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Abstract

We generalize Exel's notion of partial group action to monoids. For partial monoid actions that
can be defined by means of suitably well-behaved systems of generators and relations, we employ

classical rewriting theory in order to describe tiréversal induced global &on on an extended set.
This universal action can be lifted to the sedtiof topological spaces anawtinuous maps, as well

as to that of metric spaces and non-expansive maps. Well-known constructions such as Shimrat’s
homogeneous extension are special cases of this construction. We investigate various properties of
the arising spaces in relation to the original space; in particular, we prove embedding theorems and
preservation properties concerning separation axioms and dimension. These results imply that every
normal (metric) space can be embedded into a normal (metrically) ultrahomogeneous space of the

same dimension and cardinality.
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Introduction

Many extension problems in topology involve the question whether a given collec-
tion of partial maps on a space can be realized as the set of traces of a corresponding
collection of total maps on some superspdgensider, for example, the problem of con-
structing a homogeneous extension of a given topological (or metric) spagespace
is homogeneous (ultrahomogeneous) iff eachigladnomeomorphism (isometry) between
two singleton (finite) subspaces extends tol@bgl homeomorphism (isometry) [9] (cf.
also [5,14,23], and [7] for ultrahomogeneous graphs). One way to look at the extension
problem is to regard these partial maps as algebraic operators, so that we have a set of
generators and relations for an algebra; the algebra thus generated can be expected to serve
as a carrier set for the extended spaceeéd] this is precisely what happens in the con-
structions by Shimrat [27], Belnov [4], Okromeshko and Pestov [22], Uspenskij [29], and
Megrelishvili [19-21].

Here, we pursue this concept at what may be hoped is the right level of generality: we
begin by providing a generalization of Exel’s notiongzfrtial group action[11] to partial
actions of monoids (i.e., thelements of the monoid act as partial maps on the space;
cf. Definition 2.3). Partial actions of monoidse characterized in the same way as partial
group actions as restrictions of global actions to arbitrary subsets. We then study properties
of the globalizationof a partial action, i.e., of the extended space which is universal w.r.t.
the property that it has a global action of the original monoid. Most of the results we obtain
depend orconfluenceof the partial action. Here, confluence means that the monoid and
the carrier set of the globalization are given in terms of generators and relations in such
a way that equality of elements can be decided by repeated uni-directional application
of equations; this concept is borrowed fraewriting theory. The confluence condition
is satisfied, for instance, in the case where the monoid is generated by a category whose
morphisms act as partial maps on the space.

The basic construction of the globalization works in many topological categories; here,
we concentrate on topological spaces on thetwarel, and metric spaces on the other hand.

For the topological case, we prove that, under confluence, the original space is topologi-
cally embedded in its globalization (and we provide an example which shows that this
result fails in the non-confluent case). Moreover, we show that the globalization inher-
its normality and dimension from the original space. Since free homogeneous extensions
are globalizations for (confluent) ‘singletonrpal actions’, this entails the corresponding
results for such extensions.

The metric setting is best considered ire tharger category of pseudometric spaces.
Requiring confluence throughout, we prove an embedding theorem, and we show that for
an important class of cases, the pseudometric globalization and the metric globalization
coincide. We demonstrate that, in these cases, dimension is preserved. Furthermore, under
suitable compactness assumptions, we prove existence of geodesic paths; by consequence,
the globalization of a path metric space [12] is again a path metric space.

For every metric space, there exists an istio@mbedding into a metrically ultraho-
mogeneous space of the same weight. Thispar of a recent result by Uspenskij [29],
and well-known for the case of separable spa28%(see also [30]; for further information
about Urysohn spaces, see [9,12,23,31]). We show that in many cases the metric global-
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ization preserves the dimension. This implies that every metric sfaagmits a closed
isometric embedding into an ultrahomogeneous metric sgaifehe same dimension and
cardinality. It is an open question # can be chosen in such a way that the weighxaé
also preserved.

1. Confluently generated monoids

In preparation for the central notion of ‘well-behaved’ partial action, we now introduce
a class of monoid presentations for which the word problem is solvable by means of head-
on application of directed equations, i.e., by the classical rewriting method as used, up to
now, mainly in computer science applications such.aslculus and automatic theorem
proving [3,16] (see however [25,26] for applications to extensions of categories).

We recall that anonoid presentationG | R) consists of a seG of generatorsand a
relationR C G* x G*, whereG* is the set ofvordsoverG, i.e.,G* = ;2 ,G". Here,
we explicitly insist thatr is a directed relation (rather than symmetric); the eleménts
of R, written! — r, are calledreduction ruleswith left side/ andright sider. Words are
written either in the formg,, ..., g1) or, where this is unlikely to cause confusion, sim-
ply in the formg, ...g1. One way of describing the monoid engendered @y R) is as
follows. The setlG* is made into a monoid by taking coatenation of words as multiplica-
tion, denoted as usual simply by juxtaposition; the unit is the empty WprBrom R, we
obtain aone-step reductiorelation— on G* x G* by puttingw1lw, — wirw2 whenever
(,r) € R andwy, wz € G*. Let <& denote the equivalence relation generated-bythen

the monoidM described byG | R) is G*/ <>.

It is well known that the word problem for monoids, i.e., the question whether or not
w1 & wy for given wordsw1, wa, is in general undecidable. However, one can sometimes
get a grip on the word problem by means of normal forms: a woid callednormalif
it cannot be reduced undes, i.e., if there is no wordy’ such thatw — w’ (otherwisew
is calledreduciblg; thus, a word is normal iff it does not contain a left side of a reduction
rule. A normal wordw’ is called anormal formof a wordw if w < w’. We say that a
monoid presentation isoetherianor well-foundedf the relation— is well-founded, i.e.,
if there is no infinite sequence of reductiomg — w2 — ---; this property guarantees
existence, but not uniqueness of normal forms. However, one can characterize those cases
where one does have uniqueness of normal forms. We denote the transitive and reflexive

closure of— by = (reversely:<-); if w = w’, thenw’ is said to be aeductof w.

Proposition 1.1. For a noetherian monoid presentati@¢6 | R), the following are equiva-
lent

(i) Each word inG* has a unique normal form.
(i) Each word inG* has a unique normal reduct.

(i) Whenevew > s; andw => s, then there exists eommon reduct € G* of (s1, s2),
i.e., 51—t andsp = t.
(iv) Whenevew — s1 andw — s2, then there is a common reduct@f, s2).
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This proposition is a special case of a central lemma of rewriting theory often referred to
asNewman'’s Lemmésee, e.g., [16], Theorem 1.0.7.). Condition (iii) is caltehfluence
while condition (iv) is calledveak confluencé he importance of the criterion lies in the
fact that weak confluence is often reasonably easy to verify. In particular, it is enough to
check weak confluence for so-calledtical pairs, i.e., cases where left sides of reductions
rules overlap. More precisely,

one can restrict conditiokiv) to wordsw that are completely made up of the overlap-
ping left sides of the two involved reduction rules

(including the case that one of these left sides is contained in the other); it is easy to see
that this restricted condition is equivalentttee original condition (iv). Since the proof of
Proposition 1.1 is both short and instructive, we repeat it here:

Proof. (i) = (iv) By the noetherian property, there exist normal word&nd such
that s1 X t1 ands2 = t2. Thent; andr, are normal forms ofw. By (i), we conclude
11 =1.

(iv) = (iii) We proceed by the principle afoetherianor well-founded inductioni.e.,
we prove the claim fow under the assumption that it holds for all proper reducts of
We can assume w.l.o.g. that bath-> s; andw —> s, involve at least one reduction step,
i.e., we havew — w} > s; andw — w) > 52. By (iv), we obtain a common reductof
(w3, wy). By the inductive assumption, we obtain common redugtsf (s1, ) andr of
(s2,1); again by the inductive assumption, there is a common redugt of2), which is
then also a common reduct 6, s2).

(i) = (ii) Existence follows immediately from the noetherian property. Concerning
uniqueness, just observe that the existence of a common reduct of two normal words im-
plies their equality.

(i) = (i) Wheneverw — w’, then (ii) implies thatw andw’ have the same normal
reduct. Thus, sincé> is the equivalence relation generatedby this holds also whenever
w < w'. In particular, for normal words) andw’, w < w’ impliesw = w’. O

Definition 1.2. A noetherian monoid presentation is caltzhfluenif it satisfies the equiv-
alent conditions of Proposition 1.1 and does oottain reduction rules with left sidg
whereg € G.

The requirement that there are no left sides consisting of a single generator can be
satisfied for any noetherian monoid presentation by removing superfluous generators, since
for a reduction rule with left sidg, the noetherian condition implies thatcannot occur
on the right side. Moreover, a noetheriaomoid presentation cannot contain a reduction
rule with left side(). Thus, in confluent monoid presentations any word with at most one
letter is normal.
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Example 1.3.

(i) Every monoid has a trivial confluent presentation: take all elements as generators,
with reduction rulesiv — p whenevewv = p.

(i) The free monoid over a saf of generators trivially has a confluent presentation
(G| 9).

(i) The free group over a sef of generators, seen as a monoid, has a confluent pre-
sentation(S @ S—1 | R), where® denotes the disjoint union aml consists of the
reduction ruless—1 — ¢, s~1s — ¢ for eachs € S.

(iv) The free productM1 x M> of two monoidsM1, M2 with confluent presentations
(Gi | Ri), i =1, 2, respectively, has a confluent presentation ® G2 | R1 ® R2).

If M1 andM> are groups, theM1 x M> is a group, the free product a1 and M»
as groups.

(v) The productM; x M> of two monoidsM1, M> with confluent presentation; |
R;), i =1, 2, respectively, has a confluent presentatiéh & G2 | R), whereR
consists of all reduction rules iR; and Rz and the additional reduction rulgg —
hg whenevelg € G2, h € Gy.

(vi) Given a subsetA of a monoidM that consists of left cancellable elements, the
monoid M4 obtained by freely adjoining left inverses for the elementsidias a
confluent presentatiofG | R) as follows: we can assume that none of the elements
of A has aright inverse (since a right inverse of a left cancellable element is already
a left inverse). Thett; consists of the elements 8f and a new elemerdj for each
a € A; R consists of the reduction rules faf according to (i) and the reduction
rules(l,, au) — (u) for eacha € A, u € M. This is a special case of a construction
for categories discussed in [25].

(vi) The infinite dihedral group has a confluent presentatignb, b=1} | R), whereR
consists of the reduction rulé® =1 — ¢, b6 — ¢, aa — e, ab — b~1a, and
ab—1 — ba. (If the last reduction rule is left out, one still has a presentation of the
same group, which however fails to be confluent.)

(viii) Given a categoryC [2,18], the monoidV (C) induced by identifying all objects a2
(see, e.g., [6]) has a presentati@n | R) given as follows. The sat of generators
consists of all morphisms @&. There are two types of reduction rules: on the one
hand, rules of the forraf, g) — (f og) for all pairs( f, g) of composable morphisms
in C, and on the other hand rules of the fotimc) — () for all objectsC of C. This
presentation satisfies the conditions obpusition 1.1; it is turned into a confluent
presentation in the stricter sense of Definition 1.2 by removing all identities from
the set of generators and modifying the reduction rule associated to &fpajr
of morphisms to be f, g) — () in casef o g =id. This is a special case of the
semicategory method introduced in [25].

Henceforth, we shall mostly denote elements of the monbigresented byG | R) di-
rectly as words (or composites of letters) rather than cluttering the notation by actually writ-
ing down equivalence classes of words. E.g., phrases suehtas ‘normal forng,, - - - g1’
means that an elemente M is represented by the normal woggl,, ..., g1) € G*. The
unit element will be denoted by
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Definition 1.4. Let M be a monoid with confluent presentati@ | R). An elementt € M
with normal formg,, - - - g1, whereg; € G fori =1, ..., n, is said to havéengthlg(u) =n
(in particular, Ige) = 0). For a furtherv € M with normal formv = hy, - - - h1, we say
thatuv is normal if g, - - - g1k, - - - h1 IS normal. We denote the order @i induced by
the prefix order on normal forms by; explicitly: we write u < p iff there existsv such
that p = uv is normal. If additionally: # p, then we writeu < p. The direct predecessor
gn -+ - g2 of u w.r.t. this order is denoted p(e).

2. Partial actionsand globalizations

Partial actions of groups have been defined and shown to coincide with the restrictions
of group actions to arbitrary subsets in [11]. We recall the definition, rephrased according
to [15]:

Definition 2.1. Let G be a group with unit, let X be a set, and let be a partial map
G x X - X. We denotex(u, x) by u - x, with - being right associative; i.ey - v - x
denotes: - (v - x). The mapx is called apartial actionof G on X if, for eachx € X,

(i) e-x=x,
(ii) if u - x is defined fom € G, thenu™!-u-x =x, and
(i) if u-v-xisdefined, theruv) - x =u-v-x.

Here, equality is to be read agongor Kleeneequality, i.e., whenever one side is defined,
then so is the other and the two sides are equal.

Concrete examples of partial group acts, including partial actions of groups of
Méobius transforms, as well as further references can be found in [15].

Remark 2.2. In [15], partial actions are defined by conditions (ii) and (iii) above, and
partial actions satisfying condition (i) are calledital. The original definition of partial
actions [11] includes condition (i).

We generalize this definition to monoids as follows.

Definition 2.3. Given a sefX, apartial actionof a monoidM with unite on X is a partial
map

aMxX— X,

with the notatiornx(u, x) = u - x as in Definition 2.1, such that

(i) e-x=xforallx,and
(i) (uv)-x=u-v-x whenevenw - x is defined.
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(Again, (i) is a strong equation.) Given two such partial action®ajn setsX1, X, a map
f:X1— Xz is calledequivariantf « - f(x) is defined and equal t6(« - x) wheneveu - x
is defined.

We explicitly record the fact that partial momactions indeed generalize partial group
actions:

Proposition 2.4. The partial monoid actions of a grou@ are precisely its partial group
actions.

Proof. In the notation as above, let x = x for all x € X. We have to show that condi-
tions (ii) and (iii) of Definition 2.1 holdff condition (ii) of Definition 2.3 holds.

‘If’: condition (iii) is immediate, since definedness®ofv - x entails definedness of x.
Moreover, ifu - x is defined, then by Definition 2.3(ii), we have® - 4 - x = (u1u) - x =
e - x = x; this establishes Definition 2.1(ii).

‘Only if’: the right-to-left direction of the strong equation in Definition 2.3(ii) is just
Definition 2.1(iii). To see the converse direction, letv € G, and letv - x and (uv) - x
be defined; we have to show thatv - x is defined. By Definition 2.1(ii)jp~1- v -x = x,
so that(uv) - v=1 - v - x is defined; by Definition 2.1(iii), it follows thatuvv=1) - v - x is
defined, and thisig -v-x. O

A partial action is equivalently determined by the partial maps

u'X—X
X—u-x

associated ta € M. The domain of:: X — X is denoted dorgu).

Here, we are interested mainly in partial actions on spaces of some kind. E.g., we call
a partial action ofM on a topological spac& continuousf the associated partial map
a:M x X — X is continuous on its domain, whehé carries the discrete topology, equiv-
alently: if each of the maps: X — X is continuous on dofw). A partial action is called
closed(open if dom(u) is closed (open) for eacln € M, andstrongly closedstrongly
open if, moreoveru : X — X is closed (open) on dogm) for eachu.

It is clear that a (total) action a¥/ on a setY induces a partial action on each subset
X C Y. This statement has a converse:

Definition 2.5. Given a partial action oM on X, its (universa) globalizationconsists of a
setY with a total action of and an equivariant map X — Y such that every equivariant
map fromX to a total action of\f factors uniquely through

(Topological and metric globalizations are defined analogously, requiring continuity and
non-expansiveness, respectively, for all involved maps.)

The globalization is easy to construct at the set level: th& $ethe quotient o x X
modulo the equivalence relationgenerated by

(uv,x) ~ (u,v-x) whenevenw - x is defined (2)
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(the generating relatiory is reflexive and transitive, but unlike in the case of groups fails
to be symmetric). We denote the equivalence clags of) by [«, x]. The action ofM is
defined byu - [v, x] = [uv, x]. Moreover, (x) = [e, x]. This map make&X a subset of:

Proposition 2.6. The map : X — Y defined above is injective, and the actionMfon Y
induces the original partial action ox.

Proof. Define an equivalence relatignon M x X by
(u,x)p(,y) = u-x=v-y,

where again equality is strong equality. By Definition 2.3(ii)contains the relation-

defined in formula (1) above. Thug, contains also the equivalence generated by-;

i.e., (u, x) ~ (v, y) implies the strong equatian- x = v - y. In particular,(e, x) >~ (e, y)

impliesx =e-x =e-y =y, so that is injective. Moreover, it follows thatu, x) >~ (e, y)

implies thatu - x = y is defined, i.e., the restriction of the action o X is the given
partial action. O

Thus, partial actions of monoids are precisely the restrictions of total actions to arbitrary
subsets. From now on, we will identify with i (X) whenever convenient. By the second
part of the above propositionyerloading the notation - x to denote both the action dn
and the partial action oX is unlikely to cause any confusion.

The proof of the above proposition shows that equivalence classes of elem&nésef
easy to describe; however, a similarly convenient description is not generally available for
equivalence classes of arbitragy, x)—that is, (1, x) >~ (v, y) may mean that one has to
take a ‘zig—zag path’ fromu, x) to (v, y) that uses the genating relation~ of formula (1)
both from left to right and from right to left. However, the situation is better for partial
actions that have well-behaved presentations in the same spirit as confluently presented
monoids.

Leta be a partial action of amonoid on X, and let(G | R) be a confluent presentation
of M. Then we regard the restriction @fto G x X as a collection of additionaéduction
rules i.e., we write

(g,x) = (g-x) wheneveg - x is defined forg € G, x € X, (2)

in addition to the reduction rules already given Ry In the same way as for monoid
presentations, this gives rise tmae-step reductiorelation— on the selG* x X, whose
elements we denote in either of the two for(gs, . .., g1, x) org, - - - g1 - x. Explicitly, we
write (gn, ..., g2,81,Xx) — (gu, ..., g2, g1 - x) Wheneverg; - x is defined, andvy - x —

w2 - x Whenevetw: — wz for wordsw1, wp € G*. Moreover, we denote the transitive and
reflexive hull of — and the equivalence relation generatedyon G* x X by > and

&, respectively, and we use the terntgmal normal form reduct andcommon reducas
introduced for words irG* in the previous section with the obvious analogous meanings
for words inG* x X. Since the additional reduction rules always reduce the word length by
1,itis clear that reduction i6™* x X is alsowell-foundedor noetherian, i.e., that there are

no infinite reduction sequencesdr* x X. Thus, we have an analogue of Proposition 1.1
(with almost literally the same proof):
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Proposition 2.7. In the above notation, the following are equivatent

(i) EachwordinG* x X has a unique normal form.
(i) Each word inG* x X has a unique normal reduct.
(i) Wheneverw = s; andw = s1 in G* x X, then there exists a common reduct of
(51, 52),
(iv) Whenevew — s; andw — s2 in G* x X, then there exists a common reduct of
(51, 52).

In fact, the point behind all these analogies is @t x X, —) is just another example
of a rewrite system, and the above proposition is another special case of Newman’'s Lemma.
Concerning the verification afeak confluenge.e., condition (iv) above, we remark that,
besides checking confluence @F | R), it suffices to consider cases of the form=
gn---g1-x,whereg, --- g1 is the left side of a reduction rule iR andg; - x is defined.

Definition 2.8. A partial action of a monoid/ on a setX is calledconfluentif M has a
confluent presentatiofG | R) (cf. Section 1) such that the equivalent conditions of Propo-
sition 2.7 hold for the associated reduction relatienon G* x X, and such that this
reduction relatiorgenerateshe given partial action. The latter means explicitly that, for

gn--81€G*,

(gn---g)-x=y implies (g ...,g1,%) = ()

(the converse implication holds by the definition of partial actions).
For the sake of brevity, we shall fix the notation introduced sadafor the action,X
for the spacey for the globalization( for the set of generators, ej¢hroughout.

By the generation condition, the quotient@f x X modulo the equivalence relation

<& is the universal globalization constructed above, so that we now have a way of deciding
equivalence of representations fdements of the globalization outsid€, namely via
reduction to normal form. This will allow us to reach a good understanding of the properties
of the globalization as a space.

In typical applications, a confluent partial action will often be given in terms of a
monoid presentatiofG | R) and a partial ma x X — X; in this case, the partial ac-
tion of the monoidM presented by{G | R) is definedby puttingg,---g1-x =y <—
(gny...,81,%) = (y). Verifying the conditions of Propdgon 2.7 then guarantees that this
does indeed define a partial action.

Example 2.9.

(i) A partial action ofM is confluent w.r.t. the trivial confluent presentationaf (cf.
Example 1.3(i)) iff, whenevern - x, then either(uv) - x is defined or(u, v - x) =
(uv, x): to see this, assume:, v - x) # (uv, x); then (uv) - x is the only possible
common reduct of the reducts, v - x) and (uv, x) of (u, v, x). Most of the time,
this is a rather too strong property to require. In particula¥/ifs a group, then this
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holds iff, for eachw # ¢, definedness af - x implies definedness dfiv) - x for each
u—this means that the partial action at hand is essentially just a total action on the
subsef{x | v - x is defined for some # e} of X.

(i) Partial actions of the free monoid ovér are always confluent w.r.t. the confluent
presentatior{G | @).

(iii) Partial actions of the free group ovérare always confluent w.r.t. the confluent pre-
sentation of Example 1.3(iii).

(iv) Two confluent partial actions of monoidg; and M, on a setX, respectively, give
rise to a confluent partial action @, * M> on X w.r.t. the confluent presentation
given in Example 1.3(iv).

(v) A total action of M on X can be extended to a confluent partial action¥oof the
extended monoidf4 of Example 1.3(vi) w.r.t. the confluent presentation given there
(by puttingl, - (au - x) =u - x for eacha € A, u € M, x € X) iff eacha € A acts
injectively onX.

(vi) A partial action of the infinite dihedral group is confluent w.r.t. the confluent presen-
tation given in Example 1.3(vii) iff

(@) a - x andab - x are defined whenever- x is defined, and
(b) a-x andab1 - x are defined whenever ! - x is defined.

(vii) A partial action of the monoid/ (C) generated by a small categdtyas in Exam-
ple 1.3(viii) on a seiX is confluent (w.r.t. the given confluent presentatiodtfC))
iff, wheneverf andg are composable morphisms@andyg - x is defined, then either
(fog,x)=(f,g-x),0r(f og)-xisdefined (and hence algo- (g - x)).

In particular, this is the case if the partial action is given by a functor f@imto

the categoryS(X) of maps between subsets &f this generalizes the preactions

of groupoids considered in [19-21]. Here, we need only the simpler cas€ tisat
actually a subcategory & X). Explicitly, such a subcategory determines a confluent
partial action ofM(C) as follows: if f: A — B is a morphism ofC, i.e., a map
between subset$ and B of X, thenf - x is defined iffx € A, and in this case equal

to f(x). Analogously, one obtains a continuous partial action on a topological space
X from a subcategory of the categoryX) of continuous maps between subspaces
of X, etc.

Remark 2.10. Due to Example 1.3(i), it does not make sense to regard the existence of a
confluent presentation as a property of a monoid; rather, a confluent presentation is con-
sidered as extra structure on a monoid. Castingly, the results about confluent partial
actions presented below depend only on the existence of a confluent presentation; in the
few places where we do make reference to the generating system in definitions, these de-
finitions will turn out to be in fact independent of the chosen generating system by virtue
of subsequently established results (seeef@mple, Definition 5.5 and Proposition 5.6).
Thus, we mostly think of confluence of a partial action as a property; Example 2.14 will
show that not all partial actions have this property.

As in the case of monoids, we usually denote the elementsdifectly by their rep-
resentatives irG* x X rather than as explicit equivalence classes. Of course, we can still
represent elements &fas pairdu, x) € M x X. We will say that(u, x) oru-x is in normal
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formif g, ---g1 - x is in normal form, whereg, - - - g1 is the normal form ofs; similarly,

we writeu - x = v - y if this relation holds withu andv replaced by their normal forms,
etc. By the definition of confluent presentatign,x is normal forg € G, x € X, whenever
g - x isundefined inX. Moreovere - x is always normal. We put

R,={xe X |u-xisnorma} =X \ dom(g1),

whereu has normal formg, --- g1 (note thatR, = X). The action ofu gives rise to a
bijective mapu: R, — u - Ry,.

Definition 2.11. An elementa € Y with normal formg,, --- g1 - x is said to havdength
Ig(a) =n. We put

Yo={aeY|lga) <n}.

Of course, a confluent partial action is continuous iff the partial maff — X is
continuous for each generatge G. A similar reduction holds for the domain conditions
(closedness, etc.); cf. Section 3.

We finish this section by exhibiting an example of a partial action that fails to be con-
fluent. This relies on an observation concerning the structure of the universal globalization
Y of a confluent partial action.

Lemma 2.12. Leta be confluent, and let = u - x have normal formv - y. Thena e w - X
whenevew < w < u in the prefix order(cf. Definition1.4).

Proof. The reduction from(u, x) to (v, y) works by taking the normal form af and
then shifting letters from left to right accdrd) to formula (2). Thus, there must be an
intermediate step of the foritw, z), which proves the claim. O

Proposition 2.13. If « is confluent, then for every tripl@1, u2, u3) € M3 (indexed modulo
3), there existsv € M such that, fon =1, 2, 3,

ui - XNujpp- XCw-X

inY.

Proof. Letw; =u; Au;y1 fori =1, 2, 3. Here,A denotes the meet in the prefix order (cf.
Definition 1.4), i.e., the largest common prefix. Now since for eaalh andw; 1 are both
prefixes ofu; 1, they are comparable under the prefix order; i.e.uthéorm a chain. We
can assume w.l.0.g. that; is the largest element of this chain.

Thenw := wj has the claimed property. Indeedgit= u; - x = u; 11 - y, then by conflu-
encea must have normal form = v - z, wherev < u; andv < u; 1. Thus,v < w; < wy;
by Lemma 2.12, this implies € wj - X, because we hawe; < u; or w1 <u;+1. 0O

Example 2.14. Let V4 denote the Klein four-groufe, u, v, uv}, and letw be the partial ac-
tion of V4 on the set0, 1, 2} defined by letting:, v, anduv act as partial identities defined
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on the domaing0}, {1}, and{2}, respectively. Then the triple, u, uv) V43 violates the
property in Proposition 2.13. To see this, we show that

O¢v-XUuv-X, u-1¢X, and 2¢u-X.

The equivalence class ¢f, 0) in M x X is {(e, 0), (u, 0)}, because this set is closed under
the generating relatioty of formula (1) above, so that indeedtQ - X U uv - X; the other
claims are proved similarly. Since we have

OeXNu-X, u-leu-XNuv-X, and 2cuv-XNX,

we have shown that there is moe V4 such thatw - X contains all three pairwise intersec-
tions of X, u - X, anduv - X. Thus,« fails to be confluent.

3. Topological globalizations

We now move on to discuss universal globalizations of continuous partial actions of a
monoidM on a topological spac¥; here, the universality is, of course, to be understood
w.r.t. continuous equivariant maps. The main result of this section states essentially that
globalizations ottonfluentpartial actions of monoids are topological embeddings. A cor-
responding result foopenpartial group actions (without confluence) is established in [15]
and in [1]. We shall provide an example that shows that the result fails for arbitrary partial
group actions.

The universal globalization of a continuous partial action is constructed by endowing
the globalizationt constructed above with the final topology w.r.t. the maps

u.X—>Y
X u-x,

whereu ranges oveM (i.e., V C Y is open iffu~1[V] is open inX for eachu € M);
equivalently, the topology oF is the quotient topology induced by the mépx X — Y,
whereM carries the discrete topology. This ensures the desired universal property: given
a continuous equivariant maf: X — Z, whereM acts globally (and continuously) df,
the desired factorizatiofi” : Y — Z exists uniquely as an equivariant map by the universal
property ofY at the level of sets. In order to establish thf4tis continuous, it suffices to
show thatf*u: X — Z is continuous for each € M; but f*u is, by equivariance of#,
the mapx — u - f(x), hence continuous.

Under additional assumptions concerning the domains, the inclusies Y is ex-
tremely well-behaved:

Proposition 3.1. If « is closed(oper), then the maX <— Y is closed(oper), in particular
a topological embedding.

(The open case for partial group actions appears in [1,15].)

Proof. Let A C X be closed (open). Therr1[A] is closed (open) in dom) and hence
in X for eachu € M; thus,A is closed (open)iry. O
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The embedding property fails in the general case:

Example 3.2. We proceed similarly as in Example 2.14. D&t denote the Klein four-
group{e, u, v, uv}, and letoe be the partial action of4 on the closed intervat =[—1, 1]
defined as follows: let dom) = A = {3}, letdomv) = B={ + 3 |n e N, n > 2}, and
letdomuv = C =[—1, 1]NQ. Letu andv act as the identity oA and B, respectively, and
let (uv)-x = —x forx € C. Itis easily checked that is indeed a partial group action. As in
Example 2.14, one shows thaffails to be confluent, because the triple «, uv) violates
the property in Proposition 2.13l{arnatively, non-confluence @f can be deduced from
the following and Corollary 3.4).

We claim thathe globalizationX <— Y of « fails to be a topological embeddirgyhich,
incidentally, implies that’ fails to be Hausdorff, sinc& is compact and < Y is in-
jective). To see this, lel/ be the open sgD, 1) in X. We show that fails to be open in
Y, i.e., thatV N X £ U for each operV C Y such thatU c V; in fact, such av always
contains a negative number:

We haveu - 1 =1 e V,i.e., 3 eu~Y[V]. Therefore the open set’}[V] C X intersects
B, i.e., we haveb € B such thatuv) -b=u -b € V. Thus, the open sétv) 1[V]c X
intersectsC N (0, 1], so that we obtairr € C N (0, 1] such that(uv) - ¢ € V; but then
(uv) - ¢ = —c is a negative number.

Notice that it is not possible to repair the embedding property by just changing the
topology onY: the topology is already as large as possible (being a final lift of maps that
are certainly expected to be continuous), and the failugg e$ Y to be an embedding is
due toY havingtoo fewopen sets. This pathology does not happen in the confluent case:

Theorem 3.3. If « is confluent, then the map: R, — Y (cf. Sectior?) is a topological
embedding for each € M.

Corollary 3.4. If « is confluent, then the globalizatidh— Y is a topological embedding.

(Itis unlikely that the converse holds, i.e., that confluence is also a necessary condition for
X < Y to be an embedding.)

Proof of Corollary 3.4. The inclusionX < Y isthe map:R. — Y. O

Proof of Theorem 3.3. All that remains to be shown is that the original topologyRyf
agrees with the subspace topology:onR, w.r.t. Y, i.e., that, whenevdyr is open inR,,,
then there exists an opéhc Y suchthat/ Nu - R, =u - U.

We defineU as the union of a system of subséfs C Y to be constructed below,
indexed over allv € M such thatu < v (this is the prefix ordering of Definition 1.4,
which depends on confluence. As announced above, we reuse notation without further
comments), with the following properties for each u:

(i) U, Cc U, whenevewu < p <.
(i) UyNu-R,=u-U.
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(i) v~1[U,]is openinX.
(iv) Eacha € U, \ Uprgyv) has normal formv - x for somex.

Then certainly
UNu-R,=u-U.

Moreover, the properties above imply
(v) Foreachve M, v-x € U impliesu < v andv - x € U,.

To prove (v), letp be the minimalp > u w.r.t. < such that - x € U,,. By (iv), v - x has
normal formp - y for somey, so thatp < v, and hence in particular < v. By (i), we
obtainv - x € U, as required. Now (v) enables us to show thiais open: we have to show
thatv=1[U] is open for each € M. By (v), this set is empty in caseZ v. Otherwise, we
have, again by (v),

v O =v U,

which is open inX by (iii).

The systen{U,) is constructed by induction over the prefix order, starting figm= U
(where Uprgu)' is to be replaced by in (iv)). Now letv e M, whereu < v, have normal
formv =g, ---g1 = pre(v)g1, and assume that tli&, are already constructed as required
foru < p <v. The set

B = (pre(v)) [Uprew)]

is open inX by the inductive assumption. TthslTl[B] is open in the domai® C X of
g1,1.e., equal tab NV, whereV is openinX. Let

C=V\D.
Note that, forx € C, v - x is normal. NowU,, is defined as
UU = Uprqv) Uv-C.

It is clear that this definition satisfies (i), (ii), and (iv) above. In order to verify (iii), let
x € X. Thenv-x isnormaland iU, iff x € C. If v-x isreducible, i.e., iff1(x) is defined
in X, thenv - x e U, iff pre(v) - (g1(x)) € Upren) iff g1(x) € B. Thus,

v U =CUg  [Bl=(V\D)U(VND)=V,

which is openinX. O

Example 3.5. A very basic example of a partial action éhproduces the free homoge-
neous space ove¥, as follows. The full subcategoy of T(X) spanned by the singleton
subspaces induces a partial action as desdrib Example 2.9(vii) The presentation of

the monoidM (C) generated byC can be described as follows: the generators are of the
form (xy), wherex, y € X with x # y, and the relations arey)(yz) — (xz) whenx # z,
and(xy)(yz) — () otherwise (thus, one may leave out the brackets and just wwite ¢).

The corresponding globalization is easily seen to be homogeneous. There are known ways
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to produce this homogeneous space, in particBlamrat’s constructiofi27] and the con-
struction given by Belnov [4], who also establishes a kind of universal property for the
extension. It can be checked that the spaces resulting from these constructions coincide
with our globalization in this special case (see [19] for more details).

4. Preservation of topological properties

We will now investigate how topological properties of a space are or are not handed on
to its globalization with respect to a continuous partial action

Theorem 4.1. If « is confluent andX is a T1-space, therY is Ty iff u~1[{x}] is closed in
X for eachu € M and eachy € X.

Proof. The ‘only if’ direction is immediate. In order to prove the ‘if’ direction, we have
to show that the latter condition implies that![{a}] is closed inX for eacha € Y. Let

a have normal formv - x. Thenu - y = v - x for y € X iff we haveu = vp normal and

p -y = x, wherep is necessarily uniquely determined. Thus[{a}] is the closed set
p{x}]in X if v < u; otherwiseu1[{a}] is empty. O

There are many typical cases in which this necessary and sufficient condition is easily
seen to be satisfied, such as the following.

Corollary 4.2. If X is T1 and« is closed, therY is Ty.
Corollary 4.3.If X is Ty and M is a group, therY is T1.

Corollary 4.4. If X is T1 and for each generatog € G, the partial mapg: X — X has
finite fibres, therY is T1.

(The latter corollary includes the case that all generators act injectively.)

Proof of Corollary 4.4. By induction over the length af € M, one shows that ~1[{x}]
is finite and hence closed for eacle X. O

For confluent actions, the domain conditions introduced in Section 2 can be reduced to
the generating seft:

Proposition 4.5. Let @ be confluent. Thea is closed(open iff dom(g) is closed(open
for eachg € G, anda is strongly closedoper) iff, moreoverg: X — X is closed(opern)
ondom(g) for eachg.

Proof. We prove only the closed case. Let d@nbe closed for eaclg € G. We show
by induction over Igu) that domu) is closed for eaclk € M: let u have normal form
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u =g, g1, SO that préu) = g, ---g2. Then dongpre(n)) is closed by induction. By
confluencey - x is defined inX iff u - x reduces to some € X. Thus, we have

dom(u) = g7 [dom(pre(w))],
which is closed in dorty1) and hence irX. The second claim is now trivial. O

Strong closedness is in a suitable sense ‘inherited’ by the globalization:
Proposition 4.6.

() If «is strongly open, then: X — Y is open for everyr € M.
(i) If o is strongly closed and confluent, thenX — Y is closed for every € M.

Proof. (i) We have to show that~1[u[U]] is open inX for eachv € M and each opelty
in X. We can write this set as

v ulU1] = | Vi,
neN
whereV,, , denotes the set of alle X such thatthere exisise U such thatv, x) >~ (u, y)
is obtainable by applying the generating relatienf formula (1) (Section 2 times from
left to right or from right to left. We show by induction overthatV,, ,, is open for each:
the base case is trivial. Now by the definition-of

Virro= J (@7 Va N X)U | (P[Vaupl N X).

P.geM PEM
v=pq

where the first part of the union corresponds to the first step in the derivatian.of >~
(u, y) being of the form(v, x) = (pg, x) ~ (p,q - x) € V,,, and the second to that step
being of the formV,, ., > (vp,z) ~ (v, p - 2) = (v, x). By the inductive assumption, the
setsV, , andV, ,, are open; hence, all components of the union are open, singe=alf
have open domains and are open as partial Xaps X.

(i) The argument is analogous to the one above, noticing that thanks to confluence,
all unions above can be restricted to finite ones: the derivatign,af) ~ (u, y) needs at
most Igv) + Ig(u) steps; in the first part of the union in the decompositiogfs ., the
decompositions = pq can be restricted to be normal; and in the second part of the union,
p need only range over generators that occur in the normal form ofa

Corollary 4.7. Let o be strongly open. Then the translation mapY — Y is open for
everyu e M.

Proof. Let U be an open subset &f. We have to show that - U is open. Represent this
set as
u-U=Juw- (v7UINX).
veM

Now observe that each component set of the union is open. Indeed vsitidé] N X is
open inX, Proposition 4.6(i) implies thatv - (v"1[A]N X) isopeninY. O
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As the following example shows, the ‘closed version’ of the last statement fails to be
true even for confluent partial actions.

Example 4.8. Let X = R be the real line. For € N, let p, : N — N be the constant map
with valuen. These maps, together with the identity mapNrform a monoidM which
acts onN C R and thus partially acts oK. Clearly, this partial action is strongly closed;
but the translatiop; : Y — Y of the corresponding globalization fails to be closed. Indeed,
define a subset df as

1
A= Pn-—
n

n>2}.

ThenA is closed inY because1[A]N X has at most one point for everye M. However,
p1-Aisnotclosed. To see this, observe thap, = p1 and hencey1- A = {p1- % |n>2}.
The sequence of poings; - % in p1 - A converges to the point; - 0= 1, which is outside
of p1-A.

Remark 4.9. In the case tha¥ is a group, closed partial actions are automatically strongly
closed. Moreover, since in this case each translationn — Y is a homeomorphism, the
‘closed version’ of Corollary 4.7 is trivially true.

We now approach the question of normality and dimension.Z4_dte a topological
space. Following Wallace [32], we say thétis of dimensional type (in short: Xt Z) if,
for each closed sed ¢ X and each continuous maf: A — Z, there exists a continuous
extensionf : X — Z.

Theorem 4.10. If « is closed and confluent, theéfit Z impliesYt Z.

Proof. Let A C Y be closed, and let : A — Z be a continuous map. In order to define the
required extensiog : Y — Z, we construct a sequence of continuous functignsy, —
Z (cf. Section 3) such that eaah, extends the restrictiotr| 4y, and eachy,41 extends
V.. We then obtain/ as the union of the/,,.

Yo is justX. SinceA N X is closed inX, we can choos@ as an extension af | 4nx
to X.

Now assume that we have constructed the sequencemupNe define auxiliary func-
tionsi, : B, — Z, whereB, is closed inX, for eachu € M such that Igu) < n as follows:
let u have normal fornyy - - - g1, and letD be the (closed) domain @f. The setB,, is the
union D Uu~1[A] (hence closed), and, is defined by

_fvuu-x), fu-xev, and
}\u(x)_{l/f(u'x), if u-xeA.

By assumption ony,, A, is well-defined. It is continuous o and onu~[A], hence
continuous, since both these sets are closed.
SinceXtZ, eachi, has a continuous extensien: X — Z. We put

Ynp1(u - x) =Ky (x)
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for eachu € M with Ig(u) < n and eachx € X. Since Iga) < n for anya € Y, 41 that
admits more than one such representatieau - x, ¥, +1 is well-defined. It is continuous
for fixed u, which implies overall continuity by definition of the topology &n finally, it
extendsy|any, ., andy, by construction. O

Corollary 4.11. If « is closed and confluent arx is normal(and hasdim(X) = n), then
Y is normal(and hasdim(Y) = n).

Proof. First note thatt is a T1-space by virtue of Corollary 4.2. Now use Theorem 4.10
and well-known characterizations of normality (£6e= [0, 1]) and dimension (foZ = S,,)
in terms of dimensional type.O

If « is not closed then we cannot in general expect the preservation of basic topological
properties, such as for instanfg in Y (or, in fact, in any other globalizations):

Example 4.12. Let h: O — O be an autohomeomorphism of an open suli3edf X.

Suppose that sequenadag) and(y,) in O both converge to the same pointxh\ O, and
that (h(x,)) and(k(y,)) converge to points andd in X \ O, respectively. IfX admits a
HausdorffextensionX < Z such that: extends to a global map of, thenc =d: in Z,

we have

c=Ilimh(x,) =h(imx,) =h(limy,) =limh(y,) =d.

It follows thatY cannot be Hausdorff for any (even very godflijhat has such a subspace
O with ¢ andd distinct. As a concrete example, take=Z U {oo, —oo}, O = Z, (xp)
and (y,) the sequences of positive even and odd numbers, respectivelii(@ne: n if
n is even,h(n) = —n otherwise. (By way of contrast, observe that, by Corollary 4.3, the
globalization w.r.t. the group generated/bis 7;.)

This example shows in particular that the abstract globalization problem of [8, p. 294]
in general fails to have a Hausdorff solution.

5. Non-expansive partial actions
We will now move on from topology into the realm of metrics and pseudometrics.

Definition 5.1. A weak pseudometrigpace is a paitX, d), whered : X x X — Rt U {co}
is a symmetric distance function that satisfies the triangle inequality/éndc) = O for
eachy € X. A pseudometrispace is a weak pseudometric spéked) such thati(x, y) <
oo forall x, y. Aweak pseudometric space is calksparatedf d(x, y) = 0 impliesx = y.
(Thus, a metric space is a separated pseudometric space.)

We will denote all distance functions ki/(and the spacéX, d) just by X) where this
is unlikely to cause confusion. A functigf between weak pseudometric spaces is called
non-expansivé d(f(x), f(y)) <d(x,y) forall x, y.

We denote the categories of weak pseudommghseudometric, and metric spaces with
non-expansive maps as morphismsiyMet, PMet, andM et, respectively.
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A partial action of a monoidf on a weak pseudometric spakes callednon-expansive
if the partial map: : X — X is non-expansive on its domain (as a subspace)dbr each
u € M. Note here that botRMet andMet are closed under subspacesvBM et.
SincewPMet is a topological category [2], globalizations can be constructed in the
same way as for topological partial actions by means of final lifts: in general, given weak
pseudometric spacés, i € I, and a family of mapg; : ¥; — X into some sek, the final
lift of S = (Y;, fi); is the largest weak pseudometric &n(w.r.t. the pointwise order on
real-valued functions) that makes all tlienon-expansive maps. Explicitly, given points
andy in X, anS-pathz from x to y of lengthn is a sequenc€is, x1, y1), . . ., (ins Xn, Yn)),
n 2= 1, such that;, y; € Yij, j=21....n, fi(x1) =x, fij(yj) = ﬂj+l(xj+1) for j =
1,...,n—1,andf;, (y») = y. The associategath lengths

n
Zdj(x]', yj)-
=1

In casex # y, the distance of andy is easily seen to be given as the infimum of the path
length, taken over al§-paths fromx to y (in particular, the distance & if there is no such
path); otherwise the distance is, of course, 0. If thare jointly surjective (which they are

in the case we are interested in), then there is always a tSvath fromx to x, so that

the caser = y does not need special treatment. Due to the triangle inequality, it suffices to
consider paths(i;, x;, y;)) where(i;, y;) is always different from(i 1, xj +1).

Now given a partial actior on a weak pseudometric spakewe construct the under-
lying set of the free globalizatiori as in Section 3 (as for topological spaces, we shall keep
the notationx, X, Y, etc. throughout). It is easy to see that free globalizations of partial
actions on weak pseudometricages (i.e., reflections into the full subcategory spanned by
the total actions in the category of partial actions) are, as in the topological case, given as
final lifts of the family S of maps

u.X—Y,

whereu ranges oveM. For the sake of clarity, we denote the distance functioi dhus
defined byD.

For the remainder of this section, we shall assume shit confluent.

Under this condition, one may further restrict the paths to be taken into consideration:
in general, we may write a-pathz froma to b (a, b € Y) in the form

* *
Ug-X1,U1-y1<> U2 X2, ..., Up—-1"Yn-1<> Uy Xp,Up " Yn

(inshort:(u;, x;, y;)), whereus - x1 = a andu, - y, = b . Denote byD () the correspond-
ing path Iengch?:ld(xj, v;). By definition, D(a, b) = inf D(;r) wheren runs over all
possible paths. Recall th&t(a, b) = oo iff there is no path fronu to . We say thatr is
geodesiéf D(a,b) = D(x).

There are two additionalssumptionsve may introduce:

(i) Foreachj=1,...,n, atleastone of;; - x; andu; - y; is in normal form.
Indeed, ifu; has normal forngy - -- g1 and bothx; andy; are in the domain of1,
then we obtain a shorter path replaciiag, x;, y;) by (g - -- g2, 81-xj, g1- y;) (since
g1 is non-expanding).
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(i) Foreachj=1,...,n—1, atmostoneof; - y; andu;y1-x;41is normal.
By the above, we may assurne;, y;) # (411, xj+1). But both these pairs represent
the same point of, which has only one normal form.

We will henceforth consider onlg-paths that areeducedaccording to these assumptions.
We denote the transitive closure of the one-step reduetiohy Y (reversely:<i); ie.,
% is like 5 except that we require that at least one reduction step takes plage yif is

reducible and: 11 - x ;41 is normal then necessarily; - y; = uj+1-xj+1, which we will
indicate in the notation for paths; similarly:f; - y; is normal and:; 1 - x ;41 is reducible.

The ‘normality patterns’ that occur in reduced paths are restricted in a rather amusing
way:

Lemma 5.2. Every reduced path from € Y to b € Y has one of the following forms

(A1) n,ri>-~i>n,r;

(A2) r,n<i~-~<ir,n;

(A3) n,n;

(A4) nri>i>nri>nn,

(A5) n,n <ir,n<i~-~<ir,n;

(A6) n,ri>-~-i>n,ri>n,n <ir,n<i~-<ir,n;

+ + * + +
(A7) n,r > - > n,r<rn<---<rnmn,

where ‘n’ and ‘r mean that the corresponding term of the path is normal or reducible,

. + + ‘
respectively(Patterns such ag,r — --- — n,r are to be understood as ‘one or more
occurrences of, r'.)

Proof. If the path does not contain either of the pattetns andr <> r, then it must be
of one of the forms (Al) and (A2). The occurrencengf in some place determines the
entire pattern due to restrictions (i) and (ii) above, so that the path has one of the forms

(A3)—(A6). Similarly, a path that contains the patterﬁ> r must be of the form (A7). O
A first consequence of this lemma is that every space is a subspace of its globalization:
Lemma5.3. Letx, y € X. Then((e, x, y)) is the only reduced path fromto y.
Proof. Sincee - z is in normal form for allz € X, any reduced path fromto y must have
form (A3) of Lemma 5.2 (all other forms either begin with the pattern or end with

r,n). O

Theorem 5.4. The embedding — Y of a weak pseudometric space into its free global-
ization is isometric.

Proof. Immediate from Lemma 5.3.0
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Of course, we are mainly interestedrmetric globalizations. Now any weak pseudo-
metric space has a separated reflection obtained by identifying points with distance zero. If
X is a separated space, thep #eparated reflectianof Y is the freeseparatedylobaliza-
tion of X, andX is isometrically embedded ifi, since its points have positive distances in
Y and are hence kept distinct Fu We will see below (Theorem 5.11) that working with
the separated reflection is wegessary for closed partial actions. Finiteness of distances is,
on the one hand, more problematic since there is no universal way to transform a weak
pseudometric space into a pseudometrimcgp On the other hand, finiteness of distances
is preserved in most cases:

Definition 5.5. « is callednowhere degeneratedom(g) # ¢ for eachg € G.

Proposition 5.6. If X is a nhon-empty pseudometric space, theis pseudometric iff is
nowhere degenerate.

Proof. If @ is nowhere degenerategihthere exists, for eache Y, a path fromy to some

x € X; hence, there is a path between any two point¥ o$o that the infimum defining
the distance function ofi is never taken over the empty set and hence never infinite. If,
conversely, dortg) = ¢ for someg € G, then there is no reduced path (and hence no path
at all) fromx to g - x for x € X, so thatD(x, g - x) = co. Indeed, assume thatis such a
path. Since both - y and, by assumption ofy g - y are normal for ally € X, the normality
pattern ofr as in Lemma 5.2 can neither begin withr nor end withr, n. Thus,7 must

be of the form (A3), which is impossible since dggh= ¢ impliesg #e. O

Remark 5.7. Another approach to the problem of infinite distances is to consider only
spaces of diameter at most 1 and pufc, y) =1 forx, y € Y in case there is no path from
xtoy.

Observation 5.8. Leta, b € Y have normal forma =u - x andb = v - y, and letr be a
reduced path from to b. If 7 is of the form (A2) or (A5) of Lemma 5.2, then necessarily
u < v, and if 7 is of the form (A1) or (A4), therv < u. Clearly, if 7 is of the form (A3)
thenu = v. Thus, ifu andv are incomparable undef thenz must be of the form (A6)
or (A7).

Lemma5.9. Leta, b € Y have normal forma = u - x andb = v - y, whereu has normal
formgy - - g1.

(i) If D(a,b) <d(x,dom(g1)), thenu < v.
(i) If u=vthen

min{d(x, y), d(x, dom(g1)) +d(y,dom(g1))} < D(a, b) <d(x, ).

Proof. Lets be areduced path fromto b.

(i) = cannot have a normality pattern of the foanr X , since in that case, the first
step of the path would already contribute at le&st, dom(g1)) to D(a, b). Hence;r must
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be of one of the forms (A2), (A3), or (A5) of Lemma 5.2. By the observation above, this
impliesu < v.

(ii) = must have one of the forms (A3), (A6), or (A7) of Lemma 5.2. In the case (A3),
D(m) =d(x,y). In the cases (A6) and (A7), the normality patternmofs of the form

n,r .. & r,n. ThereforeD () > d(x,dom(g1)) + d(y,dom(g1)). This proves the
first inequality; the second follows from the fact thatX — Y is non-expansive. O

We say that a functiop : E — L between pseudometric spacesoisally isometricif
for everyx € E there existg > 0 such thatp isometrically maps the-ball B(x, ¢) in E
onto thes-ball B(¢(x), €) in L. Clearly,E is separated ifp (E) is separated. Every locally
isometric injective map is a topological embedding.

Proposition 5.10. If « is closed, then

(i) D(u-x,v-y)=0impliesu = v for normal forms: - x, v - y.
(i) ThesetJ,,v- R, isopen for each.
(iii) EachYy (in particular, Yo = X) is closed inY .
(iv) The subspacéy1 \ Yx is a topological sum g+ - Ru Of disjoint subsets
u-R,.
(v) Foreveryu € M the bijective functiom : R, — u - R, is locally isometriqand, hence,
a homeomorphisjn

Proof. (i) Let u have normal forng, ---g1. ThenD(u - x,v - y) = 0 < d(x, domg1) by
closedness, so that< v by Lemma 5.9(i). Analogously; < u.

(i) Let u € M, and leta have normal formp - x (i.e.,a € p - R,) for someu =<
p with normal formp = g, ---g1. Pute = d(x,dom(g1)). By closednessg > 0. By
Lemma 5.9(i), thes-neighbourhood otz is contained inl J,., v - R, and hence in
U<y v - Rv, Which proves the latter set to be open.

(iii) The complement ot is a union of sets J,_, v - R,.

(iv) Disjointness is clear, and by (ii), each set R, with Ig(x) = k + 1 is open in
Yiy1\ Yk, Sinceu - R, = (Uuiv v Ry) N (Yega \ Yr).

(V) Letu = g --- g1 be normal, and let € R, = X \ dom(g1). Sincex is closedg :=
d(x,dom(g1)) > 0. By Lemma 5.9(ii), the bijective functiom: R, — u - R, isometrically
maps thes-ball B(x, ¢) onto thee-ball B(u - x, &) inu-R,. O

p=v

As an immediate consequence, we obtain the announced separatedness result:
Theorem 5.11. If « is closed andX is separated, theli is separated.
Proof. Letu - x andv - y be normal forms it with D(u - x, v - y) = 0. Thenu = v by
Proposition 5.10(i); therefore y € R,,. By Proposition 5.10(V)D(u - x, u - y) = 0 implies
d(x,y)=0andhence=y. O

Remark 5.12. The converse of the above theorem holdX ifs complete: assume that
is separated, let € G, and let(x,) be a convergent sequence in dgmn we have to show
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thatx = lim x,, is in dom(g). Now (g - x,,) is a Cauchy sequence &, hence by assumption
convergent; let =lim g - x,,. For everyn, we have a path

+
e-z,e-(g-Xp) <8 Xn, §-X

from z to g - x. The associated path lengthdéz, g(x,)) + d(x,, x), which converges to
0 asn — oo. Hence,D(z, g - x) = 0, so thatz = g - x by separatedness; this implies that
g - x is defined inX as required.

Example 5.13. Even for closed partial actions of groupoids on metric spaces, the metric
globalization does not in general induce topology of the topological globalization of
Section 3. Take, for instancg, = [0, 1]. The full subcategory oM (X) spanned by all
singleton subspaces induces a partial acticais described in Example 2.9(vii) (cf. also
Example 3.5). The universsdpologicalglobalizationY of « is not even first countable:
as in Example 3.5, denote the magg — {y} by (yx) for x # y in X. Then we have a
subspaceZ of Y formed by all points of the form or (y0) - x. The spaceZ is homeo-
morphic to the quotient space obtained by taking one base cgfy bfand uncountably
many copies of0, 1] indexed over the base copy, and then identifying for eaeH0, 1]
the 0 in theath copy with the point: in the base copy. In particular, alrea@yfails to be
first countable.

Theorem 5.14. If X is a metric space and is closed and nowhere degenerate, theis
a metric space. Moreovedim(Y) = dim(X).

Proof. By Theorem 5.11 and Proposition 5)6js a metric space.

It remains to be shown that dith) = dim(Y). Now Y = |, . Y» Where, by Propo-
sition 5.10, eachy, is a closed subset df. Therefore, by the standambuntable sum
theorem it suffices to show that dify,) < dim(X) for everyn. We proceed by induc-
tion. The caser = 0 is trivial, sinceYg = X. We have to show that dii,+1) < dim(X)
provided that dindY,) < dim(X). The idea is to use the following result of Dowker [10].

Lemma 5.15 (Dowker). Let Z be a normal space, and led be a closed subspace of
Z such thatdim(Q) < k. Thendim(Z) < k if and only if every closed subspadecC Z
disjoint from Q satisfiedim(A) < k.

We apply this lemma to the closed subspégef Y, 1. By the induction hypothesis,
dim(Y,) < dim(X). We have to show that difd) < dim(X) for every closed subset of
Y,+1 which is disjoint fromv,,, i.e.,A € Y,+1\ Y,. By Proposition 5.10(iv)4 is a topolog-
ical sumJyy(,)=n+1 Au Of disjoint subspaces, := A Nu - R,. EachA, is a subspace of
u - R,. Therefore, by Proposition 5.10(\3,, is homeomorphic to a subspaceXf Since
the dimension is hereditary (for arbitrary, nmcessarily closed subspaces) in perfectly
normal (e.g., metrizable) spaces, we have dip) < dim(X). Thus, dinfA) < dim(X).

By Dowker's result this yields diifY,+1) < dim(X). O

Remark 5.16. One application of Theorems 5.4 and 4 is to obtain all sorts of metric
gluing constructions. A simple example of this is Theorem 2.1 of [5], which states that



142 M. Megrelishvili, L. Schréder / Topology and its Applications 145 (2004) 119-145

given metric spaceX; and X, with intersectionZ = X1 N X such thatZ is closed both
in X1 andin X» and the metrics ok, and X, agree onZ, there exists a metric oki; U X»
which agrees with the given metrics &a and X, respectivelyUsing our results, this can
be seen as follows: lef be the free group with a single generatofi.e., G = 7Z), let
X1+ X2 = X1 x {1} U X> x {2} be the disjoint union ok; andX>, and let a partial action
of G on X1+ X be defined by - (x, 1) = (x, 2) (andu~1- (x, 2) = (x, 1)) forx € Z. This
partial action is closed and, by Example 2.9(iii), confluent. In the globalizatiome find
the setX1 U X, represented a® = (u - X1) U X2, and the metric ortW agrees with the
respective metrics o1 and X», since the mapgi: X1 — W and f>: X> — W defined
by fi(x) =u-(x,1) and f2(y) = (y, 2) are isometries.

In standard terminology, some of the above results can be summed up as follows:

Theorem 5.17. Let I" be a set of partial non-expansive mgsometrie$ with non-empty
closed domain of a metric spage Then there exists a closed isometric embedd&ing- Y

into a metric spacé such that all members df can be extended to global non-expansive
maps(isometrie3 of Y and such that, moreovetim(Y) = dim(X) and|Y| < | X|- || - Ro.

Proof. I generates a subcategory (a subgroupoid, if all membefsarke partial isome-
tries) C of the categornM (X) of metric subspaces of; the set of morphisms o€ has
cardinality at mos{I"| - 8¢. The inclusionC — M (X) induces a closed non-expansive
nowhere degenerate partial actieron X as described in Example 2.9(vii). By Theorem
5.14 and Proposition 5.10(iii), the globalizationfn.r.t. « has the desired propertiest

By iterating the construction above, we can improve, in part, the known resutttf2g]
every metric spac& can be embedded into a metrically ultrahomogeneous space

Theorem 5.18. For every metric spac& there exists an isometric closed embeddihg>
Z into a metrically ultrahomogeneous spagesuch thadim(Z) = dim(X) and|Z| = | X]|.

Proof. Start with the sef” containing all partial isometries between finite subspaces of
andall global isometries o (here,I” is already a subcategory bf (X)). Let Z; be the
corresponding globalization according to theoad theorem and iterate this process; the
direct limit Z, of the resulting ascending chain of metric spafes> Z; < Zp <> ---

is an ultrahomogeneous space. Moreover, each inclusion is closed afif), dlindim(X)

for all n. Hence, the inclusiolX — Z, is closed, and by the countable sum theorem,
dim(Zs) = dim(X). A more careful choice of global isometries will guarantee tat=

1X|. O

1 Uspenskij shows that it can be assumed that the weight is preserved and that the isometry grgap-of
dowed with the pointwiseopology) is topologically embeddento the isometry group df (but this construction
does not preserve dimension).
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Remark 5.19. Topological versions of Theorems 5.&id 5.18, with ‘metric’ replaced by
‘normal’ and ‘metrically ultrahomogeneousy ‘topologically ultrahomogeneous’, can be
derived using Corollary 4.11 (see also [19-21]).

The global metricD on Y is in some respects easier to handle in césé a group.
Since the elements aff act as isometries and henbéu - x, v-y) = D(x, u v - y) for all
u,v e M and allx, y € X, it suffices to consider distances of the fofx, u - y). Thus,
the calculation of distances can be simplified:

Proposition 5.20. Let M be a group. Letu,v € M, let g --- g1 be the normal form of
u~lv, and letx, y € X.Then

k
D@ -x,v-y)= inf(d(y,xl) + Zd(gi (xi)»xi—&-l)),

i=1
wherex; ranges ovedom(g;) fori =1, ...,k andx;411 = x.

Proof. As explained above, we need only calculate the distance droau—1v - y to the
pointx € X.

Sincee - z is normal for allz € X, a reduced patlr from a to x cannot end with the
normality patterm, n, so that (excluding the trivial case (A3))must have one of the forms
(A1) or (A4) of Lemma 5.2. Thusy is determined by a subdivisiop- - - s1 of (gx, ..., g1)
into non-empty words; and a selection of elements € dom(s/), i =1,...,r; putting
Xr4+1 = x, We can write the corresponding path length as

p

d(y,x1)+ Y _d(s](xi), xit1).

i=1

Now observe that one subdivision @, .. ., g1) is that intok one-element subwords =
(gi). Selecting elements; € dom(s]") = dom(g;), i =1, ..., k, defines a (not necessarily
reduced) path; call such patBementary pathdt is easy to see that any reduced path
gives rise to an elementary pathsuch thatD () = D(7), and the lengths of elementary
paths are exactly the sums given in the formula of the statement.

A further rather immediate consequendeLemma 5.2 is the existence of geodesic
paths under suitable compactness assumptions:

Definition 5.21. Let u € M have normal forngy - -- g1, kK > 0. u is called aC-elementf
dom(g;) is compact fori =1, ..., k. A partial action iscompactf dom( f) is compact for
every morphisny .

Clearly,« is compact iff everys € M is aC-element.
Theorem 5.22. Let X be a weak pseudometric spaceuldndv are C-elements and =

u-x,b=nv-y are normal, then there exists a geodesic fraro b. In particular, if « is
compact then there exists a geodesic for every pair of elemetits in
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Proof. It suffices to show that, for each of the forms listed in Lemma 5.2, there exists a
path which realizes the infimum among all reduced paths of that form. We treat only the
case (A7); the other cases are analogous (and, mostly, easier).

Areduced patti(u;, x;, y;)) froma to b of the form (A7) is determined by a choice of
a sequencéuy, ..., ux) such that

u=uy>--->=u, and w41 <---<up=v

for some 1< r < k — 1, and a choice of elemenis dom(gi), i=1...,randx; €
dom(g)),i =r +1,....k, whereu; has normal forng! - - g{. Obviously, there are only
finitely many choices ofus, ..., ux), so that it suffices to show that, given such a choice,
the infimum among the corresponding paths is realized by some choice of elements as
described. This follows by a standard compactness argument: th@@oane compact,

and the path length depends continuously on the choice of taedy;. O

Corollary 5.23. Let o be compact. IiX is a path spacegi.e., if the distance between any
two points is the infimum of the lengths of all curves joining the p¢irk then so isy.

6. Conclusion and outlook

We have demonstrated how a simple set-theoretic construction of globalizations for
partial actions of monoids can be appliedtbpological and metric spaces, and we have
shown that the resulting extensions are surprisingly well-behaved, provided that the partial
action is confluent. In particular, we have shown that, in both cases, the original space
is embedded in its extension, and that, under natural assumptions, important properties
such as dimension, normality, or path metricity are preserved. Classical homogenization
results arise as special cases of our construction. The main tool has been the application of
rewriting theory in order to gain better control of the globalization.

Open questions include preservation of further topological and metric properties by
the globalization, as well as the extension of the method to other categories. This in-
cludes categories used in general topoleggh as uniform spaces or, more generally,
nearness spaces [13], as well as, in the realm of distance functions, the category of ap-
proach spaces [17], but also structures of @arenanalytical nature such as measurable
maps (ofmm-spaces [12,24]), smooth maps, or conformal maps.
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