RENDICONTI del Seminario Matematico della Università di Padova

MICHAEL MEGRELISHVILI Minimal non-totally minimal topological rings

Rendiconti del Seminario Matematico della Università di Padova, tome 97 (1997), p. 73-79

<http://www.numdam.org/item?id=RSMUP_1997__97__73_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 97 (1997)

Minimal Non-Totally Minimal Topological Rings.

MICHAEL MEGRELISHVILI (*)

ABSTRACT - We establish the existence of minimal non-totally minimal topological rings with a unit answering a question of Dikranjan. The Pontryagin duality and a generalization of Ursul's «semidirect product type» construction play major roles in the construction.

Introduction.

A Hausdorff topological ring R is called *minimal* if its topology is minimal in the sense of Zorn among all Hausdorff ring topologies on R. If R/J is minimal for every closed ideal J, then R is called *totally minimal* [2].

The induced topology of a nontrivial valuation on a field is (totally) minimal (see [10, 6]). Some generalizations and related results in the context of fields or divisible rings may be found in [11, 13, 14]. For more general cases we refer to [1,2,3,9]. Recall [2,3] for instance that the class of all minimal rings with a unit is closed under forming topological products, direct sums and matrix rings. If P is a non-zero prime ideal of finite index in a Dedekind ring, then the Padic topology is minimal.

The question about existence of minimal non-totally minimal rings with a unit is discussed by Dikranjan in [2,3].

(*) Indirizzo dell'A.: Department of Mathematics and Computer Science, Bar-Ilan University, 52 900 Ramat-Gan, Israel.

E-mail: megereli@macs.biu.ac.il

Partially supported by the Israel Ministry of Sciences, Grant No. 3505. 1991 Mathematics Subject Classification: 16W80, 54H13, 13J99, 22B99.

Conventions and preliminaries.

As usual \mathbb{N} , \mathbb{Z} , \mathbb{R} denote the set of all natural, integer and real numbers, respectively. The unit circle group \mathbb{R}/\mathbb{Z} will be denoted by \mathbb{T} and the *n*-element cyclic ring by \mathbb{Z}_n .

All rings are assumed to be associative. A ring R is *unital* if it has a unit. The zero-element will be denoted by 0. By char (R) we indicate the minimal natural number (if it exists) n such that nx = 0 for every $x \in R$. Otherwise we write char (R) = 0. Clearly, char (R) = n > 0 iff R is a (left) \mathbb{Z}_n -algebra in a natural way $(k, x) \mapsto x + x + \ldots + x$ (k terms) for each $(k, x) \in \mathbb{Z}_n \times R$.

For a locally compact Abelian group G, denote by G^* the dual group $H(G, \mathbb{T})$ of all continuous characters endowed with the compact open topology. If R is a locally compact ring, then R^* is a topological (R, R)-bimodule [12].

If P is a subgroup of a topological group (G, τ) , then $\tau|_P$ will denote the relative topology on P, and τ/P will be the quotient topology on the left coset space G/P. The following useful result is well known.

MERZON'S LEMMA [8] (See also [4], Lemma 7.2.3 for a proof). Let P be a subgroup of a group G, and let τ' and τ be (not necessarily Hausdorff) group topologies on G with the properties: $\tau' \subseteq \tau$, $\tau'|_P = \tau|_P$ and $\tau'/P = \tau/P$. Then $\tau' = \tau$.

Main results.

Recall a construction from [12]. Let R be a topological ring and X a topological (R, R)-bimodule. On the product $R \times X$ of topological groups R and X, consider the multiplication

$$(r_1, x_1)(r_2, x_2) = (r_1r_2, r_1x_2 + x_1r_2), \quad r_1, r_2 \in \mathbb{R}, x_1, x_2 \in \mathbb{X}$$

Then $R \times X$ becomes a topological ring which is denoted by $R \swarrow X$. For details and a particular case of $\mathbb{R} \swarrow \mathbb{R}^*$ see Ursul [12].

Now we generalize this construction in two directions. The first change is minor. Let K be a commutative unital Hausdorff topological ring, (R, τ) a topological K-algebra, and (S, ν) be a topological K-module. Instead of $R^* = H_Z(R, T)$, consider the K-module $H_K(R, S)$ of all continuous K-homomorphisms $R \to S$. As in the case of R^* , the left and right multiplications in R induce the (R, R)-bimodule structure in $H_K(R, S)$. The second modification is more essential. We add to $R \prec H_K(R, S)$ a supplementary coordinate. Denote by $M_K(R, S)$ the product $R \times H_K(R, S) \times S$ of K-modules. The multiplication we define by the rule:

$$(r_1, f_1, s_1)(r_2, f_2, s_2) = ((r_1r_2, r_1f_2 + f_1r_2, f_2(r_1) + f_1(r_2)))$$

where $r_1, r_2 \in R, f_1, f_2 \in H_K(R, S)$ and $s_1, s_2 \in S$. Simple computations show that $M_K(R, S)$ becomes a K-algebra. Let $H_K(R, S)$ carry a Kmodule topology σ such that its (R, R)-bimodule structure is topological too. Moreover, suppose that the evaluation mapping

$$\omega: H_K(R, S) \times R \to S, \qquad \omega(f, r) = f(r)$$

is continuous with respect to the triple (σ, τ, ν) of Hausdorff topologies. Then $(M_K(R, S), \gamma)$ is a Hausdorff topological K-algebra with respect to the product topology γ . In particular, if R is a locally compact ring, S = T and $K = \mathbb{Z}$, then one gets a locally compact topological ring $M_Z(R, T) = R \times R^* \times T$ which will be denoted by M(R).

Furthermore, we identify R, $H_K(R, S)$ and $H_K(R, S) \times S$ with the corresponding subsets of $M_K(R, S)$. We will keep below our assumptions about $(M_K(R, S), \gamma)$.

PROPOSITION 1. Let γ' be a new ring topology on $M_K(R, S)$ such that the canonical group retraction $q: H_K(R, S) \times S \to S$ is continuous for the topologies $\gamma'|_{H_K(R, S) \times S}$ and ν . Then the evaluation mapping ω is continuous with respect to the triple of topologies $\gamma'|_{H_K(R, S)}$, $\gamma'/H_K(R, S) \times S$ and ν .

PROOF. Fix $\varphi_0 \in H_K(R, S)$, $r_0 \in R$ and a ν -neighborhood O at $\varphi_0(r_0)$ in S. By the continuity of q, we may choose a γ' -neighborhood U of the element $z_0 = (0, \varphi_0 r_0, \varphi_0(r_0)) \in M_K(R, S)$, such that $q(U \cap \cap (H_K(R, S) \times S)) \subseteq O$.

By our assumption, the ring multiplication is γ' -continuous. Therefore, there exist γ' -neighborhoods V, W of the elements $(0, \varphi_0, 0)$ and $(r_0, 0, 0)$ respectively, such that $V \cdot W$ is contained in the chosen γ' neighborhood U of $z_0 = (0, \varphi_0, 0)(r_0, 0, 0)$.

For every $\varphi \in V \cap H_K(R, S)$ and every $(r, f, s) \in W$, we have

$$(0, \varphi, 0)(r, f, s) = (0, \varphi r, \varphi(r)) \in U \cap (H_K(R, S) \times S)$$

Clearly, $\varphi(r) = \omega(\varphi, r) \in \omega(V \cap H_K(R, S), \operatorname{pr}(W))$, where pr denotes the projection $M_K(R, S) \to R$ on the first coordinate.

Then,

$$\varphi(r) \in \omega(V \cap H_K(R, S), \operatorname{pr}(W)) \subseteq q(U \cap (H_K(R, S) \times S)) \subseteq O$$

Since pr(W) is a $\gamma'/H_K(R, S) \times S$ -neighborhood of the point r_0 and

 $V \cap H_K(R, S)$ is a $\gamma' |_{H_K(R, S)}$ -neighborhood of the point φ_0 , then the continuity of ω at (φ_0, r_0) is proved.

Let $(F, \sigma) \cdot (E, \tau)$, (S, ν) be Abelian Hausdorff groups. A continuous mapping $\omega: F \times E \to S$ is called biadditive if the induced mappings $\omega_x: F \to S, \omega_f: E \to S$ are homomorphisms for every $x \in E$ and every $f \in F$. We say that a coarser pair $(\sigma', \tau') \leq (\sigma, \tau)$ of group topologies is ω -compatible if ω remains continuous with respect to the triple (σ', τ', ν) . If ω is separated (i.e., if the annihilators of E and F are both zero), then the Hausdorff property of ν implies that every ω -compatible pair (σ', τ') is necessarily Hausdorff. Following [7], we say that ω is minimal if for every ω -compatible pair $(\sigma', \tau') \leq (\sigma, \tau)$, we have necessarily $\sigma' = \sigma, \tau' = \tau$.

LEMMA 2 [7, Proposition 1.10]. For every Hausdorff locally compact Abelian group G, the evaluation mapping $G^* \times G \to T$ is minimal.

Another example of a minimal biadditive mapping is the canonical duality $E^* \times E \to \mathbb{R}$ for a normed space E.

PROPOSITION 3. Let the evaluation mapping

 $\omega: (H_{\kappa}(R, S), \sigma) \times (R, \tau) \to (S, \nu)$

be minimal, and let $\gamma' \subseteq \gamma$, be a coarser Hausdorff ring topology on $M_K(R, S)$ such that γ' and γ coincide on $H_K(R, S) \times S$. Then $\gamma' = \gamma$.

PROOF. Because γ' and γ agree on $H_K(R, S) \times S$, then, in particular, the mapping

$$q: H_K(R, S) \times S \to S$$

is continuous with respect to the pair $(\gamma'|_{H_K(R,S)\times S}, \nu)$. So, we can apply Proposition 1. Then $\gamma'|_{H_K(R,S)}, \gamma'/H_K(R,S) \times S$ is a ω -compatible pair of group topologies. The minimality of ω implies $\gamma'/H_K(R,S) \times S \times S = \tau = \gamma/H_K(R,S) \times S$. Now Merzon's Lemma finishes the proof.

As a corollary we get

PROPOSITION 4. Let the evaluation mapping ω be minimal and let S and $H_K(R, S)$ be compact. Then $M_K(R, S)$ is a minimal ring.

THEOREM 5. Let R be a discrete ring. Then the topological ring $M(R) = R \times R^* \times T$ is minimal. Hence, every (commutative) discrete ring is a continuous ring retract of a minimal (commutative) locally compact ring.

PROOF. By Pontryagin's Theorem, R^* is compact iff R is discrete. Now the minimality of M(R) follows from Lemma 2 and Proposition 4. The canonical retraction pr: $M(R) \rightarrow R$ is the desired one.

The ring M(R) from Theorem 5 is not unital. In order to «improve» this, we use a well known unitalization procedure. Let R be a topological K-algebra. Consider a new K-algebra

$$R_{+} = \{r + \alpha \mathbf{1}_{+} \mid r \in R, \alpha \in K\}$$

adjoining a unit 1_+ . More precisely, R_+ is a topological K-module sum $R \oplus K$, and we identify $(r, \alpha) = r + \alpha 1_+$. A multiplication on R_+ is defined in the following manner:

$$(a + \alpha 1_+)(b + \beta 1_+) = ab + ab + \beta a + \alpha \beta 1_+$$

where $\alpha, \beta \in K$ and $a, b \in R$. The following lemma is trivial.

LEMMA 6. If J is a (closed) ideal in R, then J is a (closed) ideal in R_+ and $R_+/J = (R/J)_+$.

In the following result we use a method familiar from the theory of minimal topological groups (see, for example, [5]).

THEOREM 7. Let R be a complete K-algebra such that (R, τ) , (K, σ) are minimal topological rings. Then the K-unitalization R_+ is a minimal topological ring.

PROOF. Denote by γ the given product topology on R_+ and suppose that $\gamma' \subseteq \gamma$ is a new Hausdorff ring topology. Since (R, τ) is a minimal ring, $\gamma'|_R = \gamma|_R = \tau$. By our assumption, (R, τ) is complete. Therefore, R is a closed ideal in (R_+, γ') . Consider the *Hausdorff* ring topology γ'/R on K. Since $\gamma'/R \subseteq \gamma/R = \sigma$ and (K, σ) is a minimal ring, then $\gamma'/R = \gamma/R$. By Merzon's Lemma we get $\gamma' = \gamma$.

COROLLARY 8. Let R be a minimal complete ring with char (R) = n > 0. Then the \mathbb{Z}_n -unitalization R_+ of R is a minimal ring.

THEOREM 9. Let R be a discrete ring with char (R) = n > 0. Then the \mathbb{Z}_n -unitalization R_+ of R is a continuous ring retract of a minimal locally compact unital ring M_+ . PROOF. Apply our construction for the situation $S = K = \mathbb{Z}_n$ and consider the \mathbb{Z}_n -algebra $M := M_{\mathbb{Z}_n}(R, \mathbb{Z}_n) = R \times H_{\mathbb{Z}_n}(R, \mathbb{Z}_n) \times \mathbb{Z}_n$. Denote by M_+ the \mathbb{Z}_n -unitalization of M. Since char (R) = n > 0, then every character $\xi : R \to \mathbb{T}$ can actually be considered as a restricted homomorphism $R \to \mathbb{Z}_n \subset \mathbb{T}$ identifying \mathbb{Z}_n with the *n*-element cyclic subgroup of \mathbb{T} . It is also clear that every homomorphism $R \to \mathbb{Z}_n$ is even a morphism of \mathbb{Z}_n -algebras. Therefore, $H_{\mathbb{Z}_n}(R, \mathbb{Z}_n)$ and $R^* = H(R, \mathbb{T})$ coincide algebraically. Endow $H_{\mathbb{Z}_n}(R, \mathbb{Z}_n)$ with the compact topology σ of R^* . Eventually, the mapping $\omega : (R, \tau) \times (H_{\mathbb{Z}_n}(R, \mathbb{Z}_n), \sigma) \to \mathbb{Z}_n \subset \mathbb{T}$ is minimal, because of Lemma 2. By Proposition 4, the ring M is minimal. Since M is a \mathbb{Z}_n -algebra, then Corollary 8 and Lemma 6 complete the proof.

COROLLARY 10. For every nonnegative integer n which is not equal to 1 there exists a minimal non-totally minimal separable metrizable locally compact unital ring with char (R) = n.

PROOF. Fix a natural number $n \ge 2$. Let $F_i = \mathbb{Z}_n$ for every $i \in \mathbb{N}$. Consider the topological ring product $\left(\prod_{i \in \mathbb{N}} F_i, \sigma\right)$ and the dense countable topological subring $\left(\sum_{i \in \mathbb{N}} F_i, \tau\right)$. Denote by τ_d the discrete topology on $R := \sum_{i \in \mathbb{N}} F_i$. Clearly, the \mathbb{Z}_n -unitalization R_+ of (R, τ_d) is not a minimal ring because we can take on R_+ the (strictly coarser) ring topology of the \mathbb{Z}_n -unitalization for (R, τ) . On the other hand, by Theorem 9, the discrete non-minimal ring R_+ is a continuous ring retract of a minimal ring M_+ . Eventually, M_+ is the desired ring.

For the case n = 0, consider the ring product $\mathbb{R} \times M_+$, where M_+ is a minimal ring constructed for the case $n \ge 2$, and use the productivity of the class of minimal unital rings [3].

Acknowledgement. I would like to express my gratitude to D. Dikranjan for helpful comments and suggestions.

REFERENCES

- B. BANASCHEWSKI, Minimal topological algebras, Math. Ann., 211 (1974), pp. 107-114.
- [2] D. DIKRANJAN, Minimal ring topologies and Krull dimension, Topology vol. 23, Budapest, Hungary (1978), pp. 357-366.

- [3] D. DIKRANJAN, Minimal topological rings, Serdica, 8 (1982), pp. 139-165.
- [4] D. N. DIKRANJAN I. R. PRODANOV L. N. STOYANOV, Topological Groups: Characters, Dualities and Minimal Group Topologies, vol. 130, Marcel Dekker (1989).
- [5] V. EBERHARDT S. DIEROLF U. SCHWANENGEL, On products of two (totally) minimal topological groups and the three-space-problem, Math. Ann., 251 (1980), pp. 123-128.
- [6] H. KOWALSKY, Beitrage zur topologische algebra, Math. Nachr., 11 (1954), pp. 143-185.
- [7] M. MEGRELISHVILI, Group representations and construction of minimal topological groups, Topology Appl, 62 (1995), pp. 1-19.
- [8] A. E. MERZON, Uspehi Mat. Nauk, 27, No. 4 (1972), pp. 217 (in Russian).
- [9] A. MUTYLIN, Completely simple topological commutative rings, Mat. Zametki, 5 (1969), pp. 161-171 (in Russian).
- [10] L. NACHBIN, On strictly minimal topological division rings, Bull. Amer. Math. Soc., 55 (1949), pp. 1128-1136.
- [11] N. SHELL, *Topological Fields and Near Valuations*, vol. 135, Dekker, New York and Basel (1990).
- [12] M. I. URSUL, Boundedness in locally compact rings, Topology Appl., 55 (1994), pp. 17-27.
- [13] W. WIESLAW, Topological Fields, vol. 119, Dekker, New York and Basel (1988).
- [14] S. WARNER, *Topological Fields*, North Holland Mathematics Studies, 157, North-Holland, Amsterdam, New York, Oxford, Tokyo (1989).

Manoscritto pervenuto in redazione l'1 luglio 1995.