dikranjan [D2], we construct a

totally disconnected minimal group which is not zero-dimensional. This answers

negatively a question posed earlier by Archangel’skij: does a totally disconnected

group always admit a coarser zero-dimensional Hausdorff group topology (see [D1],

[D2])? Our construction uses Erdös’ classical example of all rational points in `2.

The author thanks D. Dikranjan and V. Pestov for stimulating discussions.

§1. Preliminaries.

Let (X, τ) and (G, σ) be topological groups and

α : G×X → X, α(g, x) = gx

be a fixed action. We say that X is a G-group if α is continuous and every g−
transition αg : X → X, αg(x) = gx is a group automorphism of X. For every

G-group X denote by X hα G the standard semidirect product [Bo]. As usual, its

normal subgorup X×{eG} will be identified with X and, analogously, the subgroup

{eX} ×G will be identified with G.

Definition 1.1. Let (G, σ) be a Hausdorff topological group and let (X, τ) be a

Hausdorff (G, σ)-group with respect to an action α.

(a) [RS] X is a G-minimal group if there is no strictly coarser Hausdorff group

topology τ ′ ⊆ τ on X which preserves the continuity (actually, the (σ, τ ′, τ ′)-

continuity) of α.

(b) X is strongly G-minimal if X hα G is a minimal group.

(c) (see [M, Def. 1.8]) The action α is topologically exact (t-exact, in short)

if there is no strictly coarser group (not necessarily Hausdorff) topology σ′ ⊆ σ

such that α is (σ′, τ, τ)-continuous. α is hereditarily t-exact (ht -exact) if for every

topological subgroup P of G, the corresponding action of P on X is t-exact.

Note that, since in the definition (G, σ) is Hausdorff, every t-exact action α is

necessarily algebraically exact, that is, the normal subgroup Ker(α) = {g ∈ G|gx =

x ∀x ∈ X} is trivial.
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Lemma 1.2. Let (X hα G, γ) be a semidirect product of Hausdorff topological

groups (X, τ) and (G, σ). Suppose that a minimal group Y is a topological subgroup

of X hα G.

(i) If X ⊆ Y then X is G-minimal.

(ii) If X is strongly G-minimal then X is G-minimal.

(iii) If G ⊆ Y and α is algebraically exact then α is t-exact.

Proof. (i) Let τ ′ ⊆ τ be a coarser Hausdorff group topology on X such that the

action α is (σ, τ ′, τ ′)-continuous. Then the semidirect product (X, τ ′) h (G, σ) is

well-defined. Denote the corresponding product Hausdorff group topology by γ′.

Since γ′ ⊆ γ and Y is minimal then γ′|Y = γ|Y . Therefore, γ′|X = γ|X . On the

other hand, γ′|X = τ ′ and τ = γ|X . Thus, we obtain τ ′ = τ.

(ii) Directly follows from (i).

(iii) Let σ′ ⊆ σ be a strictly coarser group topology on G such that α is

(σ′, τ, τ)-continuous. Since α is algebraically exact then necessarily σ′ is Hausdorff.

The rest of the proof, via the semidirect product (G,α′)hα (X, τ), is similar to the

case of (i). �

Fact 1.3. [M, Corollary 2.8] Let (X hα G, γ) be a topological semidirect product

and let α be t-exact. Suppose that X is abelian and γ′ ⊆ γ is a group topology which

agrees with γ on X. Then γ′ = γ.

Theorem 1.4. Let (G, σ) be a Hausdorff group and let (X, τ) be a Hausdorff

abelian G-group. If X is G-minimal and the action α is t-exact then X h G is

minimal (i.e., X is strongly G-minimal).

Proof. Denote by γ the original product topology of (X, τ)hα (G, σ). Assume that

γ′ ⊆ γ is a coarser Hausdorff group topology on X hα G. Then the map

α : (G, γ′|G)× (X, γ′|X)→ (X, γ′|X)

is continuous (see [Bo, Ch.III, §2]). Clearly, γ′|G ⊆ γ|G = σ and γ′|X = γ|X . By

Fact 1.3 we get γ′ = γ. Therefore X hα G is minimal, as required. �

The last result is not true in general for non-abelian X. It was shown in [EDS,

Example 10] that there exists a totally minimal precompact torsion group X such

that a certain semidirect product X h G is not minimal, where G = Z2 is the

discrete cyclic group of order 2.

A topological group G is called perfectly minimal [St, p.107] if G×H is minimal

for every minimal group H.
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Lemma 1.5. Let G be a minimal group. Then G will be perfectly minimal in each

of the following cases:

(a) [EDS] G is complete in its two-sided uniformity (e.g., compact);

(b) [M, Th.1.14] The center Z(G) is perfectly minimal (e.g., compact);

(c) Algebraically, G is a semidirect product X hα H such that the subgroups

Ker(α) and Coker(α) = {x ∈ X
∣∣ gx = x ∀g ∈ H} are compact (e.g.,

trivial).

Proof. Z(X hα H) = Coker(α) × Ker(α) generally holds. Therefore, (c) directly

follows from (b). �

Fact 1.6. [M, Th.1.15] The arbitrary product
∏
Xi of minimal groups Xi with

trivial center is perfectly minimal.

§2. GL-minimality of normed spaces.

Let E be a real normed space and let α : GL(E) × E → E be the usual

continuous action of GL(E) on E, where GL(E) denotes the topological group of

all topological automorphisms of E endowed with the uniform operator topology.

The standard dual normed space of E will be denoted by E∗. We need a method

from [M] which enables us to construct a minimal group which is denoted by M+(E)

and called induced group of the canonical bilinear form E×E∗ → R, (x, f) 7→ f(x).

Summarizing for convenience some definitions of [M], recall that M+(E) is the

group

M+(R) = ((R× E)hν E
∗)hπ R+

where the actions ν and π are defined as follows:

ν : E∗ × (R× E)→ R× E, ν(f, (a, x)) = (a+ f(x), x)

π : R+ × ((R× E)hν E
∗)→ (R× E)hν E

∗, π(t, (a, x, f) = (ta, tx, f).

Fact 2.1. [M, Theorem 3.10] For every normed space E the induced group M+(E)

is perfectly minimal.

Theorem 2.2. For every normed space E there exists an abelian subgroup H of

GL(E) such that the corresponding semidirect product E hH is perfectly minimal.

Hence E is GL(E)-minimal.

Proof. The conclusion part follows from Lemma 1.2(i). The proof of the main part

of our assertion is divided into two subcases.
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Case I. dimE = 1. In this case use minimality of Rh R+ [DS] and Lemma 1.5.

Case II. dimE > 1. Represent E as a product R ×X, where X is a closed linear

subspace of codimension 1. Consider the topological group product X∗ × R+ and

the following action

α : (X∗ × R+)× E → E, α((f, t), (a, x)) = (ta+ tf(x), tx).

It is straightforward to show that:

(a) α is a continuous linear action;

(b) The corresponding homomorphism iα : X∗ ×R+ → GL(E) is a topological

group embedding;

(c) The semidirect product Ehα(X∗×R+) is naturally topologically isomorphic

to the induced group M+(X).

By Fact 2.1, the group M+(X) is minimal. Therefore we can complete the

proof by defining H := X∗ × R+. �

Note that, as it was pointed out us by the referee, the abelian group H, as well

as the resulting semidirect product E hH, are both connected Banach-Lie groups

rather than merely topological groups.

Proposition 2.3. Let z be a fixed non-zero element of a normed space (E, ‖ ‖).
Then the orbit map

z̃ : GL(E)→ E \ {0}, z̃(g) = gz

is surjective and open.

Proof. Assign to every pair (f, y) ∈ E∗ × E a continuous linear operator

Af,y : E → E, Af,y(x) = x+ f(x)y.

It is easy to show that:

(a) ‖Af,y − I‖ = ‖f‖ · ‖y‖ (where I denotes the neutral element of GL(E));

(b) Af,y is invertible if and only if f(y) 6= −1. The inverse is A−1f,y = Atf,y,

where t = −(1 + f(y))−1.

In order to prove that z̃ is surjective, consider an arbitrary non-zero element

x ∈ E\{0}. There exists a continuous functional f such that f(z) = 1 and f(x) 6= 0.

Define y = x − z and observe that f(y) 6= −1. Therefore, Af,y ∈ GL(E). At the

same time, Af,y moves z into x.
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Now we prove that z̃ is open. It suffices to show (see, for example [RD, Propo-

sition 5.7]) that for every neighborhood U of I in GL(E) the image z̃(U) = Uz is

a neighborhood of z in X \ {0}. There exists an ε > 0 such that ε < 1 and

Vε := {g ∈ GL(E)
∣∣ ‖g − I‖ < ε} ⊆ U.

The properties (a), (b) imply that the set

Pε := {Af,y
∣∣ ‖f‖ ≤ 1, ‖y‖ < ε}

is contained in Vε. Thus, Pεz ⊆ Vεz ⊆ Uz. On the other hand, Pεz contains the

Ball B(z, r) with center z and radius r := ‖z‖ε. Therefore, Uz is a neighborhood

of z, as required. �

Note that the use of the automorphisms Af,y in the proof of Proposition 2.3

was inspired by [P].

Theorem 2.4. Let τ‖ ‖ be the norm topology of a normed space (E, ‖ ‖) and let

σ‖ ‖ be the uniform operator topology on GL(E). Suppose that τ ′ is a non-trivial

group topology on E such that the action

α : (GL(E), σ‖ ‖)× (E, τ ′)→ (E, τ ′)

remains continuous. Then τ ′ = τ‖ ‖.

Proof. Case I. τ ′ is not Hausdorff. Then the τ ′-closure clτ ′{0} of {0} contains a

non-zero element. Moreover, since α is (σ‖ ‖, τ
′, τ ′)-continuous and {0} is GL(E)-

invariant then the subgroup clτ ′{0} is GL(E)-invariant too. By the transitivity of

the action on E \ {0} we obtain that clτ ′{0} = E. Therefore τ ′ is a trivial topology

contradicting our assumption.

Case II. τ is Hausdorff. First denote τ0 := τ‖ ‖
∣∣
E\{0} , τ ′0 := τ ′

∣∣
E\{0} and fix a

non-zero element z of E. Then by Proposition 2.3, the GL(E)-space (E \ {0}, τ0)

can be identified with the topological coset GL(E)-space GL(E)/Stz, where Stz is

the stabilizer {g ∈ GL(E)
∣∣ gz = z}. On the other hand, the (σ‖ ‖, τ

′, τ ′)-continuity

of α implies the continuity of the orbit map:

z̃ : (GL(E), σ‖ ‖)→ (X \ {0}, τ ′0).

By Proposition 2.3 and the characterization property of the quotient topology τ0

on GL(X)/Stz = X \ {0} we obtain that τ ′0 ⊆ τ0. Since X \ {0} is open under

group topologies τ ′ and τ‖ ‖, then τ ′ ⊆ τ‖ ‖. Now, by Theorem 2.2, we can conclude

τ ′ = τ‖ ‖. �
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Question 2.5. For what infinite-dimensional normed spaces E is the group E h

GL(E) minimal?

By Theorem 2.2, Theorem 1.4 and Lemma 1.2, it is equivalent to ask:

Question 2.6. Is the action of GL(E) on a normed space E t-exact?

This question seems to be unclear even for E = `2.

§3. Aut-minimality of locally compact groups.

Let (X, τ) be a locally compact group and let Aut(X) be the group of all

topological automorphisms of X endowed with the Birkhoff topology τB (see for

example [HR, §26]). Recall that τB has a local base at the identity formed by the

sets:

B(C,U) := {ϕ ∈ Aut(X)
∣∣ ϕ(c) ∈ Uc and ϕ−1(c) ∈ Uc ∀c ∈ C},

where C runs over the compact subsets of X and U runs over the neighborhoods

of e in X.

Lemma 3.1. For every locally compact Hausdorff group X the action

α : (Aut(X), τB)× (X, τ)→ (X, τ)

is hereditarily t-exact.

Proof. See, for example [M, Remark 1.9]. �

Lemma 3.2. For every locally compact abelian Hausdorff group X TFAE:

(a) X is Aut(X)-minimal;

(b) X hAut(X) is minimal;

(c) X hH is minimal for a certain topological subgroup H of Aut(X).

Proof. The first implication (a) ⇒ (b) follows from Theorem 1.4 and Lemma 3.1.

The implication (b) ⇒ (c) is trivial. If X hH is minimal then by Lemma 1.2(ii),

X is H-minimal. Then, clearly, X is Aut(X)-minimal too. Hence, (c) ⇒ (a). �

In the sequel we say that a locally compact group X is Aut-minimal if X is

Aut(X)-minimal.
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Theorem 3.3. Let a locally compact abelian Hausdorff group X contain as a sub-

group the circle group T = R/Z. Then X is Aut-minimal.

Proof. The group T splits in X by [HR, §25.31]. Thus, X can be represented as a

topological group product T × G. Denote by G∗ the dual group of all continuous

characters of G endowed with the compact open topology. Following [M] consider

the continuous action:

α : G∗ × (T×G)→ T×G, α(χ, (t, g)) = (t+ χ(g), g).

The dual form of [M, Theorem 2.11] shows that the semidirect product M(G) :=

(T×G)hαG∗ is a minimal group. Moreover, it is straightforward to show that the

homomorphism πα : G∗ → Aut(T × G) associated to the action α is a topological

group embedding. Therefore, there exists a topological subgroup H := πα(G∗) of

Aut(T×G) such that the group X hH (being topologically isomorphic to M(G))

is minimal. Now, we can apply the implication (c) ⇒ (a) from Lemma 3.2. �

§4. Minimal groups generated by division rings.

Let (K, τ) be a Hausdorff topological division ring. Denote by (K×, τ×) the

topological multiplicative group consisting of all non-zero elements endowed with

the subspace topology τ× := τ |K× . The natural group action

α : (K×, τ×)× (K, τ)→ (K, τ), α(a, b) = ab

is t-exact. Indeed, if η ⊆ τ× is a coarser group topology such that the action is

(η, τ, τ)-continuous, then the map

(K×, η)→ (K×, τ×), g 7→ g · 1

is continuous. Therefore, η ⊇ τ×. Thus, η = τ×, as required.

Lemma 4.1. For every Hausdorff topological division ring K the group K hαK×

is minimal if and only if K is a K×-minimal group.

Proof. As we have seen the action α is t-exact. Hence we may apply Lemma 1.2

and Theorem 1.4. �

Let (E, σ) be a Hausdorff topological K-vector space. A Hausdorff topology σ′

is called admissible (with respect to σ) if σ′ ⊆ σ and (E, σ′) is also a K-vector space.

As usual, (E, σ) is called a minimal K-vector space if σ is the unique admissible

topology on E. In the particular case, when E = K is a one-dimensional K-vector

space, we obtain the definition of strictly minimal division ring in the sense of

Nachbin [N] (see also straight division ring [W]).
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Fact 4.2. ([N, Theorem 2], [W, Theorem 24.2]) Let K be a non-discrete locally

retrobounded division ring. Then K is strictly minimal.

Recall some important resources of locally retrobounded division rings.

Fact 4.3. ([W, §19], [Wi, §5]) A Hausdorff topological division ring K is locally

retrobounded in each of the following cases:

(a) K is locally compact;

(b) K is topologized by an absolute value or a valuation;

(c) K is a linearly ordered field.

Lemma 4.4. Let (K,σ) be a Hausdorff topological division ring and let (E, τ) be

a K-vector space with respect to the action α : K × E → E.

(i) α is continuous if and only if the restriction α× : K××E → E is continuous.

(ii) If K is a linearly ordered field then α is continuous if and only if the re-

striction α+ : K+ × E → E is continuous, where K+ is the multiplicative

group of all positive elements in K.

Proof. (i) If α is continuous then clearly α× is continuous too. Now suppose that α×

is continuous. We have to show that α is continuous at each point (t, x) ∈ K×X. If

t is not the zero element 0K of K then the proof becomes trivial because K× is open

in K. Thus, it is enough to establish the continuity of α at (0K , x) for arbitrarily

fixed x ∈ E. Let U be a neighborhood of the zero element 0E = 0K ·x of E. Choose

a neighborhood U1 of 0E such that U1−U1 ⊆ U. Let 1 be the multiplicative unit of

K×. Since α× is continuous at (1, x) we can pick a σ×-neighborhood W of 1 in K×

and a τ -neighborhood V of x in E such that WV ⊆ U1. Since K× is σ-open in K

then W is a σ-neighborhood of 1 in K. Whence W1 := W − 1 is a σ-neighborhood

of 0K . Then W1V ⊆ U. Indeed, by our choice WV = (W1 + 1)V ⊆ U1. Thus

W1V + V ⊆ U1 and hence W1V ⊆ U1 − V ⊆ U1 − U1 ⊆ U. Therefore the proof of

(i) is completed.

(ii) The proof is similar to (i) taking into account that K+ is open in K. �

Corollary 4.5. Let K be a Hausdorff topological division ring and let E be a

topological K-vector space. TFAE:

(i) E is a minimal K-vector space.

(ii) E is a K×-minimal group.
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Theorem 4.6. For every Hausdorff topological division ring K TFAE:

(i) K hK× is minimal.

(ii) K is strictly minimal.

Proof. By Lemma 4.1, K hK× is minimal iff K is a K×-minimal group. On the

other hand, applying Corollary 4.5 for E := K we obtain that K is K×-minimal iff

K is strictly minimal. Thus, (i) ⇔ (ii) is proved. �

For every integer n ≥ 1 denote by Kn the standard n-dimensional K-vector

space endowed with the product topology. Then the scalar action K ×Kn → Kn

leads to the well-defined semidirect product Kn hK×.

Theorem 4.7. Let K be a non-discrete locally retrobounded division ring and let

ν be an arbitrary cardinal.

(a) The group (K hK×)ν is perfectly minimal.

(b) If K is complete then (Kn hK×)ν is perfectly minimal.

(c) If K is an ordered field then K× can be replaced by K+ in both cases (a)

and (b).

Proof. (a) By Fact 4.1 and Theorem 4.6, the group K h K× is minimal. Since

Z(K hK×) is trivial we may apply Fact 1.6.

(b) By Nachbin’s uniqueness theorem [N, Theorem 7] Kn has only one admis-

sible topology. Therefore, Kn is a minimal K-vector space. By Corollary 4.5, Kn

is a K×-minimal group. Theorem 1.4 implies that KnhK× is minimal. Then Fact

1.6 is again applicable.

(c) The given proofs may be easily modified taking into account Lemma 4.4(ii).

�

Let K be a Hausdorff topological field. Denote by GL(n,K) the topological

group of all invertible n× n matrices over K endowed with the topology inherited

from Kn2

.

Theorem 4.8. Let K be a non-discrete locally retrobounded topological field and

let H be a topological subgroup of GL(n,K). Then (Kn hH)ν is perfectly minimal

in each of the following cases:

(a) H contains all diagonal matrices with non-zero entries.

(b) K is complete and H contains all scalar matrices with non-zero entries.
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(c) K is a (complete) ordered field and H contains all (resp., scalar) diagonal

matrices with positive entries.

Proof. In each case Z(KnhH) is trivial (see the proof of Lemma 1.5(c)). Therefore

by Lemma 1.5(b) and fact 1.6 it suffices to show the minimality ofKnhH.Moreover,

since H carries the topology of pointwise convergence then the action is t-exact.

By Theorem 1.4 we have only to establish that Kn is H-minimal. Consider the

group (K hK×)n. As we know from Theorem 4.7, this group is minimal. On the

other hand, (K h K×)n is topologically isomorphic to Y := Kn h (K×)n. If the

assertion (a) is satisfied then Kn ⊆ Y ⊆ Kn hH. Now Lemma 1.2(i) implies that

Kn is H-minimal. Therefore, (a) is proved.

The proofs of (b) and (c) are similar to the case (a). For (b) we need only

to replace Y by the group Kn hK×. In the case (c) we consider (K hK+)n (or,

respectively Kn hK+). �

Using completely different methods, Remus and Stoyanov [RS] have shown that

(Rn h H)ν is minimal for every cardinal ν and a closed subgroup H of GL(n,R)

which contains all diagonal matrices with positive entries. Our Theorems 4.7 and

4.8 improve this result. Even in the case K = R we may consider any (not necesarily

closed) subgroup H which contains all scalar (not necessarily all diagonal) matrices

with positive entries. In particular, this implies that Rn h R+ is minimal. This

seems to be new even for n = 2.

§5. A counterexample.

Recently Dikranjan asked1 [D2, Question 7.9]: is a minimal totally discon-

nected group always zero-dimensional? This was inspired by the more general

question of Arhangel’skij [D1, Question 1.2]: does a totally disconnected group

always admit a coarser zero-dimensional group topology?

In this section we negatively answer these questions by constructing the fol-

lowing

Example 5.1. There exists a totally disconnected (separable metrizable) perfectly

minimal group G which is not zero-dimensional.

Construction. Let ω : `2× `2 → R be the standard scalar product, where ω(a, b) =
∞∑
i=1

aibi for a = 〈ai〉, b = 〈bi〉 ∈ `2. As was mentioned above in section 2, the induced

1The author thanks Dikranjan for providing him the survey article [D2] before its publication.
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group

M+(ω) = ((R× `2)h `2)h R+

is minimal. It will be convenient to present here explicitly the operations of this

group.

Lemma 5.2. Let u1 = (r1, x1, y1, t1) and u2 = (r2, x2, y2, t2) be two elements of

M+(w). Then

(a) u1 · u2 = (r1 + t1r2 + t1w(y1, x2), x1 + t1x2, y1 + y2, t1t2).

(b) u−12 = (t−12 w(x2, y2)− t−12 r2,−t−12 x2,−y2, t−12 ).

(c) [u1, u2] = u1u2u
−1
1 u−12 =

= ((1−t2)r1−(1−t1)r2+t1w(y1, x2)−t2w(x1, y2), (1−t2)x1−(1−t1)x2,O, 1),

where O denotes the zero element of `2.

Define two subgroups of `2 by letting:

E := {〈ai〉 ∈ `2
∣∣ ai ∈ Q for all i ∈ N},

F := {〈ai〉 ∈ E
∣∣ ai = 0 for all but finitely many i’s}

Fact 5.3. [E] E is a totally disconnected but not zero-dimensional group.

Observe that if a ∈ E and b ∈ F then ω(a, b) is a rational number. Therefore,

the restriction ω|E×F : E × F → Q is a well-defined Q-bilinear map. This fact

together with Lemma 5.2 easily implies that the subset

G := {(q, x, y, t) ∈M+(ω)
∣∣ q ∈ Q, x ∈ E, y ∈ F, t ∈ Q+}

forms a subgroup of M+(ω). Moreover, G can be represented as G = ((Q × E) h

F )hQ+. We show that G is the desired group.

First note that by Fact 5.3, G is a totally disconnected non-zero-dimensional

group. By Lemma 1.5(c) it suffices to show that G is a minimal group. Since G is a

dense subgroup of a minimal group M+(ω), due to the Banaschewskii criterion [B],

we have only to check that G is an essential subgroup of M+(ω). That is, we need

to check that G ∩N is not trivial for every closed non-trivial normal subgroup N

of M+(ω). We will prove that G ∩ N always contains the element z = (1,O,O, 1)

which is different from the neutral element e = (0,O,O, 1). Obviously, z ∈ G. It

suffices to show that always z ∈ N. Let u2 = (r2, x2, y2, t2) ∈ N \ {e}. Since N is

normal then the commutator [u1, u2] also belongs to N for arbitrary u1 ∈ M+(ω).

Our aim is to find u1 ∈M+(ω) such that [u1, u2] = z.



13

Since u2 6= e then one of the following possibilities hold:

(1) t2 6= 1;

(2) t2 = 1, y2 6= O;

(3) t2 = 1, y2 = O, x2 6= O;

(4) t2 = 1, y2 = O, x2 = O, r2 6= 0.

We indicate below how we will choose the appropriate u1 = (r1, x1, y1, t1)

according to each case:

(1) u1 = ((1− t2)−1,O,O, 1);

(2) u1 = (0, x1,O, 1), where x1 ∈ E and ω(x1, y2) = −1;

(3) u1 = (0,O, y1, 1), where y1 ∈ F and ω(x2, y1) = 1;

(4) u1 = (0,O,O, 1 + r−12 ).

It should be noted that in the case (4) we may suppose that r2 > 0 (otherwise, take

u−12 = (−r2,O,O, 1) instead of u2). Then 1+r−12 ∈ Q+ and hence u1 is well-defined.

By Lemma 5.2(c) in each case we obtain [u1, u2] = z. �
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