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Minimal Non-Totally Minimal Topological Rings.

MICHAEL MEGRELISHVILI (*)

ABSTRACT - We establish the existence of minimal non-totally minimal topologi-
cal rings with a unit answering a question of Dikranjan. The Pontryagin dual-
ity and a generalization of Ursul’s «semidirect product type» construction
play major roles in the construction.

Introduction.

A Hausdorff topological ring R is called minimal if its topology is
minimal in the sense of Zorn among all Hausdorff ring topologies on R.
If R/J is minimal for every closed ideal J, then R is called totally mini-
mal [2].

The induced topology of a nontrivial valuation on a field is (total-
ly) minimal (see [10, 6]). Some generalizations and related results in
the context of fields or divisible rings may be found in [11,13, 14].
For more general cases we refer to [1,2,3,9]. Recall [2,3] for in-
stance that the class of all minimal rings with a unit is closed under
forming topological products, direct sums and matrix rings. If P is a
non-zero prime ideal of finite index in a Dedekind ring, then the P-
adic topology is minimal.

The question about existence of minimal non-totally minimal rings
with a unit is discussed by Dikranjan in [2,3].

(*) Indirizzo dell’A.: Department of Mathematics and Computer Science,
Bar-Ilan University, 52 900 Ramat-Gan, Israel.
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Conventions and preliminaries.

As usual N, Z, R denote the set of all natural, integer and real num-
bers, respectively. The unit circle group R/Z will be denoted by T and
the m-element cyclic ring by Z,.

All rings are assumed to be associative. A ring R is unital if it has a
unit. The zero-element will be denoted by 0. By char (&) we indicate the
minimal natural number (if it exists) n such that nax = 0 for every x € R.
Otherwise we write char(R) = 0. Clearly, char(R)=n >0 iff R is a
(left) Z,-algebra in a natural way (k, x)—x + x + ... + ¢ (k terms) for
each (k,x)eZ, X R.

For a locally compact Abelian group G, denote by G * the dual group
H(G, T) of all continuous characters endowed with the compact open
topology. If R is a locally compact ring, then R* is a topological (R, R)-
bimodule [12].

If P is a subgroup of a topological group (G, ), then 7|p will denote
the relative topology on P, and z/P will be the quotient topology on the
left coset space G/P. The following useful result is well known.

MERZON’Ss LEMMA [8] (See also [4], Lemma 7.2.3 for a proof). Let P be
a subgroup of a group G, and let t' and T be (not necessarily Haus-
dorff) group topologies on G with the properties: t'ct, t'|p=1t|p and
7' /P =1/P. Then t' =1.

Main results.

Recall a construction from [12]. Let R be a topological ring and X a
topological (R, R)-bimodule. On the product R X X of topological
groups R and X, consider the multiplication

(11, ©)(7g, 22) = (1172, "% +217), T, 7T€R, X, xeX.

Then R X X becomes a topological ring which is denoted by R £ X. For
details and a particular case of R X R* see Ursul [12].

Now we generalize this construction in two directions. The first
change is minor. Let K be a commutative unital Hausdorff topological
ring, (R, ) a topological K-algebra, and (S, v) be a topological K-mod-
ule. Instead of R* = H; (R, T), consider the K-module Hx (R, S) of all
continuous K-homomorphisms R — S. As in the case of R*, the left and
right multiplications in R induce the (R, R)-bimodule structure in
Hy (R, S). The second modification is more essential. We add to
R A Hx(R, S) a supplementary coordinate. Denote by My (R, S) the
product B X Hgx(R, S) X S of K-modules. The multiplication we define
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by the rule:
(r1, fi, 81)(12, fo, 82) = (1172, 11z + 172, fz("‘1) + f1(r2))

where 7, 2 € R, f;, foe Hg(R, S) and s;, s, € S. Simple computations
show that Mg (R, S) becomes a K-algebra. Let Hx(R, S) carry a K-
module topology o such that its (R, R)-bimodule structure is topologi-
cal too. Moreover, suppose that the evaluation mapping

w:Hg(R,S)XR—-S, o(f,r)=f(r)

is continuous with respect to the triple (o, 7, v) of Hausdorff topologies.
Then (Mg (R, S), y) is a Hausdorff topological K-algebra with respect
to the product topology y. In particular, if R is a locally compact ring,
S=T and K =7, then one gets a locally compact topological ring
Mz(R, T)=R X R* X T which will be denoted by M(R).

Furthermore, we identify R, Hx (R, S) and Hx (R, S) X S with the
corresponding subsets of Mg (R, S). We will keep below our assump-
tions about (Mg (R, S), y).

PrOPOSITION 1. Let y' be a mew ring topology on Myg(R, S) such
that the canonical group retraction q: Hg (R, S) X S — S is continuous
for the topologies y' | uy(r, sy x s and v. Then the evaluation mapping  is
continuous with respect to the triple of topologies y'|mr, s)
y'[Hg(R, S) X S and v.

Proor. Fix ¢,e Hgx(R, S),7e R and a v-neighborhood O at
@o(ry) in S. By the continuity of ¢, we may choose a y'-neighborhood
U of the element zq = (0, @o7y, @o(7y)) € Mx(R, S), such that ¢(U N
N (Hg(R, S) x 8)) cO.

By our assumption, the ring multiplication is y'-continuous. There-
fore, there exist y'-neighborhoods V, W of the elements (0, ¢,, 0) and
(79, 0, 0) respectively, such that V-W is contained in the chosen y'-
neighborhood U of zy = (0, ¢g, 0)(1y, 0, 0).

For every ¢ e VN Hg(R, S) and every (r, f, s) e W, we have

(0, @, 0)(r, f, 8) = (0, @r, p(r)) e U N (Hg(R, S) X 8).

Clearly, ¢(r) = w(@, r) e (VN Hg(R, S), pr(W)), where pr denotes
the projection My (R, S) — R on the first coordinate.
Then,

@(r) e o(V N Hg (R, S), pr(W)) c (U N (Hk(R, S) X 8)) cO.
Since pr(W) is a y'/Hg(R, S) X S-neighborhood of the point 7, and
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VN Hg(R, S) is a y'|u,m, sneighborhood of the point ¢g, then the
continuity of w at (¢¢, 7y) is proved. =

Let (F, 0)-(E, 1), (S, v) be Abelian Hausdorff groups. A continuous
mapping w: F X E— S is called biadditive if the induced mappings
w,:F—8, w;: E— S are homomorphisms for every x € E and every
fe F. We say that a coarser pair (o', t') < (0, 7) of group topologies is
w-compatible if w remains continuous with respect to the triple
(o', t', v). If w is separated (i.e., if the annihilators of £ and F are both
zero), then the Hausdorff property of v implies that every w-compatible
pair (o', t') is necessarily Hausdorff. Following [7], we say that w is
minimal if for every w-compatible pair (¢’, t’) < (o, ), we have neces-
sarily o' =0, 1" =1.

LeEMMA 2 [7, Proposition 1.10). For every Hausdorff locally com-
pact Abelian group G, the evaluation mapping G* X G - T is mini-
mal.

Another example of a minimal biadditive mapping is the canonical
duality £* X E — R for a normed space E.

PROPOSITION 3. Let the evaluation mapping
w: (Hg(R, 8), 0) X (R, ) = (8, v)

be minimal, and let y'cy, be a coarser Hausdorff ring topology
on Mg(R,S) such that y' and y coincide on Hg(R,S) X S. Then

y' =y.

PROOF. Because y' and y agree on Hg (R, S) X S, then, in particu-
lar, the mapping

q:Hg(R,S) X S-S

is continuous with respect to the pair (¥’ |n, (&, s)x s, ¥)- So, we can ap-
ply Proposition 1. Then y' | g,z 5), ¥' /Hk (R, S) X S is a w-compatible
pair of group topologies. The minimality of w implies y'/Hg (R, S) X
XS=7r=y/Hg(R,8) XxS. Now Merzon’s Lemma finishes the
proof. =

As a corollary we get

PROPOSITION 4. Let the evaluation mapping w be minimal and let
S and Hg(R, S) be compact. Then Mg (R, S) is a minimal ring.
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THEOREM 5. Let R be a discrete ring. Then the topological ring
M(R) =R X R* X T is minimal. Hence, every (commutative) discrete
ring is a continuous ring retract of a minimal (commutative) locally
compact ring.

Proor. By Pontryagin’s Theorem, R* is compact iff R is discrete.
Now the minimality of M(R) follows from Lemma 2 and Proposition 4.
The canonical retraction pr: M(R) — R is the desired one. =

The ring M(R) from Theorem 5 is not unital. In order to «improve»
this, we use a well known unitalization procedure. Let R be a topologi-
cal K-algebra. Consider a new K-algebra

R,={r+al,|reR,aecK}

adjoining a unit 1, . More precisely, B, is a topological K-module sum
R @ K, and we identify (r, a) = r + al, . A multiplication on R, is de-
fined in the following manner:

(@+al,)b+pBl,)=ab+ ab+ Ba+ afl,

where a, f € K and a, b e R. The following lemma is trivial.

LEmMA 6. IfJ is a (closed) ideal in R, then J is a (closed) ideal in
R, and R, /J=(R/J),.

In the following result we use a method familiar from the theory of
minimal topological groups (see, for example, [5]).

THEOREM 7. Let R be a complete K-algebra such that (R, 1), (K, 0)
are minimal topological rings. Then the K-unitalization R, is a mini-
mal topological ring.

Proor. Denote by y the given product topology on R, and suppose
that y'c y is a new Hausdorff ring topology. Since (R, 7) is a minimal
ring, y' |r = y|r = t. By our assumption, (R, 7) is complete. Therefore,
R is a closed ideal in (R, , y'). Consider the Hausdorff ring topology
y'/R on K. Since y'/Rcy/R = o and (K, o) is a minimal ring, then
y'/R =y/R. By Merzon’s Lemma we get y'=y. ®&

COROLLARY 8. Let R be a minimal complete ring with char (R) =
=n > 0. Then the Z,-unitalization R, of R is a minimal ring.

THEOREM 9. Let R be a discrete ring with char (R) =n > 0. Then
the Z,-unitalization R, of R is a continuous ring retract of a minimal
locally compact unital ring M, .
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ProOF. Apply our construction for the situation S = K =7, and
consider the Z,-algebra M: =Mz (R,Z,) =R X Hy; (R, Z,) X Z,.
Denote by M, the Z,-unitalization of M. Since char (R) = n > 0, then
every character £: R — T can actually be considered as a restricted ho-
momorphism R — Z, c T identifying Z, with the n-element cyeclic sub-
group of T. It is also clear that every homomorphism R — Z, is even a
morphism of Z,-algebras. Therefore, H; (R, Z,) and R* = H(R, T) co-
incide algebraically. Endow H (R, Z,) with the compact topology o of
R*. Eventually, the mapping w: (R, 1) X (Hz, (R, Z,), 0) > Z,cT is
minimal, because of Lemma 2. By Proposition 4, the ring M is minimal.
Since M is a Z,-algebra, then Corollary 8 and Lemma 6 complete the
proof. ®

COROLLARY 10. For every momnegative integer m which is mnot
equal to 1 there exists a minimal mon-totally minimal separable
metrizable locally compact unital ring with char (R) = n.

Proor. Fix a natural number n = 2. Let F; = Z, for every i e N.

Consider the topological ring product ( Il F;, a) and the dense count-
ieN
able topological subring ('ZNFi’ r). Denote by 7,4 the discrete topology
on R: = > F;. Clearly, the Z,-unitalization R, of (R, 7;) is not a mini-
1eN

mal ring because we can take on R, the (strictly coarser) ring topology
of the Z,-unitalization for (R, t). On the other hand, by Theorem 9, the
discrete non-minimal ring R, is a continuous ring retract of a minimal
ring M, . Eventually, M, is the desired ring.

For the case n = 0, consider the ring product R X M, , where M, is
a minimal ring constructed for the case » = 2, and use the productivity
of the class of minimal unital rings [3].
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