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MICHAEL MEGRELISHVILI, LUIE POLEV, AND MENACHEM SHLOSSBERG

ABSTRACT. A topological group is minimal if it does not admit
a strictly coarser Hausdorff group topology. We provide a suffi-
cient and necessary condition for the minimality of the semidirect
product G » P, where G is a compact topological group and P is a
topological subgroup of Aut(G). We prove that G » P is minimal
for every closed subgroup P of Aut(G). In case G is abelian, the
same is true for every subgroup P ¢ Aut(G). We show, in contrast,
that there exist a compact two-step nilpotent group G and a sub-
group P of Aut(G) such that G x P is not minimal. This answers a
question of Dikranjan. Some of our results were inspired by a work
of Gamarnik [12].

1. INTRODUCTION

A Hausdorff topological group G is minimal ([10], [24]) if it does not
admit a strictly coarser Hausdorff group topology or, equivalently, if ev-
ery injective continuous group homomorphism G — P into a Hausdorff
topological group is a topological group embedding. For information on
minimal groups we refer to the surveys [6], [7], [8] and the book [9].

In [20] the two first-named authors study the minimality of the group
H,(X), where X is a compact linearly ordered space and H,(X) is the
topological group of all order-preserving homeomorphisms of X. In gen-
eral, H,(X) need not be minimal. The first result in the present paper
is Theorem 3.1, which shows that for a compact (partially) ordered space
X the compact-open topology on H,(X,<) is minimal within the class
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of m-uniform topologies (in the sense of [16]). This result was inspired
by results of Gamarnik [12] and of the first-named author [16]. Following
Nachbin [22], by a partially ordered topological space we mean a topolog-
ical space X equipped with a partial order which is closed in X x X.

Let G be a compact topological group and denote by Aut(G) its group
of automorphisms. With the compact-open topology, Aut(G) becomes
a topological group (which is not necessarily minimal). We denote its
compact subgroup of inner automorphisms by Inn(G). The center of G is
denoted by Z(G).

One of the main objectives of this paper is to prove that the semidi-
rect product G » P is minimal for every closed subgroup P of Aut(G)
(Theorem 4.2). Using this result, as well as the Minimality Criterion, the
minimal groups G » P are fully characterized (Theorem 5.2). This charac-
terization shows, in particular, that if G is abelian then G ~ P is minimal
for every (not necessarily closed) subgroup P of Aut(G) (Corollary 5.3).
Furthermore, when G is not abelian, the condition that P is a closed sub-
group of Aut(G) is essential to ensure the minimality of G x P. Indeed,
negatively answering a question of Dikranjan, in Example 5.6 we show
that there exist a compact two-step nilpotent group G and a subgroup P
of Aut(G) such that G » P is not minimal.

Note also that the compactness of G cannot be replaced by precom-
pactness. Indeed, there exist a minimal precompact group G and a two-
element subgroup P of Aut(G) such that G » P is not minimal. See
Eberhardt-Dierolf-Schwanengel [11, Example 10| and also [8, Example
4.6]. The latter example also demonstrates that, in general, for two arbi-
trary minimal groups G and H the topological semidirect product G x H
may fail to be minimal. However, adding the requirement of completeness
of G, one has the following;:

Lemma 1.1. [8, Theorem 4.3] If G is complete (with respect to its two-
sided uniformity), then the semidirect product G ~ H is minimal for min-
imal groups G and H.

Remark 1.2. Let G be a complete minimal topological group and assume
that Aut(G) is minimal. Then G » Aut(G) is minimal by Lemma 1.1. So,
in view of Theorem 4.2, it is important to note that there are compact
groups G such that Aut(G) is not minimal. Indeed, as it was explained
in [8, Section 5], one may take G = (Q, discrete)*, that is the Pontryagin
dual of the discrete group Q of the rational numbers.

For additional results concerning the minimality of Aut(G) see [8].
For the minimality of semidirect products see for example [9, Section 7.2]
and [8, Section 4|. More results about minimality of the homeomorphism
groups can be found in [13, 21, 8, 4].
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2. PRELIMINARIES

All topological spaces are assumed to be Hausdorff and completely
regular unless stated otherwise. The closure of a subset A in a topological
space will be denoted by A. In what follows, every compact topological
space will be considered as a uniform space with respect to its natural
(unique) uniformity. For a topological space X we denote by H (X) its
group of homeomorphisms and, if X is ordered, H , (X) denotes the group
of all order-preserving homeomorphisms of X. With the compact-open
topology Teo, H (X)) becomes a topological group for every compact space
X.

For a topological group (G,~) and its subgroup H denote by ~v/H the
natural quotient topology on the coset space G/H.

The following useful lemma can be found, for example, in [9, Lemma
7.2.3].

Lemma 2.1. (Merson’s Lemma) Let (G,~) be a not necessarily Hausdorff
topological group and H be a not necessarily closed subgroup of G. If vy €~y
is a coarser group topology on G such that vi|g = y|g and v1/H = v/H,
then v = 7.

2.1. m-uniform actions. Let 7:G x X — X be an action of a topological
group G on a topological space X. Define two maps:
(1) g-translation: 79:X - X, 79(x) = gx;
(2) x-orbit: m,:G > X, m,(g) = gx.
For a topological group (G,7) we denote by eg (or simply e when G
is understood) the identity element of G, and by Ny, (7) we denote the
local base of G at go € G.

Definition 2.2. [17, 16] Let m:G x X - X be an action of a topological
group (G, 7) on a Hausdorff uniform space (X,U). The uniformity (or,
the action) is said to be:

(1) w-uniform at e or quasibounded if for every e € U there exist § € U
and U € N.(7) such that (g, gy) € € for every (z,y) e and g € U.

(2) m-uniform if for every go € G and for every e € U there exist § e U
and U € Ny, (7) such that (gx,gy) € € for every (z,y) € 0 and
geU.

The notion of a m-uniform action, defined in [17, 16], was originally
used to study compactifications of G-spaces. Later it was employed by
Gamarnik [12] to prove that for a compact space X, the compact-open
topology on H(X) is minimal within the class of m-uniform topologies.
More applications of 7-uniformity can be found in [15] and in [5].
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Definition 2.3. Let X be a compact space and G a subgroup of H (X).
A Hausdorff group topology 7 on G is said to be m-uniform if the natural
action (G, 7)x X — X is m-uniform with respect to the unique compatible
uniformity on X.

For a topological group X denote by U;, U,., Uy the left, right and two-
sided uniform structures on X, respectively. We give here some simple
but useful facts for further use.

Lemma 2.4. Let G be a topological group and X is a uniform space.
(1) If m:GxX - X is a w-uniform action and all orbit maps 7, : G - X
are continuous, then m is continuous.
(2) [18, Theorem 1.2] If X is a topological group and m:G x X - X
18 an action by continuous automorphisms, then the action s m-
uniform with respect to U € {Uy,U.,Up} if and only if 7 is con-
tinuous at (eg,ex).

Lemma 2.5. [1, Theorem 2| Let X be a compact space and let G be a
subgroup of H(X). If T is a group topology on G such that the action
G x X - X is continuous, then 7., € T.

2.2. Ordered Spaces. By order we mean a reflexive, antisymmetric and
transitive relation.

Definition 2.6. (Nachbin [22]) A topological ordered space is a triple
(X, <,7) where X is a set, < is an order on X, 7 is a topology on X and the
graph of the order Gr(<) = {(z,y) : © <y} is closed in X x X. In particular,
a compact topological ordered space is a topological ordered space that is
compact. Since in this paper all ordered spaces are topological, we will
sometimes omit the term “topological”.

Remark 2.7. Every Hausdorff topological space X is a topological ordered
space with respect to the trivial order (equality). Indeed, the diagonal is
closed in X x X exactly when X is Hausdorff.

A subset Y ¢ X is said to be decreasing if x <y € Y implies z € Y.
Similarly one defines an increasing subset.

Lemma 2.8. [22, Prop. 1] Let (X,<) be an ordered set and let T be a
topology on X . The following conditions are equivalent:
(1) (X,<,7) is a topological ordered space (that is, Gr(<) is T-closed
in X xX);
(2) if x <y is false, then there exist: an increasing neighborhood W
of x and a decreasing neighborhood V' of y such that V nW = &.

Lemma 2.9. Let (X,<,7) be a compact partially ordered space. Denote
by H, (X)) the group of all order-preserving homeomorphisms of X. Then
H ., (X) is a closed subgroup of the topological group H (X).
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Proof. Since Gr(<) is 7-closed in X x X, the subgroup H,(X) is even
pointwise closed in H (X). O

2.3. Limit points and ultrafilters. All definitions and results of this
subsection can be found, for example, in [3, Chapter 1, Section 7]. Let X
be a topological space and J is a filter on X. A point x € X is said to be
a limit point of a filter J, if J is finer than the neighborhood filter N,
of x. We also say that J is convergent to x. A point x is called a limit
point of a filter base B on X, if the filter whose base is B converges to x.
Let f be a mapping from a set X to a topological space Y, and let J be
a filter on X. A point y € Y is a limit point of f with respect to the filter
J if y is a limit point of the filter base f(J).

Proposition 2.10. [3]

(1) If B is an ultrafilter base on a set X and if f is a mapping from
X toY, then f(B) is an ultrafilter base on Y.

(2) Let f be a mapping from a set X into a topological space Y, and let
J be a filter on X. A pointy €Y is a limit point of f with respect
to the filter J if and only if f1(V) € J for each neighborhood V
ofyinY.

(8) If X is a compact Hausdorff space, then every ultrafilter on X
converges to a unique point.

We can sum these propositions as follows:

Corollary 2.11. Let J be an ultrafilter on a set E and let f be a mapping
from E to a compact space X. Then there exists a unique point T € X
such that each neighborhood O of T satisfies f~1(0) € J. That is, T is
the limit point of f with respect to J.

3. T-UNIFORM TOPOLOGIES ON H, AND Aut,

The following theorem is an extended version of a result of Gamarnik
[12, Prop. 2.1].

Theorem 3.1. Let (X,7<) be a compact partially ordered space and let
P be a closed subgroup of H (X)), the group of all order-preserving home-
omorphisms of X. Then the compact-open topology T, is minimal within
the class of w-uniform topologies on P.

Proof. Assuming the contrary, suppose that there exists a m-uniform
group topology 7 on P such that 7 & 7.,. Let m:P x X — X be the
natural action of P on X. If all orbit maps are continuous, then, by
Lemma 2.4.1, 7 is continuous and, by Lemma 2.5, 7., € 7. So we can
assume that there exists an orbit map that is not continuous (at the iden-
tity). That is, there exists zp € X such that 7, : P — X is not continuous
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at e € P. Thus, denoting by U the natural uniformity on X, there exists
g0 € U such that for all U € N.(7) there exists gy € U for which

(3.1) (guzo,x0) ¢ €o-

For a given U € N.(7) define F(U) ={V € N.(r) : V c U}. Denote by
F the filter on the set N,(7) generated by the filter base {F(U)}yen, (r)-
Since every filter is contained in an ultrafilter, choose an ultrafilter 7 on
N.(7) that contains F.

For each x € X define a map f,:N.(7) - X by f.(U) = gux for gy
that satisfies (3.1). Let @ be the limit point of f, with respect to the
ultrafilter J given by Corollary 2.11. Define the following transformation

(3.2) h:X - X, h(z)=7.

In the rest of the proof we show that h is a nontrivial order-preserving
homeomorphism that belongs to every neighborhood of the identity ele-
ment in (P, 7), in contradiction to 7 being a Hausdorff group topology.

Claim 3.2. The map h defined by (3.2) is a nontrivial homeomorphism
in P.

Proof. We break the proof into five steps.

Step 1. In order to prove that h is one-to-one, assume for a contra-
diction that there exist x,y,z € X such that h(xz) = h(y) = z and z # .
Choose an entourage € € U such that (x,y) ¢ . The action is 7w-uniform
at the identity, and thus there exist U, € N.(7) and . € U such that
(gx,gy) € € for every (z,y) € §. and g € U.. Choose a symmetric 6 € U
satisfying 82 € 6,.

By assumption z = h(z) is the limit point of f, with respect to J.
That is, for every entourage in the uniformity, and in particular for §, we
have:

A(z,0) ={U € No(7): (guz,z)ed}eT.
Similarly,

A(y,6) ={U € No(7) : (guy,z)ed}eT.
Also, since F(UZ') € J, the intersection A(z,8)n A(y,d) n F(UZ') is not
empty. If Uy € A(x,0)nA(y,§)nF(U-1) and gy, € Uy, then gy, € UZ! (and
thus gt € Ue), (gu,,2) €6, (9u,y,2) € 8 (and thus (gu,z, gu,y) € 6% <
d:). By the choice of §. and U, we have (g,}})gUOm,g&})gUOy) = (x,y) € ¢,
and this contradicts the choice of €. Therefore h is one-to-one.

Step 2. To prove that h is onto, for a given y € X we will find x € X
such that h(z) = y. Fix y € X and consider the map N (1) - X given
by U + g'y. Let z be the limit point of this map with respect to the
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ultrafilter J. To show that h(z) = y we will show that y is the limit point
of f, with respect to J. Let € €e Y be an arbitrary entourage and choose
U,, 0. from the definition of w-uniform topology. Since z is defined as the
limit point of g;'y, we know that

B(y,0.) ={U € Ne(7) : (g90'y,x) €6} e T,

and since F'(U.) is also an element of J, the intersection B(y,d.)nF(U;)
is not empty. Let U € B(y,0.) n F(Uc). Then for gy € U ¢ U, and
(971y, ) € 8. we have (y,guz) € ¢ (by the choice of Ue,d.). This last
condition is satisfied by all U € B(y, d.) n F'(U.) and, therefore,

{UeN(1):(y,gur)ec}teT

(since B(y,0:)nF(U.) € J and B(y,0:)nF(U.) € {U € No(7) : (y,gvzx) €
€}). This holds for all € € U, which proves that y is the limit point of
fo = gux with respect to J. And that, in turn, proves that h(z) =y and
therefore h is onto.

Step 3. In order to prove that h is (uniformly) continuous we will show
that for every e € U there exists § € U such that (h(z),h(y)) € e for all
(x,y) € 6. Let g9 € U and choose a symmetric entourage € € U such that
€3 ¢ gy. Choose d.,U. from Definition 2.2 of 7-uniformity. We will show
that if (x,y) € 0. then (h(z),h(y)) € 0. Let (z,y) € 6. and assume for
a contradiction that (h(z),h(y)) ¢ €o. This means that if ¢1,, satisfy
(h(x),t1) €e , (h(y),t2) €&, then (since €2 € gy) we have

(33) (tl,tg) ¢ E.

Since h(x) is the limit point of gyx, A(x,e) = {U € Ne(7) : (guzx, h(z)) €
e} € J and, similarly, A(y,e) = {U € N(7) : (guy, h(y)) e} € J. Also,
since F'(U.) € J, the intersection A(x,e) n A(y,e) n F'(U,) is not empty.
Let V e A(x,e) n A(y,e) n F(U.). In particular (gyax,h(x)) € ¢ and
(gvy,h(y)) € e. Next, from (3.3) it follows that (gva,gvy) ¢ €. But
V c U. and thus gy € U.. Since (x,y) € 0. we know, by the definition of
m-uniformity, that (gyx,gyy) € € and this is the desired contradiction.

Step 4. To see that h is not trivial, recall that from (3.1) we have
20 € X and €p € U such that (gyxo,zo) ¢ o for every U € N(7). This
implies that h(zg) # zo.

Step 5. Finally, we show that h € P. Denote by A the set of all gy that
satisfy (3.1), that is A = {gy : U € N.(7)}. Since P is closed, we have
A c Ac P, where A is the closure of A in H,(X) with respect to the
compact-open topology T.,.
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We are going to show that h € A. That is, we need to show that every
neighborhood of h contains some gy;. Since X is compact, 7., coincides
with the topology of uniform convergence, and hence for € € U a basic
neighborhood of A is of the form &(h) = {f ¢ P: (f(z),h(z)) e Vr e X}.
Therefore, for every € € U we will find U € N(7) such that Vz € X :
(guz, hz) ee.

Fix an ¢ € i/ and choose a symmetric entourage 6 € U such that 63 C e.
Since 7 is w-uniform at the identity, for § there exist n € U and Uy € N, (7)
such that

(V(2,y) en) (Vg e Uo) : (92, gy) €.
Since gy € U we obtain, in particular,

(3.4) V(z,y)en YU c Uy : (guz, guy) €9.
Since h is uniformly continuous, for § there exists k € U such that
(3.5) V(z,y) € k: (hz, hy) €.

If necessary, we intersect x with 7 to ensure that x € 7, which we will
need later in the proof.
Now, since X is compact, for x that satisfies (3.5) there exists a finite

collection of points x1,...,x, € X such that k[z1]U---UK[z,] = X.

We will show that there exists Uy € Uy such that for all i € {1,...,n}
(36) (glei, h(El) €d.
For a fixed index i € {1,...,n}, since hx; = Z; is the limit of f,, with

respect to J, we have A(x;,0) = {U € N.(7) : (gux;, hx;) €} € J. Recall
that F'(Up) € J and thus the intersection F(Uy) N(Njzy A(x;,6)) is not
empty. Choose a set U; from this intersection. Then U; € Uy and for all
ie{l,...,n} we have (gu,x;, hz;) € §, as required. We claim that U; is
the desired neighborhood. That is, for every x € X we have (gy, z, hx) € €.
Indeed, fix an € X. There exists i € {1,...,n} such that x € k[z;]. At
this point recall that x ¢ n and gy, € Uy € Up. Since (z,z;) € k € 7, by
(3.4) we have

(37) (gle,glei) €d.
Also, by (3.5) we have
(3.8) (hx, hz;) € 4.

Now, combining (3.7), (3.6) and (3.8) we get
(90,7, gu, i), (gu, i, hai), (hai, ha) € 6°.

Therefore, for every x € X we have (gy,z,hx) € 82 ¢ £ and thus h € A4,
as required. O

The following claim shows that 7 is not Hausdorff.
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Claim 3.3. For every U € N.(7), heU.
Proof. For g€ P and € e U define

E(g)={feP:(g(x),f(z))eecforall ze X}.

It can be easily verified that {£(g)}eas is a local base of neighborhoods
for every point g € P, with respect to the compact-open topology on P.
In order to prove the statement, it suffices to show that h € [£3(e)] LU,
for every Uy € N.(7) and for every € e Y. Indeed, for each U € N (1) we
can find Uy € N (7) such that U3 ¢ U and Us' = Up. But 7 € 7, and
{é(e)}eau is a local base at e, thus there exists ¢ € U with &3(e) ¢ Up.
Therefore [£3(e)]™'Uy c Uy'Uy € U.

Let € € U and Uy € N.(7). Choose . € U and U, € N () from the
definition of 7-uniform topology. For x € X define A(h™'(z),¢) = {U €
N(7): (guh™(x),x) e e}. Since h(h™*(x)) = z, from the definition of h
we have A(h™(z),¢) € J. Indeed, z = h(h™'(x)) = h-'(z), « is the limit
point of the map fy-1(4): Ne(7) - X defined by fy-1(,)(U) = guh™ (z).
Since h (and thus h™!) is uniformly continuous, we can choose a € U such
that o ¢ ¢ and

(3.9) (t1,t) ea= (K (t1),h 7 (L)) € 6.

Since X is compact, we can find a finite subset {1, x2, ...,z,} € X such
that for every x € X there exists 1 <i <n for which (x,z;) € a. Let

Ue (ﬁ A(hl(:vi)75))ﬂF(Ug A Us) .
=1

For every x € X there exists ¢ such that (x,x;) € a and from (3.9) we
have (h™'(z),h !(z;)) € .. Since U ¢ U., by the choice of U. and
5. we have (guh™'(z),guh™(x;)) € e. Since U € A(h™(x;),¢), it fol-
lows that (gyh™(z;),7;) € e. Recalling that (x,7;) € o € ¢ we obtain
(guh~Y(z),x) € €%, and therefore gyh~! € £3(e). But since gy € U ¢ Uy,
we get h e [£%(e)]1Uy, and this completes the proof. O

Claims 3.2 and 3.3 complete the proof of Theorem 3.1. O

By Remark 2.7, every Hausdorff topological space can be viewed as
an ordered topological space. Therefore, Theorem 3.1 directly yields the
following:

Theorem 3.4. Let (X,7) be a compact topological space and let P be a
closed subgroup of H(X), the group of all homeomorphisms of X. Then
the compact-open topology Te, is minimal within the class of w-uniform
topologies on P.
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By Lemma 2.9 H, (X) is a closed subgroup of H (X) for every partially
ordered compact space X. So, if P is a closed subgroup of H,(X) it is
also a closed subgroup of H (X'). Therefore, by Theorem 3.4 the compact-
open topology 7., is minimal within the class of m-uniform topologies on
P. 1t follows that Theorem 3.1 can be derived back from Theorem 3.4.

Let us extend Theorem 3.1 in some algebraic setting. Let w: KxK — K
be a binary operation on a compact space K. Denote by Aut(K) the
group of all topological automorphisms of the structure (K,w). If K
is a compact ordered space, then we denote by Aut,(K) the group of
all order preserving automorphisms of (K,w,<). Note that Aut,(K) =
Aut(K) nH,(K). Since Aut,(K) is a closed subgroup of H,(K) by
Theorem 3.1 we obtain:

Corollary 3.5. If K is a compact ordered space with a binary operation
w and P is a closed subgroup of Aut, (K), then the compact-open topology
is minimal within the class of m-uniform topologies on P.

By Remark 2.7, every topological group can be viewed as an ordered
topological space equipped with a group operation. Therefore, by Corol-
lary 3.5 we get the following:

Corollary 3.6. If K is a compact topological group and P is a closed
subgroup of Aut(K), then the compact-open topology is minimal within
the class of m-uniform topologies on P.

4. MINIMALITY OF G~ P WHERE P IS CLOSED

The main goal of this section is to prove that for every compact topolog-
ical group G, the natural semidirect product G» P is a minimal topological
group for every closed subgroup P < Aut(G) (Theorem 4.2).

We need the following technical result which is inspired by [19, Prop.
2.6] (see also [8, Theorem 4.13]).

Theorem 4.1. Let (M,~) be a topological group, X and G are subgroups
of M such that M is algebraically a semidirect product M = X », G.
Assume that the topological subgroup (X,~|x) of (M,~) is compact. Then
the action

a:(G,/X) x (X,7]x) = (X, 71x)
is continuous at (eq,ex ), where v/ X is the coset topology on G induced
by .
Proof. Let pr:M — G = M/X, (x,9) = g, denote the canonical projec-

tion. Algebraically M/X = {X x {g}}4ez, which allows us to identify G
with M /X, and thus the topological group (G,~v/X) is well defined.
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To show that « is continuous at (eg, ex) let O € v|x be a neighborhood
of ex. We will find neighborhoods P of eg in (G,7/X) and U of ex in
(X,~|x) such that a(P xU) € O.

Since X is a compact group, there exists a neighborhood O; of ex
such that for all z € X we have 71Oz € O. The restriction M x X - X,
(a,z) = aza™ of the conjugation M x M — M in the topological group
(M,~) is (well-defined, because X is a normal subgroup of M) continuous
at (ear,ex). Therefore, for O; there exist a neighborhood U of ex in
(X,7|x)) and a neighborhood V' of ey in (M,~) such that vUv™! ¢ Oy
forallveV.

Consider the canonical projection pr:M — G = M/X. Then P :=
pr(V) e y/X is a neighborhood of eg in (G,v/X). We claim that P and
U satisfy the needed conditions above. That is, we want to show that
a(g,z) =g(z) € O for all (g,2) € pr(V) xU. Indeed, if g € pr(V) there
exists x € X such that (x,¢) € V, and recall that z € U is in fact (z,eq).
We know that vzv~! € O;. Therefore,

vavt = (2,9)(2,e6)(2.9) " = (29(2),9) (g7 (z7"),g7") =

= (2g(2)g(g7 (&™), eq) = (zg(2)a™" eq) = xg(2)a™ € Or.
Thus a(g,z) € 271012 € O, which completes the proof. O

Theorem 4.2. If G is a compact topological group, then G P is minimal
for every closed subgroup P of Aut(G).

Proof. Let 7 be the given topology on G, and 7, the compact-open topol-
ogy on P ¢ Aut(G). Denote by ~ the product topology on G » P, and
by e = idg € P the identity automorphism. Assume that ; € v is a
coarser Hausdorff group topology on G » P. Since G is compact we have
Nle =7a =7

The action

a: (P /G) % (G, ile) » (Gyla)
is continuous at the identity (idg,eq) by Theorem 4.1. Furthermore,
v1/G is a Hausdorff topology on Aut(G) since G is a compact (hence,
closed) subgroup of the Hausdorff group (G » P,7;). Therefore v1/G is
an a-uniform topology on P (Lemma 2.4.2 and Definition 2.3).

Since 1 /G € v/G = T¢o and 7, is minimal within the class of a-uniform
topologies on P (Corollary 3.6), we have 71/G = «v/G. Finally, using
Merson’s Lemma 2.1, we deduce that v, =y and that concludes the proof.

O

5. MINIMALITY OF G » P

In this section we provide an equivalent condition (see Theorem 5.2) for
the non-minimality of G P, where G is a compact group and P < Aut(G).
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As a corollary we obtain that if the compact group G is abelian, then The-
orem 4.2 holds for all (thus not necessarily closed) subgroups P of Aut(G).
Theorem 5.2 also allows us to construct relevant counterexamples (Exam-
ple 5.6 and Theorem 5.5).

We use the well known Minimality Criterion which, for compact groups,
can be traced back to Stephenson [24] and Prodanov [23]. Note that
Banaschewski [2] generalized this criterion by proving it for minimal topo-
logical algebras.

First recall that a subgroup H < G of a topological group G is said to
be essential in G if H n N is nontrivial for every nontrivial closed normal
subgroup N of G.

The following theorem can be found, for example, in [9, Theorem 2.5.1].

Theorem 5.1 (Minimality Criterion). Let G be a topological group and
H its dense subgroup. H is minimal if and only if G is minimal and H
is essential in G.

Theorem 5.2. Let G be a compact group and P < Aut(G). Then the
following two conditions are equivalent:

(1) G ~ P is not minimal.
(2) There exists a closed nontrivial subgroup H of G satisfying the
following conditions:
(a) HZ(G) = {ec}.
(b) H is P-invariant (that is, f(H) € H for every f € P).
(¢c) T(H)S P and T(H) N P = {ep}, where T':G - Inn(G) is the
natural homomorphism defined by I'(g) = 7q.

Proof. (2) = (1): Let H be a closed nontrivial subgroup of G satisfying
conditions (a) - (¢). By Theorem 4.2 G'~ P is minimal. Clearly, G' » P is
a dense subgroup of G » P. We are going to construct a nontrivial closed
normal subgroup N of G » P such that N n (G x P) is trivial. Using
the Minimality Criterion this will imply that G ~ P is not minimal. Let
N := {(h,v;')| h e H}. Since H is a compact nontrivial subgroup of G and
['(H) is a compact subgroup of P, we obtain that N is a nontrivial com-
pact (hence closed) subgroup of G'~ P. Being P-invariant and closed the
subgroup H is also P-invariant. This implies that N is normal in G ~ P.
Indeed, (g, f)(h,7v; ) (g, f) ™' = (f(h),v;(lh)). Let (h,7;') be a nontrivial
element of N. Then we necessarily have h # eg. By condition (a) this
implies that ;! is a nontrivial element of I'(H). It follows from (c) that
7,1 ¢ P. Therefore, (h,7;') ¢ G~ P and we conclude that N n (G » P) is
trivial as needed.



MINIMALITY OF THE SEMIDIRECT PRODUCT 211

(1) = (2) : Assume that G P is not minimal. If follows from Theorem 4.2
and the Minimality Criterion that G'» P is not essential in G'» P. So, there
exists a nontrivial closed normal subgroup N of G P such that Nn (G P)
is trivial. We will prove (2) by showing that N = {(h,7;')| h € H}, where
H is a nontrivial closed subgroup of G satisfying conditions (a) — (¢).
First, let us show that every element in N has the form (h,~; '), for some
h € G. Indeed, otherwise, there exists u1 = (h, f) € N such that f # ~;'.
Choose us = (g,ep), where f(g) #7;"(g). Since N is normal in G » P the
commutator
[u,u2] = (h- f(g)-h™ g7} ep)

is an element of N. The inequality f(g) # v, (g) means that h-f(g)-h™"-
g7! # eg. It follows that [u;,us] is a nontrivial element of G ~ P. This
contradicts the fact that N n (G » P) it trivial. Therefore, all elements
of N have the form (h,’ygl). The group N is compact being a closed
subgroup of the compact group G » (P nInn(G)). By the continuity of
the canonical projection pr:G ~ P - G, we conclude that the subgroup
H :=pr(N) is closed (being compact) in G. Moreover, the structure of N
implies that H is also nontrivial.

To prove (a) assume that there exists a nontrivial element h € HnZ(G).
But then (h,7;') is a nontrivial element of N n (G » P), and that is a
contradiction.

Property (b) follows from the normality of N. Indeed, if f € Pand h e H
we have (eq, f)(h,7;,")(ec, f) ™ = (f(h),'y]?(lh)) € N. Hence, f(h) € H.

Finally, we prove property (c¢). Let v, € I'(H), where h € H = pr(N).
Then, (h,fy,‘Ll) € N ¢ G » P. Therefore, 7}‘11 € P and since P is a group
we also have «, € P. This proves that I'(H) ¢ P. Let us show that
T'(H) n P is trivial. Otherwise, there exists a nontrivial h € H such that
7,1 € T(H) n P. But then (eg,ep) # (h,7;') € Nn (G » P), contradicting
the triviality of N n (G » P). This completes the proof. |

Corollary 5.3. Let G be a compact group and P < Aut(G). Then G P
is minimal in each of the following cases:

(1) G is abelian;

(2) P is essential in P (e.g., P is closed);

(3) PnInn(G) is essential in P nInn(G).

Proof. In each case at least one of the conditions of Theorem 5.2.2 does
not hold.

(1): If G is an abelian group then G = Z(G). Thus for every nontrivial
H < G the group H n Z(G) is nontrivial and so (a) is impossible.

(2): Assume for a contradiction that H is a nontrivial closed subgroup of
G satisfying conditions (a) - (¢). It follows that N =T'(H) is a nontrivial
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closed subgroup of P which trivially intersects P. This contradicts the
assumption that P is essential in P.

(3): Assume for a contradiction that H is a nontrivial closed subgroup of
G satisfying conditions (a) — (¢). It follows that N =T'(H) is a nontrivial
closed subgroup of P nInn(G) which trivially intersects P nInn(G). This
contradicts the assumption that PnInn(G) is essential in PnInn(G). O

Theorem 5.4. Let G be a compact group with trivial center and P <
Inn(G). Then G » P is minimal if and only if P is essential in P.

Proof. Sufficiency follows from Corollary 5.3.3.

To prove the necessity assume that P is not essential in P. Then, there
exists a closed normal subgroup N of P such that N n P is trivial. Since
the center of G is trivial, the continuous homomorphism I': G — Inn(G) is
in fact a topological isomorphism. It follows that H = I"}(N) is a closed
nontrivial subgroup of G. Clearly, H n Z(G) = {e¢}. By the normality
of N, one can show that H is P-invariant. Furthermore, T'(H) = N is a
subgroup of P and I'(H)n P = Nn P = {ep}. It follows from Theorem
5.2 that G x P is not minimal. |

Theorem 5.5. Let G be a compact group containing a non-closed Boolean
subgroup B and let P =T'(B). If in addition BnZ(G) is trivial, then G P
is mot minimal.

Proof. By Theorem 5.2, it suffices to show that there exists a closed non-
trivial subgroup H < G with properties (a)—(c). Since B is a Boolean sub-
group of G, its closure B is also Boolean. Fix h € BB and let H = {h,eg}.
Then, H is a nontrivial closed subgroup of G with H n Z(G) = {e¢}. For
every b € B we have bhb~! = h, since B is abelian. This implies that H
is P-invariant. Clearly, I'(H) is a subgroup of P = I'(B). Finally, assume
for contradiction that T'(H) n P # {ep}. Hence, there exists b € B such
that -y, = 75, This implies that eq # hb e Bn Z(G), a contradiction. [0

We use Theorem 5.5 in the following example, where we show that there
exist a compact two-step nilpotent group G and a subgroup P of Aut(G)
such that G x P is not minimal. This answers a question of Dikranjan.

Ezample 5.6. Let R be the compact ring Z5 (with operations defined
coordinatewise) and consider its dense subring

Ri={(2n)nen: Tn € Zo A |n:xy #0] < o0}

Let G := (Rx R) » R be the generalized Heisenberg group (see, for example,
[8]) defined via the action

m:Rx(RxR)—> RxR, n(f,(a,2))=(a+ fz,z).
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By [19, Lemma 2.1], Z(G) = (Rx{0g})»{0g}. Let B:= ({0} xR)»{0r}
and let P = I'(B). Then, B is a non-closed Boolean subgroup of G. Indeed,
its closure B coincides with ({0g} x R) » {Ogr}. Since Bn Z(G) is trivial,
it follows from Theorem 5.5 that G » P is not minimal.
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