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Minimal Non-Totally Minimal Topological Rings.

MICHAEL MEGRELISHVILI (*)

ABSTRACT - We establish the existence of minimal non-totally minimal topologi-
cal rings with a unit answering a question of Dikranj an. The Pontryagin dual-
ity and a generalization of Ursul’s «semidirect product type» construction
play major roles in the construction.

Introduction.

A -Hausdorff topological ring R is called minimal if its topology is
minimal in the sense of Zorn among all Hausdorff ring topologies on R.
If R/J is minimal for every closed ideal J, then R is called totally mini-
mal [2].

The induced topology of a nontrivial valuation on a field is (total-
ly) minimal (see [10, 6]). Some generalizations and related results in
the context of fields or divisible rings may be found in [ 11,13,14].
For more general cases we refer to [1,2,3,9]. Recall [2,3] for in-
stance that the class of all minimal rings with a unit is closed under
forming topological products, direct sums and matrix rings. If P is a
non-zero prime ideal of finite index in a Dedekind ring, then the P-
adic topology is minimal.

The question about existence of minimal non-totally minimal rings
with a unit is discussed by Dikranjan in [2, 3].

(*) Indirizzo dell’A.: Department of Mathematics and Computer Science,
Bar-Ilan University, 52 900 Ramat-Gan, Israel.
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Conventions and preliminaries.

As usual N, Z, R denote the-set of all natural, integer -and -rpal num-
bers, respectively. The unit circle group R/Z will be denoted by T and
the n-element cyclic ring by ~n .

All rings are assumed to be associative. A ring R is unital if it has a
unit. The zero-element will be denoted by 0. By char (R ) we indicate the
minimal natural number (if it exists) n such that nx = 0 for every x e R.
Otherwise we write char (R) = 0. Clearly, char (R) = n &#x3E; 0 iff R is a

(left) Zn-algebra in a natural way (k, + x + ... + x (k terms) for
each (k, x) E Zn x R.

For a locally compact Abelian group G, denote by G * the dual group
H(G, T) of all continuous characters endowed with the compact open
topology. If R is a locally compact ring, then R * is a topological (R, R)-
bimodule [12].

If P is a subgroup of a topological group (G, r), then will denote
the relative topology on P, and r/P will be the quotient topology on the
left coset space G/P. The following useful result is well known.

MERZON’s LEMMA [8] (See also [4], Lemma 7.2.3 for a proof). Let P be
a subgroup of a group G, and let 7:’ and T be (not necessarily Haus-

group topologies on G with the properties: 7:’ ç 7:, 7:’ I p and

i’ /P = z/P. Then 7:’ = 7:.

Main results.

Recall a construction from [12]. Let R be a topological ring and X a
topological (R, R)-bimodule. On the product R x X of topological
groups R and X, consider the multiplication

Then R x X becomes a topological ring which is denoted by R / X. For
details and a particular case of R* see Ursul [12].

Now we generalize this construction in two directions. The first

change is minor. Let K be -a commutative unital Hausdorff topological
ring, (R, r) a topological K-algebra, and (,S, v) be a topological K-mod-
ule. Instead of R * = Hz (R, T), consider the K-module HK (R, S) of all
continuous K-homomorphisms R - S. As in the case of R * , the left and
right multiplications in R induce the (R, R)-bimodule structure in

Hx (R, S). The second modification is more essential. We add to

R / Hx a supplementary coordinate. Denote by MK (R, S) the
product R x S) x ,S of K-modules. The multiplication we define
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by the rule:

where rl , fl , f2 E HK(R, S) and sl , S2 E S. Simple computations
show that MK(R, S) becomes a K-algebra. Let HK(R, S) carry a K-
module topology c such that its (R, R)-bimodule structure is topologi-
cal too. Moreover, suppose that the evaluation mapping

is continuous with respect to the triple ( a, r, v ) of Hausdorff topologies.
Then (MK(R, S), y) is a Hausdorff topological K-algebra with respect
to the product topology y. In particular, if R is a locally compact ring,
S = T and K = Z, then one gets a locally compact topological ring
MZ (R, T) = R x R * x T which will be denoted by M(R).

Furthermore, we identify R, HK(R, S) and HK(R, S) x S with the
corresponding subsets of MK(R, S). We will keep below our assump-
tions about (MK(R, S), y).

PROPOSITION 1~ Let y’ be a new ring topology on MK(R, S) such
that the canonical group retraction q : HK (R, S) x S -~ ,S is continuous
for the topologies y’ ~ S) x s and v. Then the evaluation mapping co is
continuous with respect to the triple of topologies 

x S and v.

PROOF. Fix T 0 e HK(R, ,S), ro E R and a v-neighborhood 0 at

cpo (ro) in ,S. By the continuity of q, we may choose a y’-neighborhood
U of the element zo = (0, cpo(ro» E Mx (R, S), such that q( U n
n (HK (R, S) x S)) c O.

By our assumption, the ring multiplication is y’-continuous. There-
fore, there exist /’-neighborhoods V, W of the elements (0, 0) and
( ro , 0, 0) respectively, such that V - W is contained in the chosen y ’ -
neighborhood U of zo = (0, 0)(ro , 0, 0).

For every 99 e v n HK (R, S) and every (r, f, s) e W, we have

Clearly, cp(r) = m (q, r) E m (V n HK (R, S), pr (W)), where pr denotes
the projection S) - R on the first coordinate.

Then,

Since pr ( W) is a S) x S-neighborhood of the point ro and
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is a s~-neighborhood of the point then the

continuity of co at is proved.

Let (F, 7:), (S, v) be Abelian Hausdorff groups. A continuous
mapping w : F x E -~ ,S is called biadditive if the induced mappings

are homomorphisms for every x e E and every
f e F. We say that a coarser pair (a’, 7:’) =::; z) of group topologies is
w-compatible if co remains continuous with respect to the triple
(a’ , r’, v). If o is separated (i.e., if the annihilators of E and F are both
zero), then the Hausdorff property of v implies that every cv-compatible
pair (Q’ , r’) is necessarily Hausdorff. Following [7], we say that co is
minimal if for every m-compatible pair ( a’ , 7:’) =::; (or, z), we have neces-
sarily Q’ = Q, r’ = z.

LEMMA 2 [7, Proposition 1.10]. For every Hausdorff locally com-
pact Abelian group G, the evaluation mapping G * x mini-
maL.

Another example of a minimal biadditive mapping is the canonical
duality E * x for a normed space E.

PROPOSITION 3. Let the evaluation mapping

be minimal and let be a coarser Hausdorff ring topology
on MK(R, S) such that y’ and y coincide on HK(R, S) x S. Then
y’ = y.

PROOF. Because y’ and y agree on HK(R, S) x S, then, in particu-
lar, the mapping

is continuous with respect to the pair ( y’ ~ V). So, we can ap-
ply Proposition 1. Then y ’ S) x s is a to-compatible
pair of group topologies. The minimality of w implies S) x
x S = r = y/Hx (R, S) x ,S. Now Merzon’s Lemma finishes the

proof.

As a corollary we get

PROPOSITION 4. Let the evaluation mapping w be minimal and let
S and HK (R, S) be compact. Then MK (R, S) is a minimal ring.
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THEOREM 5. Let R be a discrete ring. Then the topological ring
M(R) = R x R * x T is minimal. Hence, every (commutative) discrete
ring is a continuous ring retract of a minimal (commutative) locally
compact ring.

PROOF. By Pontryagin’s Theorem, R * is compact iff R is discrete.
Now the minimality of M(R) follows from Lemma 2 and Proposition 4.
The canonical retraction pr: M(R) ~ R is the desired one.

The ring M(R) from Theorem 5 is not unital. In order to «improve»
this, we use a well known unitalization procedure. Let R be a topologi-
cal K-algebra. Consider a new K-algebra

adjoining a unit 1 + . More precisely, R + is a topological K-module sum
R (6 K, and we identify ( r, a) = r + a 1 + . A multiplication on R + is de-
fined in the following manner:

where a, fl e K and a, b e R. The following lemma is trivial.

LEMMA 6. If J is a (closed) ideal in R, then J is a (closed) ideal in
R+ and R + /J = (R/J) + .

In the following result we use a method familiar from the theory of
minimal topological groups (see, for example, [5]).

THEOREM 7. Let R be a complete K-algebra such that (R, 7:), (K, a)
are minimaL topological rings. Then the K-unitalization R+ is a mini-
mal topologicaL ring.

PROOF. Denote by y the given product topology on R + and suppose
that y’ c y is a new Hausdorff ring topology. Since (R, r) is a minimal
ring, = y I R = r. By our assumption, (R, r) is complete. Therefore,
R is a closed ideal in (R+ , y’ ). Consider the Hausdorff ring topology
y’ /R on K. Since y’ /R c y/R = a and (K, a) is a minimal ring, then
y ’ /R = y /R . By Merzon’s Lemma we get y ’ = y..

COROLLARY 8. Let R be a minimal completes ring with char (R) =
= n &#x3E; 0. Then the Zn-unitalization R+ of R is a minimal ring.

THEOREM 9. Let R be a discrete ring with char (R) = n &#x3E; 0. Then
the Zn-unitalization R + of R is a continuous ring retract of a minimal
locally compact unitaL ring M + .
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PROOF. Apply our construction for the situation = K = ~n and
consider the Zn-algebra M : = Mz (R, Zn) = R x HZn (R, Z,) x Zn.
Denote by M+ the Z~-unitalization of M. Since char (R) = n &#x3E; 0, then
every character ~ : 72 2013~ T can actually be considered as a restricted ho-
momorphism R ~ Z~ c T identifying Z~ with the n-element cyclic sub-
group of T. It is also clear that every homomorphism R - Z~ is even a
morphism of Zn-algebras. Therefore, HZn (R, and R * = H(R, T) co-
incide algebraically. Endow HZn (R, with the compact topology a of
R *. Eventually, the mapping (R, z) x Zn), is

minimal, because of Lemma 2. By Proposition 4, the ring M is minimal.
Since M is a Zn-algebra, then Corollary 8 and Lemma 6 complete the
proof.

COROLLARY 10. For every nonnegative integer n which is not

equal to 1 there exists a minimal non-totally minimal separable
metrizable locally compact unital ring with char (R) = n.

PROOF. Fix a natural number n ; 2. Let Fi = Zn for every i e N.

Consider the topological ring product Fl Fi , a) and the dense count-2EN ;
able topological subring (.2: Fi, 7:). Denote by rd the discrete topology
on R := E Fi . Clearly, the Zn-unitalization R+ of (R, 7: d) is not a mini-

i e N

mal ring because we can take on R + the (strictly coarser) ring topology
of the Zn-unitalization for (I~, r). On the other hand, by Theorem 9, the
discrete non-minimal ring R + is a continuous ring retract of a minimal
ring M+ . Eventually, M+ is the desired ring.

For the case n = 0, consider the ring product R x M+ , where M+ is
a minimal ring constructed for the case n a 2, and use the productivity
of the class of minimal unital rings [3].

Acknowledgement. I would like to express my gratitude to D.

Dikranjan for helpful comments and suggestions.
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