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Abstract 

Jan de Vries’ compactification problem is whether every Tychonoff G-space can be equivariantly 
embedded in a compact G-space. In such a case, we say that G is a V-group. De Vries showed that 

every locally compact group G is a V-group. The first example of a non-V-group was constructed 
in 1988 by the first author. Until now, this was the only known counterexample. In this paper, we 

give a systematic method of constructing noncompactifiable G-spaces. We show that the class of 
non-L7-groups is large and contains all second countable (even No-bounded) nonlocally precompact 
groups. This establishes the existence of monothetic (even cyclic) non-V-groups, answering a 
question of the first author. As a related result, we obtain a characterization of locally compact 

groups in terms of “G-normality”. 0 1998 Elsevier Science B.V. 

Keywords: G-Tychonoff; G-normal: a-uniform function; Ascoli-Arzela theorem; No-bounded 

group 

AMS classification: 54H15; 22A99 

1. Introduction 

A topological transformation group, or a G-space, is a triple (G, X, Q), where G is 

a topological group, X is a topological space, and cy : G x X + X is a continuous 

action. For basic information on G-spaces, see de Vries [16,21]. If X is Tychonoff 

(respectively, normal, compact, etc.), then (G, X, CY) (or just X, for short) is called a 

Tychonoff (respectively, normal, compact, etc.) G-space. A G-space is G-Tychonoffif it 

can be equivariantly embedded into a compact Hausdorff G-space. We call a group G a 

Is-group if every Tychonoff G-space is G-Tychonoff. 
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In [ 171, Jan de Vries posed the “compactification problem” in its full generality, which 

in our terms becomes: is every topological group G a V-group’? See Carlson [4] for 

the case G = IF!. In [3]. Brook investigated a more general class of groups and showed 

that for any topological group G, the G-space (G. G. 0~) ((~~(gi,g~) = 91.92) is G- 

Tychonoff. 

Recall de Vries’ well-known result [20] which states that every locally compact group 

is a V-group. (For the case where G is a compact Lie group, see [12]. If G is compact, 

see [ 1,181.) The following are examples of G-spaces which are G-Tychonoff: 

(a) [17] Every coset G-space (G, G/H, cyz), where aE(gl,gzH) = (glgz)H. (If H = 

{e}, this gives Brook’s result mentioned above.) 

(b) [7] Every G-space X under an equicontinuous action. 

(cl [lo] Every G-group X (and. hence, every linear G-space X). 

(d) [lo] Every metric G-space (X, d). where G is second category and c@ : X - X 

is d-uniformly continuous for every g E G. 

(e) Il.51 Every Baire G-space X. where G is No-bounded and acts transitively on X. 

In 1988, Megrelishvili [9] answered de Vries’ question negatively. He found a con- 

tinuous action cr of a separable, complete metrizable group G on .I&), the so-called 

metrizable hedgehog of spininess No, such that (G, J(No), cy) is not G-Tychonoff. There- 

fore, the group G of this example is not a V-group. By [ 111, no dense subgroup of G is 

a V-group. 

It is an open question whether there are nonlocally compact V-groups. In this paper, 

we prove the following 

Main Theorem. If G is an No-bounded topological group tilhich is not locally precom- 

pact, then G is not a V-group. 

Recall that a topological group G is called No-bounded [2.6] if for every V E N,(G) 

there exists a countable subset S of G such that SV = G. Guran [6] proved that G is 

No-bounded iff G is a topological subgroup of a product of second countable topological 

groups. If G is separable, Lindelof, or satisfies the countable chain condition, then G is 

No-bounded. 

In particular, the Main Theorem provides an example of a cyclic group G which is 

not a V-group, answering a question of Megrelishvili about monothetic groups [ 111. As 

a related result, we characterize locally compact groups in terms of G-normality. 

The compactification problem is still open in the case of a (monothetic) precompact 

group, even for a dense cyclic subgroup of the circle group T. It is also an intriguing 

question whether the additive group Q of rational numbers is a V-group. 

Our approach is to adapt techniques for constructing regular spaces which are not 

completely regular. For example, Tree [14] has found a method which turns any regular 

topological space which is not normal into a regular space which is not completely regular. 

We have adapted his technique to the context of G-spaces, and we have constructed a 

method which turns a normal G-space which is not G-normal in some sense into a 

Tychonoff G-space which is not G-Tychonoff. 
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2. Preliminaries and conventions 

All spaces are Tychonoff, and all cardinals are assumed to be infinite. The filter of 

all neighborhoods of an element .z: of a space X is denoted by N,,(X). The neutral 

element of a group is denoted by e. A group G is locall! precompact if it is a subgroup 

of a locally compact group, or. equivalently, if its sup-completion (the completion with 

respect to its two-sided uniformity) is locally compact. Recall [ 19,20, l] that a continuous 

function f : S ----f IR defined on a G-space X with an action (t is called O-U~Z$HYIZ if 

for every s > 0 there exists U E N,(G) such that for all !J E U, .c E X, we have 

V(J) - f(P)/ < E. Denote by C’<*,(X) (respectively. C*(X)) the set of all bounded 

o-uniform (respectively. continuous bounded) functions on 9. 

Lemma 2.1. 

(i) C’,:(X) is cl closed sub-nlgehrrr of C*(X). 

(ii) @’ f is in C’z (X) and I’ E R, then the functions 

p(x): = min{f(,T.), I,} and h(.r): = If(.c)I 

are also in C<:(S). 

The compactification of X which corresponds to the algebra C:(X) is the maximal 

G-compncti~ccltiorl [19] and is denoted by /jc;X. 

Fact 2.2 [ 19,201. A Tvchonoff G-space (G. S, cx) is G-Tyhonoff ifl /&X is a proper 

G-compuctification of X iff (3: (X) separutes the points and the closed subsets of X. 

As mentioned above, the G-space of all left translations (G, G, us) is G-Tychonoff. 

In this case, the maximal (proper) G-compactification !&G is called the greatest nmbit. 

(For further information, see [21].) 

Let (G; X. CY) be a G-space. We say that subsets .4 and B of X are a-disjoint if there 

exists U E N,(G) such that I/A n UB = 0. Two disjoint invariant subsets are obviously 

a-disjoint. Moreover, if A and B are separated by an a-uniform function, then A and B 

are <r-disjoint. In fact, we have the following stronger result. 

Lemma 2.3. Let (G, X, a) be a G-space. Let C and D be subsets of X which nre 

separated by an cY-uniform function. Then there are sequences {U,l}, (0,) und {Oh} 

of neighborhoods of e, C and D, respectively: such that for ull 1~ E N, 

cl(U,,O,,) C_ On+,, cl(tr,,OL) C: O:,,,. and O,, flO:, = 0. 

We say that a G-space X is G-normal (equivariantly normal in the terminology of [g]) 

if every pair of a-disjoint closed subsets of X has a-disjoint neighborhoods. Equivalently. 

X is G-normal iff G:(X) separates the closed a-disjoint subsets of X. The continuity of 

the action Q guarantees that for every closed subset F of X and every point .c E X\F, the 

subsets F and {z} are o-disjoint. Therefore, every G-normal G-space is G-Tychonoff. 

Every coset G-space (G, G/H. CEL) is G-normal for arbitrary G. If G is locally compact, 

then every normal G-space is G-normal [8]. For the converse, see Theorem 5.2 below. 
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Definition 2.4. A G-space (G, X, o) is called weakly G-normal if C:(X) separates 

closed invariant subsets of X. 

Proposition 2.5. Let G be an arbitrary topological group which is not sup-complete. 

Then there exists a normal G-space X of weight w(X) = w(G) which is not G-normal. 

Proof. Denote by G the sup-completion of G. Let B be a base of neighborhoods of e 

in G. We may suppose that the cardinality of B is not greater than m(G). By Brook’s 

theorem [3] the G-space (G, G, CYL) is G-Tychonoff. By [ 111, there is a compact G- 

extension Y of (2, G7 a~) such that w(Y) < ur(G^) . w(G) = w(G) = w(G). We now 

form the topological G-sum X = ${Yv: U E B}, where each Yu := Y x {U} is a copy 

of Y. Let (Y denote the action of 6 on X restricted to G. Clearly, (G, X, o) is a normal 

G-space and w(X) = w(G). I n order to show that it is not G-normal, we will construct 

two closed o-disjoint subsets C and D of X which are_not separated by Cz (X). 

Let U E B, and let clz(U) be the closure of U in G. Since G is not sup-complete, 

we can pick gt, E c+(U) \ G. Set 

c = {(g&u): u E B} and D= {(e,U): U EB}. 

Clearly, C and D are closed o-disjoint subsets of X. It is easy to show, however, that 

for all V E B 

(qv, V) E clx(VD) n C. 

By Lemma 2.3, C and D are not separated by Cz (X). 0 

For a compact space X, H(X) denotes the (topological) group of all homeomorphisms 

of X, endowed with the compact-open topology. Let (G, (X, p), cy) be an arbitrary G- 

space, where 1-1 is a compatible uniformity for X, and let A C G. We say that A acts 

p-uniformly equicontinuously if for every E E p there exists S E p such that for all 

g E A and for all x, y E X, (x, y) E 6 implies (gx, gy) E E. We say that G acts locally 

uniformly equicontinuously if there exists U E N,(G) such that U acts p-uniformly 

equicontinuously. 

Lemma 2.6. Let (G, r) be a topological group. For g E G, let g: &G -+ ,&G be a 

continuous extension of the transition map cP : G + G. Then the map cp : G + H&G) 

defined by cp(g) = 9 is a topological group embedding. 

Proof. Straightforward. See, for example, Theorem 3.2 of [3]. 0 

Lemma 2.7. The action of G on the greatest ambit &G is locally un$ormly equicon- 

tinuous ifs G is locally precompact. 

Proof. Suppose the action 6 : G x ,&G + ,&G is locally uniformly equicontinuous. 

That is, there is a neighborhood U of e which acts ,u-uniformly equicontinuously, where 

p is the unique uniformity for &G. Then, the Ascoli-Arzela theorem implies that the 



closure of +(cr) in N(&G) is compact. Therefore, the closure of y(G) in H(;?GG) is 

a locally compact group containing the group C = G(G) (Lemma 2.6). 

Conversely. suppose (: is locally precompact. By the equivariant completion theorem 

[ I 1 I. there ih a continuous extending action of the sup-completion c of G on ,JGG. By 

our assumption. there exists a compact neighborhood 1’ of c in 6. Easy compactness 

arguments now imply that 1. acts I/,-uniformly equicontinuously on JJG,G. Hence the 

neighborhood 1_ ‘-1 G of I’ in G also acts //-uniformly equicontinuously on :j<;G. 0 

We will also need the following result. 

Fact 2.8 (Equivariant Approximation Theorem) [lo]. Ler G be atz No-bounded group. 

LIII~ let S he LI compact G-sptrc~. Then _\r cm be represented as N G-limit of an inverse 

G-.y\m ((G. ‘Y,, 0,): i E I} ,f o wtttpct tnertkable (:-spaces S, .ruch that dim _Y; < 

dim .S. 

3. From non-(&normality to non-G-Tychonoff-ness 

We now adapt the original construction of Tree [ 131 to the context of G-spaces. 

Let ‘(:. ,Y. 0) be a regular G-space. We describe the construction of a related G-space 

(C:. .Y A c?). We assume that there are disjoint closed G-subspaces c’. D & S. 

Let in’ -= PJ ci { 0} carry the discrete topology. Let I- be the quotient space formed from 

s ’ a~ by identifying the pair\ (c’. 3i + I ) and ((,. 2i + 3) for (. E <.‘. i E in, and the pairs 

(rl. Zi) and (fl. li + I ) for d E Ct. i t w’. Let 1): .Y x J - Y’ be the quotient map. For 

II c~ I?. let i,, : _Y - S * ~1 be the canonical injection .I’ +- (.r. II). 

Fix a point (I 6 I’, and let .‘i + = 1. U ((1). Topologize St by setting I’ to be an open 

subset with its quotient topology and the rlth basic nbd of o to be 

.v,,(r/) = ic~}~Jp(i~,,(~~ \, c’,) Uu {p(i,,,(_k-)): II! > 3,). 

It is trivial to check that this generates a topology T on ,Y+. We remark only that if 0 

is an open subset of I-. then 0 n I\‘~ ( (I ) is also open in I’-. To see this, it is enough, by 

the detinition of the quotient topology, to show that I_‘~-’ (0 n 2V7,(a)) is open. Observe 

that 1~ ’ (0) is open by the continuity of p, and II-’ ( lV,‘rl (u) ) = A\;, (a) \ {(I} is open by 

the definition of :V,, ((I). 

We now detine a function rb+ : G x _Y+ - S+. For any g E G. set CI’(~.(I) = n. 

For /j((.r.rc)) c’ 1: set tr+(!/.~((.~..rt))) = ,I(~~~((R(!/..I.))). Note that CV+ is well-defined 

because C’ and D are invariant. 

Claim 3.1. (G. _Y+. o+ ) is 0 G-space. 

Proof. It i> easy to see that (1 A is an action on S+. It remains to show that (I+ is 

continuous. The continuity of (k+ at points (9, y) for y E 1’ is easily proved using 

the continuity of ct. For the continuity of (I+ at the point (9. n). note that for any 

I! +I I,I. G:V,‘,, ((I ) = N,, ((I). 0 
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Theorem 3.2. Let (G, X, o) be a normal G-space with closed disjoint invariant subsets 

C, D C X which are not separated by C:(X). Then (G? X+, a+) is a normal (and, 

hence, Tychonofl G-space which is not G-T’chono# 

Proof. First we show that X+ is normal. 

Claim 1. Zf A C Y, U is an open subset of X x LJ, and p-‘(A) C U: then there is an 

open subset U’ of X x ~cl such that p-‘(A) C: U’ & U. and p(U’) is open in the space Y. 

Proof. For each (x, n) E p-‘(A), we will define an open set U,,, C X x {n} such that 

(x,n) E U,., C U. If x $ C u D ( or if n = 0 and x +! D), then there is an open set 

l_J’~XsuchthatxEU’andU’n(CUD)=0.S’ mce (x7 n) E U, there is an open set 

U” C X x {n} such that (x, ,n) E U” C U. Let U,,,, := (U’ x {,n}) f? U”. Then U,,,, is 

open, (x,12) E U,,,. U,., C U! and P(U.~,,) is open in Y, since p-‘(p(U,,,)) = U,.,. 

If z E C, then assume without loss of generality that n is odd. So both (x, n) and 

(x, n + 1) belong to p-‘(A). Since (x, n) E U, there is an open set U, C X x {r~} such 

that (x. ,n) E U, C U. Similarly. there is an open set Un+’ C X x {n + 1 } such that 

(2, n + 1) E Un+’ C U. Let 

U r.n := { (y,n) E U,: (I/. n + 1) E &+I}> 

U X,rzfl := {(Y, n + 1) E &+I: (?A n) E G}. 

The case x E D is handled similarly. 

Finally, define U’ = U’s,n’Ep_l(AI Us,,. This proves Claim 1. 0 

Claim 2. If Cr C X+ is closed and a 6 C, then there exists an n E w such that 

c c u p(x x {k}). 

Proof. If not, then for every n E w, there are m 3 n and x, E p(X x {m}) such that 

zn E C. Then x, + a, so a E C. 

Claim 3. X+ is normal (and, hence, DchonofS). 

Proof. Let A, B C X+ be closed and disjoint. 

Case 1. a 6 A U B. In this case, A and B are closed subsets of Y. So p-‘(A) and 

p-‘(B) are closed disjoint subsets of X x ‘UI. Since X x LJ is normal, there are disjoint 

open sets U, V C X x LJ such that p- ’ (A) C U and p- ’ (B) C V. By Claim 1, let 

U’, V’ C X x u, be open sets such that p-‘(A) C U’ c U, p-‘(B) 2 V’ C V, and 

p(U’), p(V’) are open in Y. Note that U’ and V’ are disjoint. Now 

A =&-‘(A)) C p(U’) and B = p@‘(B)) C p(V’). 

Subclaim. p(U’) n p(V) = 0. 
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Proof. Suppose 2 E p(V) n p( V’). If 3 = p((.r, IL)), where s $! C U D, then (x-> n) E 

Ii’ n 1” = 0, which is a contradiction. Hence we must have x E C U D. Without loss 

of generality, assume that s E C, n is odd, and (s. n) E U’. (.r. 11 + 1) E 1”. From the 

construction of 1T’ in Claim 1, we see that there must exist c E C such that (.r. 71) E U,,,, 

so (.I..11 + 1) E U,.,n+l. Hence (J., n + 1) E Ii’ n V’. a contradiction. 

Case 2. (I E .,I U B. Without loss of generality, assume that n E A \ B. So A n I’- = 

PI \ {<I} is closed in I’. S o we apply Case 1 to separate A n I’ and B by disjoint open 

sets li and 1: respectively. By Claim 2 there is n E in such that 

B c u P(X x {V). 
k< II 

Assume without loss of generality that n, is odd. Define 

1” := k’n 
K 

u PP- x V+) 
k<rr 

) UP((S \ C) x +t),]. 

Let CJ’ = U II Nrl(u). Then .4 i U’. B 2 I”. U’ I- 1” = 0, and U’ and V’ are open. 

This completes the proof that S+ is normal. 0 

Next, we will show that (G..Y+, cy+) is not G-Tychonoff. Our proof follows closely 

the proof in [ 141. For the sake of completeness, we have included many of the details. 

Notation. For a subset A c X and 71 E w. let AZ = p(i, (A)). 

We claim that the point CL and the set Cc are not separated by a bounded a+-uniform 

function. The proof is by contradiction. Suppose f : S+ + R is a bounded a+-uniform 

function such that f(Gz) = 0 and f(~) = 1. A s in Tree [14], there is an n E ul such 

that for all m 3 n and for all .r E CL. If( > l/n. Fix such an n. Note that 

.f(c;)n -’ i =s. ( 1 n ’ 71 

Assume without loss of generality that n is odd. Let n = 2r + 1. Define a function 

I’ : .y+ - R by P(X) = min{n,lf(z)l. l}. By Lemma 2.1. p is n+-uniform. Note that 

~(C~~)=Oand~(C~)=l.Wenowdefinen+lfunctionsh~,h~....,h,:X~IWby 

restricting the domain of ~1 to Xt for k = 0, 1: . . . II. More precisely, 

hl,(.r) = ,-l(p(j&)). 

Claim 4. Each hk is wmiform. 

Proof. Fix E :, 0. Let U be a nbd of P in G such that if .r E Xf and g E Ii, then 

IF(X) - p(gs)l < E. Fix z E S, y E li and k E (0. 1,. . . , n}. Then 

1kk(.c) - Ilk( = I&(ik(.r))) - p(p(ik(g:r))) / = Ip(d.r. I;)) - p(p(gr, k)) I 

= &(.L k)) ~ p((yp(.c, I;)) / < E. 

This proves Claim 4. 



Observation. 

(1) Fori=O,l,.... T - 1, h2i+, 1 c = hi+? r c’. 

(2) Fori=O,l.....r, hli rD=hz;+l I‘D. 

(3) ho [ c = 0. 

(4) h, r c = 1. 

Finally, define h : X - R by 

h(z) = -&l)‘+thk(:r) 

k=O 

By Lemma 2.1, h is a-uniform. Now c’ E c’ + h(c) = Ph~j(c) + h,,(c) = 0 + 1 = I by 

(1). (3) and (4) above, while d E D + h(d) = 0 by (2). 

This contradicts the assumption that C and D cannot be separated by an n-uniform 

function. This completes the proof of Theorem 3.2. 0 

4. Proof of the Main Theorem 

Definition 4.1. Let (G, ,711, a) be a G-space and S C G. 

to be S-near if for every pair 01 , 02 of neighborhoods 

Subsets A and B of A are said 

of A and B, respectively. there 

exist gt , g2 E S such that glO1 n g?Oz # 0. i.e.. SO, n SO1 # 0. 

Lemma 4.2. Let (G. X, N) be a G-space with a jixed point z E X and S C G. Let 

LT E X \ {z} be such that x and .: ure S-near: Set 

Y = X2 \ ((2, z)}. CT = ({z} x X) \ ((2, z)}? and 

D = (X x {z}) \ ((2. z)}. 

Dejine a’ : G x I’ + Y as the “one-coordinate” action tr’(y. (.I., y)) = (n(g. .r). y). Then 

(G. I’, 0’) is a G-space. and C and D ure closed disjoint invariant S-near subsets ~$1’. 

Proof. Only the statement about the S-nearness of C and D is nontrivial. Fix neighbor- 

hoods 01 and 02 of C and D, respectively. Since (x, 2) E D, we have (.r> 2) E 02. and 

hence there are open neighborhoods O,(X), O,(c) of J and 2. respectively, such that 

(.r, z) E (O,.(X) X O,(z)) \ ((2, s)} c 01. 

It is easy to see that .z is not isolated in .Y. Hence there exists y E O,(z) such that 

y # z. Then (2, y) E 0,. so there are open neighborhoods Ol_ (z ). 0, ( y) of 2 and y. 

respectively, such that 

(Z>Y) E (Ok(z) X O,(Y)) \ {(W)} C 01 

By hypothesis, IL’ and 2 are S-near, so there are 91% g2 E S such that gl0J.r) fIgI 0: (2) # 

0. Therefore, 

g2(Os x 0: 1 n 91 Kc x 0,) # 0. 

This easily implies that gt 01 n 9202 # 0. 0 



Main Theorem 4.3. Let G be (I ttonlocall~ precotnpuct &I-hounded topological group. 

Theta G is not (I \7-group. i.e.. there is N Tvchottofl G-.sp~u-e which is not G-Tjrhon~~~ 

Proof. Since (,’ is not locally precompact. Lemma 2.7 implies that G does not act locally 

uniformly equicontinuously on S = :-lc;:G. 

We now construct a G-space SC. for every li in a collection I3 (of cardinality x(G)) 

of basic neighborhoods of f in G. By Approximation Theorem 2.8. S is a G-limit of an 

inverse G-system of compact metrizable G-spaces Si (i E I). Let /I and ~1~ denote the 

unique compatible uniformity on X and S,. respectively. 

Let T,’ c I!&. Since I! does not act //-uniformly equicontinuously on $cG, there exists 

an index i E I such that tr does not act /11-uniformly equicontinuously on (X,. p,). 

Therefore, there is ,c E /I, such that for every h t I’,, there exist (.rh. !/;I) E b and gfi E I: 

such that 

(w-b..9a.v6) f 5. (*) 

Thus we obtain nets (x,+). (gn), (y8.1.n): and (ybyb) in (X,. ,I~), indexed by the elements 

b of 11,. Passing to subnets if necessary, we may assume that there exist .I?’ ~ a”. b” E S 

such that .I’~ -+ XI’. y+ - .I.“% ,qb.rb - al’. and gh yb ---) b”. By (*) we have cl11 # !I”. 

Hence (.I,“. .r”) E _I. and ((I”> hcT) +! 3, where 3 = {(.c,.r) 1 .r E Xi}. Clearly. 

( .J*( .I.’ ) and (~1~‘. /I”) are [;-near in the G-space (S; ~ p, ) x (S, ~ ,I,): with the natural 

“two-coordinate” action. 

We now form the quotient G-space EI, = (S, x S,)/J. Consider the quotient G-map 

1): .Y) x S, -+ 1;. Let 2 := p(.r,. .r). Then ,- and II(U”~ h”) are [i-near in 1;. 

Since 3 is a fixed point of I;. we may apply Lemma 4.2, with S = Y;, 5’ = l!. and 

.I’ =- p(,,‘-. /I’~). That is, let 

s[- = (1; x 1;) \ { (Z.S)}. 

C”’ = ({z} x I;)\{(,-.:)}, and 

11’. = (1; x {Z}) \ {(,.,_)}. 

Define the “one-coordinate” action o’ : G x Xc7 + XIT by 

r+J. (J. !/)) = (o(g. .I.). 9). 

where rb is the action of G on 1;. Then, by Lemma 4.2. (G, Xl,, a’) is a G-space, and 

(Y’- and D” are closed disjoint invariant cl-near subsets of X~J. This completes the 

construction of SIT from Ii. 

Now form the topological G-sum 5 = @{Xc;: U E I5). Let cy* : G x S 4 5’ be the 

natural action. Define 

(1% u c”‘, D = u DC-. 
[‘E’; I..$33 

Then C’ and D are closed disjoint invariant subsets of S. 

Claim 1. c’ tend D we not separated by C’,:, (,S). 
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Proof. By Lemma 2.3, it is enough to show that C and D have no cu*-disjoint neigh- 

borhoods. Let OC, 0~ be neighborhoods of C and D, respectively. Let U E N,(G), 

U’ C U, with U’ E l’&. Define 01 = Ocn&p. 02 = 0~ nXu/. Then U’O, nU’O2 # (D. 

Hence UOC I- UOD # 8. 

Claim 2. 5’ is metrizable. 

Proof. It is sufficient to show that each XL~ in the topological sum is metrizable. Each 

Xi is a metrizable compact space and A is closed in Xi x Xi. Clearly, x = (Xi x Xi)/A 

is metrizable and compact. Hence every Xcr is metrizable, being a subspace of Y, x Y,. 

By the above claims, (G, S, a*) is a normal G-space which is not weakly G-normal. 

Therefore, by Theorem 3.2, (G, S+, (a*)+) IS a Tychonoff G-space which is not G- 

Tychonoff. This completes the proof of the Main Theorem. 0 

We discuss here some topological properties of S +. Observe that by our construction, 

w(S+) = ,&1(S) . y(G). If G is second countable, then we can choose S such that 

u)(S) = w(G). In this case, we get w(S+) = w(G) = No. 

Note that the space Sf has only one point, namely a, of nonlocal compactness. This 

is interesting because any locally compact G-space is G-Tychonoff. 

Remark. We note that the situation for Polish groups G is totally clear. If G is locally 

compact, then G is a V-group, by de Vries’ theorem. Now suppose that G is not locally 

compact. The completeness of G implies that G cannot be locally precompact. Since G 

is clearly No-bounded, the Main Theorem implies that G is not a V-group. 

5. Further results 

The following corollary to the Main Theorem provides a negative answer to Megrel- 

ishvili’s question [ 1 l] whether every monothetic group is a V-group. 

Corollary 5.1. There exists a cyclic (metrizable) topological group G which is not a 

V-group. 

Proof. Take, for example, a dense cyclic subgroup G of the monothetic nonlocally 

precompact group from [ 131. 0 

It is interesting to note that local compactness of the acting group G can be charac- 

terized in terms of G-normality. 

Theorem 5.2. The following are equivalent for a topological group G: 
(i) G is locally compact. 

(ii) Eve? normal G-space is G-normal. 

Proof. (i) + (ii) see [81. 
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(ii) + (i) First observe that by Proposition 2.5, G is sup-complete. Therefore, we 

may assume that G is not locally precompact. Then, by Lemma 2.7, the action of G on 

X = :3cG is not locally uniformly equicontinuous. Let U E !V?(G). and let l-1 be the 

unique uniformity for X. Then CT does not act p-uniformly equicontinuously. As in the 

proof of the Main Theorem, we obtain nets (zh), (yb) in X and a net (96) in Ii. each 

indexed by the elements 6 of ~1. Without loss of generality, we may assume that there 

exist .I.“, 0 , ” b” E X such that .rh - .r 1r , ,y+ ---f .r” . .YbJb - n”. ,9n:yn + b”. and 

9” # h’!. Form the topological G-sum 

s = @{I;:: U E N,(G)}, 

where each YU is a copy of X x X. with the “two-coordinate” action. Clearly, S is 

normal. Define 

C = {(.r’-‘..I:“)(I: IT E A;,(G)} and D = {(a”.b”)o-: U E N,(G)}. 

Then C and D are closed and o-disjoint subsets of S. However. for every U E 11;,(G) 

and for every pair of neighborhoods 01.02 of C and D, respectively, we have 

cl(U0,) n cl(UO*) # 0. 

Now Lemma 2.3 implies that C and D are not separated by C; (X). This proves that S 

is not G-normal •I 

In a topological space X, points a and b are called @ins if f(a) = f(b) for every 

continuous function f : X + R. In a G-space (G. ,X7 o), points n and b are called o-wins 

if f(cl,) = f(b) for every o-uniform function f : X + R. 

In [ 141, Tree shows how to modify any regular space which is not completely regular 

in order to obtain a regular space with twins. We have adapted his technique to the 

context of G-spaces. 

Let (G: X: o) be a regular G-space. We construct a related G-space (G. X”. a*). We 

assume that there is a proper closed invariant subset C of X. Let X’ be the quotient 

space formed from X x (0, I} by identifying the pairs (c. 0) and (f, 1) for c E Cr. Let 

p: X x (0, l} -+ X’ be the quotient map. Let ia in :X - X x (0, l} be the canonical 

injections. Define o* : G x X* + X* by Q*(Y,P((J>~))) = p(i,,(&/>.r))). 

The action cy* is well-defined because C is invariant. It is easy to see that (G, X’. a*) 

is a G-space. The corresponding proof in [14] works here because C:(X) is an algebra. 

Thus we obtain 

Theorem 5.3. Let (G, X, a) he CI normal G-space with u Ji.xed point z and a closed 

invariant subset C which are not separated bx Cz (X). Then (G. X*, a”) is a Tvchonoff 

G-space with <I *-tuins. (In fact, X* is even normal.) 
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Combining the Main Theorem 4.3 and Theorem 5.3, we see that for every nonlocally 

precompact, NO-bounded group G, there is a Tychonoff G-space with a-twins. 

Questions. 

(1) Let G be a locally precompact (nonlocally compact) topological group. Is G a 

V-group? In particular, is the additive group Q of rational numbers a V-group? 

(2) In Theorem 5.2, can we replace “G-normal” by “weakly G-normal”? 

(3) (Yu. Smimov) Is there a Tychonoff G-space X on which every a-uniform function 

is constant? 
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