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MINIMALITY OF THE SEMIDIRECT PRODUCT

MICHAEL MEGRELISHVILI, LUIE POLEV, AND MENACHEM SHLOSSBERG

Abstract. A topological group is minimal if it does not admit
a strictly coarser Hausdorff group topology. We provide a suffi-
cient and necessary condition for the minimality of the semidirect
product G⋋P, where G is a compact topological group and P is a
topological subgroup of Aut(G). We prove that G ⋋ P is minimal
for every closed subgroup P of Aut(G). In case G is abelian, the
same is true for every subgroup P ⊆ Aut(G). We show, in contrast,
that there exist a compact two-step nilpotent group G and a sub-
group P of Aut(G) such that G⋋P is not minimal. This answers a
question of Dikranjan. Some of our results were inspired by a work
of Gamarnik [12].

1. Introduction

A Hausdorff topological group G is minimal ([10], [24]) if it does not
admit a strictly coarser Hausdorff group topology or, equivalently, if ev-
ery injective continuous group homomorphism G → P into a Hausdorff
topological group is a topological group embedding. For information on
minimal groups we refer to the surveys [6], [7], [8] and the book [9].

In [20] the two first-named authors study the minimality of the group
H +(X), where X is a compact linearly ordered space and H +(X) is the
topological group of all order-preserving homeomorphisms of X. In gen-
eral, H +(X) need not be minimal. The first result in the present paper
is Theorem 3.1, which shows that for a compact (partially) ordered space
X the compact-open topology on H +(X,≤) is minimal within the class
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of π-uniform topologies (in the sense of [16]). This result was inspired
by results of Gamarnik [12] and of the first-named author [16]. Following
Nachbin [22], by a partially ordered topological space we mean a topolog-
ical space X equipped with a partial order which is closed in X ×X.

Let G be a compact topological group and denote by Aut(G) its group
of automorphisms. With the compact-open topology, Aut(G) becomes
a topological group (which is not necessarily minimal). We denote its
compact subgroup of inner automorphisms by Inn(G). The center of G is
denoted by Z(G).

One of the main objectives of this paper is to prove that the semidi-
rect product G ⋋ P is minimal for every closed subgroup P of Aut(G)
(Theorem 4.2). Using this result, as well as the Minimality Criterion, the
minimal groups G⋋P are fully characterized (Theorem 5.2). This charac-
terization shows, in particular, that if G is abelian then G⋋P is minimal
for every (not necessarily closed) subgroup P of Aut(G) (Corollary 5.3).
Furthermore, when G is not abelian, the condition that P is a closed sub-
group of Aut(G) is essential to ensure the minimality of G ⋋ P . Indeed,
negatively answering a question of Dikranjan, in Example 5.6 we show
that there exist a compact two-step nilpotent group G and a subgroup P
of Aut(G) such that G ⋋ P is not minimal.

Note also that the compactness of G cannot be replaced by precom-
pactness. Indeed, there exist a minimal precompact group G and a two-
element subgroup P of Aut(G) such that G ⋋ P is not minimal. See
Eberhardt-Dierolf-Schwanengel [11, Example 10] and also [8, Example
4.6]. The latter example also demonstrates that, in general, for two arbi-
trary minimal groups G and H the topological semidirect product G⋋H
may fail to be minimal. However, adding the requirement of completeness
of G, one has the following:

Lemma 1.1. [8, Theorem 4.3] If G is complete (with respect to its two-
sided uniformity), then the semidirect product G⋋H is minimal for min-
imal groups G and H.

Remark 1.2. Let G be a complete minimal topological group and assume
that Aut(G) is minimal. Then G⋋Aut(G) is minimal by Lemma 1.1. So,
in view of Theorem 4.2, it is important to note that there are compact
groups G such that Aut(G) is not minimal. Indeed, as it was explained
in [8, Section 5], one may take G = (Q,discrete)∗, that is the Pontryagin
dual of the discrete group Q of the rational numbers.

For additional results concerning the minimality of Aut(G) see [8].
For the minimality of semidirect products see for example [9, Section 7.2]
and [8, Section 4]. More results about minimality of the homeomorphism
groups can be found in [13, 21, 8, 4].
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2. Preliminaries

All topological spaces are assumed to be Hausdorff and completely
regular unless stated otherwise. The closure of a subset A in a topological
space will be denoted by A. In what follows, every compact topological
space will be considered as a uniform space with respect to its natural
(unique) uniformity. For a topological space X we denote by H (X) its
group of homeomorphisms and, if X is ordered, H +(X) denotes the group
of all order-preserving homeomorphisms of X. With the compact-open
topology τco, H (X) becomes a topological group for every compact space
X.

For a topological group (G,γ) and its subgroup H denote by γ/H the
natural quotient topology on the coset space G/H.

The following useful lemma can be found, for example, in [9, Lemma
7.2.3].

Lemma 2.1. (Merson’s Lemma) Let (G,γ) be a not necessarily Hausdorff
topological group and H be a not necessarily closed subgroup of G. If γ1 ⊆ γ
is a coarser group topology on G such that γ1∣H = γ∣H and γ1/H = γ/H,
then γ1 = γ.

2.1. π-uniform actions. Let π ∶G×X →X be an action of a topological
group G on a topological space X. Define two maps:

(1) g-translation: πg ∶X →X, πg(x) = gx;
(2) x-orbit : πx ∶G→X, πx(g) = gx.
For a topological group (G, τ) we denote by eG (or simply e when G

is understood) the identity element of G, and by Ng0(τ) we denote the
local base of G at g0 ∈ G.

Definition 2.2. [17, 16] Let π ∶G ×X →X be an action of a topological
group (G, τ) on a Hausdorff uniform space (X,U). The uniformity (or,
the action) is said to be:

(1) π-uniform at e or quasibounded if for every ε ∈ U there exist δ ∈ U
and U ∈ Ne(τ) such that (gx, gy) ∈ ε for every (x, y) ∈ δ and g ∈ U .

(2) π-uniform if for every g0 ∈ G and for every ε ∈ U there exist δ ∈ U
and U ∈ Ng0(τ) such that (gx, gy) ∈ ε for every (x, y) ∈ δ and
g ∈ U .

The notion of a π-uniform action, defined in [17, 16], was originally
used to study compactifications of G-spaces. Later it was employed by
Gamarnik [12] to prove that for a compact space X, the compact-open
topology on H (X) is minimal within the class of π-uniform topologies.
More applications of π-uniformity can be found in [15] and in [5].
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Definition 2.3. Let X be a compact space and G a subgroup of H (X).
A Hausdorff group topology τ on G is said to be π-uniform if the natural
action (G, τ)×X →X is π-uniform with respect to the unique compatible
uniformity on X.

For a topological group X denote by Ul,Ur,Ul∨r the left, right and two-
sided uniform structures on X, respectively. We give here some simple
but useful facts for further use.

Lemma 2.4. Let G be a topological group and X is a uniform space.
(1) If π ∶G×X→X is a π-uniform action and all orbit maps πx ∶G→X

are continuous, then π is continuous.
(2) [18, Theorem 1.2] If X is a topological group and π ∶G ×X →X

is an action by continuous automorphisms, then the action is π-
uniform with respect to U ∈ {Ul,Ur,Ul∨r} if and only if π is con-
tinuous at (eG, eX).

Lemma 2.5. [1, Theorem 2] Let X be a compact space and let G be a
subgroup of H (X). If τ is a group topology on G such that the action
G ×X →X is continuous, then τco ⊆ τ .
2.2. Ordered Spaces. By order we mean a reflexive, antisymmetric and
transitive relation.

Definition 2.6. (Nachbin [22]) A topological ordered space is a triple
(X,≤, τ) whereX is a set, ≤ is an order onX, τ is a topology onX and the
graph of the orderGr(≤) = {(x, y) ∶ x ≤ y} is closed inX×X. In particular,
a compact topological ordered space is a topological ordered space that is
compact. Since in this paper all ordered spaces are topological, we will
sometimes omit the term “topological”.

Remark 2.7. Every Hausdorff topological space X is a topological ordered
space with respect to the trivial order (equality). Indeed, the diagonal is
closed in X ×X exactly when X is Hausdorff.

A subset Y ⊆ X is said to be decreasing if x ≤ y ∈ Y implies x ∈ Y .
Similarly one defines an increasing subset.

Lemma 2.8. [22, Prop. 1] Let (X,≤) be an ordered set and let τ be a
topology on X. The following conditions are equivalent:

(1) (X,≤, τ) is a topological ordered space (that is, Gr(≤) is τ -closed
in X ×X);

(2) if x ≤ y is false, then there exist: an increasing neighborhood W
of x and a decreasing neighborhood V of y such that V ∩W = ∅.

Lemma 2.9. Let (X,≤, τ) be a compact partially ordered space. Denote
by H +(X) the group of all order-preserving homeomorphisms of X. Then
H +(X) is a closed subgroup of the topological group H (X).
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Proof. Since Gr(≤) is τ -closed in X × X, the subgroup H +(X) is even
pointwise closed in H (X). �

2.3. Limit points and ultrafilters. All definitions and results of this
subsection can be found, for example, in [3, Chapter 1, Section 7]. Let X
be a topological space and J is a filter on X. A point x ∈X is said to be
a limit point of a filter J , if J is finer than the neighborhood filter Nx
of x. We also say that J is convergent to x. A point x is called a limit
point of a filter base B on X, if the filter whose base is B converges to x.
Let f be a mapping from a set X to a topological space Y , and let J be
a filter on X. A point y ∈ Y is a limit point of f with respect to the filter
J if y is a limit point of the filter base f(J ).
Proposition 2.10. [3]

(1) If B is an ultrafilter base on a set X and if f is a mapping from
X to Y , then f(B) is an ultrafilter base on Y .

(2) Let f be a mapping from a set X into a topological space Y , and let
J be a filter on X. A point y ∈ Y is a limit point of f with respect
to the filter J if and only if f−1(V ) ∈ J for each neighborhood V
of y in Y .

(3) If X is a compact Hausdorff space, then every ultrafilter on X
converges to a unique point.

We can sum these propositions as follows:

Corollary 2.11. Let J be an ultrafilter on a set E and let f be a mapping
from E to a compact space X. Then there exists a unique point x̃ ∈ X
such that each neighborhood O of x̃ satisfies f−1(O) ∈ J . That is, x̃ is
the limit point of f with respect to J .

3. π-uniform topologies on H + and Aut+

The following theorem is an extended version of a result of Gamarnik
[12, Prop. 2.1].

Theorem 3.1. Let (X,τ≤) be a compact partially ordered space and let
P be a closed subgroup of H +(X), the group of all order-preserving home-
omorphisms of X. Then the compact-open topology τco is minimal within
the class of π-uniform topologies on P.

Proof. Assuming the contrary, suppose that there exists a π-uniform
group topology τ on P such that τ ⫋ τco. Let π ∶P × X → X be the
natural action of P on X. If all orbit maps are continuous, then, by
Lemma 2.4.1, π is continuous and, by Lemma 2.5, τco ⊆ τ . So we can
assume that there exists an orbit map that is not continuous (at the iden-
tity). That is, there exists x0 ∈X such that πx0 ∶P →X is not continuous
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at e ∈ P . Thus, denoting by U the natural uniformity on X, there exists
ε0 ∈ U such that for all U ∈ Ne(τ) there exists gU ∈ U for which

(3.1) (gUx0, x0) ∉ ε0.
For a given U ∈ Ne(τ) define F (U) = {V ∈ Ne(τ) ∶ V ⊆ U}. Denote by

F the filter on the set Ne(τ) generated by the filter base {F (U)}U∈Ne(τ).
Since every filter is contained in an ultrafilter, choose an ultrafilter J on
Ne(τ) that contains F .

For each x ∈ X define a map fx ∶Ne(τ) → X by fx(U) = gUx for gU
that satisfies (3.1). Let x̃ be the limit point of fx with respect to the
ultrafilter J given by Corollary 2.11. Define the following transformation

(3.2) h ∶X →X, h(x) = x̃.
In the rest of the proof we show that h is a nontrivial order-preserving

homeomorphism that belongs to every neighborhood of the identity ele-
ment in (P, τ), in contradiction to τ being a Hausdorff group topology.

Claim 3.2. The map h defined by (3.2) is a nontrivial homeomorphism
in P .

Proof. We break the proof into five steps.

Step 1. In order to prove that h is one-to-one, assume for a contra-
diction that there exist x, y, z ∈ X such that h(x) = h(y) = z and x ≠ y.
Choose an entourage ε ∈ U such that (x, y) ∉ ε. The action is π-uniform
at the identity, and thus there exist Uε ∈ Ne(τ) and δε ∈ U such that
(gx, gy) ∈ ε for every (x, y) ∈ δε and g ∈ Uε. Choose a symmetric δ ∈ U
satisfying δ2 ⊆ δε.

By assumption z = h(x) is the limit point of fx with respect to J .
That is, for every entourage in the uniformity, and in particular for δ, we
have:

A(x, δ) = {U ∈ Ne(τ) ∶ (gUx, z) ∈ δ} ∈ J .
Similarly,

A(y, δ) = {U ∈ Ne(τ) ∶ (gUy, z) ∈ δ} ∈ J .
Also, since F (U−1

ε ) ∈ J , the intersection A(x, δ)∩A(y, δ)∩F (U−1
ε ) is not

empty. If U0 ∈ A(x, δ)∩A(y, δ)∩F (U−1
ε ) and gU0 ∈ U0, then gU0 ∈ U−1

ε (and
thus g−1U0

∈ Uε), (gU0x, z) ∈ δ, (gU0y, z) ∈ δ (and thus (gU0x, gU0y) ∈ δ2 ⊆
δε). By the choice of δε and Uε we have (g−1U0

gU0x, g
−1
U0
gU0y) = (x, y) ∈ ε,

and this contradicts the choice of ε. Therefore h is one-to-one.

Step 2. To prove that h is onto, for a given y ∈ X we will find x ∈ X
such that h(x) = y. Fix y ∈ X and consider the map Ne(τ) → X given
by U ↦ g−1U y. Let x be the limit point of this map with respect to the
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ultrafilter J . To show that h(x) = y we will show that y is the limit point
of fx with respect to J . Let ε ∈ U be an arbitrary entourage and choose
Uε, δε from the definition of π-uniform topology. Since x is defined as the
limit point of g−1U y, we know that

B(y, δε) = {U ∈ Ne(τ) ∶ (g−1U y, x) ∈ δε} ∈ J ,

and since F (Uε) is also an element of J , the intersection B(y, δε)∩F (Uε)
is not empty. Let U ∈ B(y, δε) ∩ F (Uε). Then for gU ∈ U ⊆ Uε and
(g−1U y, x) ∈ δε we have (y, gUx) ∈ ε (by the choice of Uε, δε). This last
condition is satisfied by all U ∈ B(y, δε) ∩ F (Uε) and, therefore,

{U ∈ Ne(τ) ∶ (y, gUx) ∈ ε} ∈ J

(since B(y, δε)∩F (Uε) ∈ J and B(y, δε)∩F (Uε) ⊆ {U ∈ Ne(τ) ∶ (y, gUx) ∈
ε}). This holds for all ε ∈ U , which proves that y is the limit point of
fx = gUx with respect to J . And that, in turn, proves that h(x) = y and
therefore h is onto.

Step 3. In order to prove that h is (uniformly) continuous we will show
that for every ε ∈ U there exists δ ∈ U such that (h(x), h(y)) ∈ ε for all
(x, y) ∈ δ. Let ε0 ∈ U and choose a symmetric entourage ε ∈ U such that
ε3 ⊆ ε0. Choose δε, Uε from Definition 2.2 of π-uniformity. We will show
that if (x, y) ∈ δε then (h(x), h(y)) ∈ ε0. Let (x, y) ∈ δε and assume for
a contradiction that (h(x), h(y)) ∉ ε0. This means that if t1, t2 satisfy
(h(x), t1) ∈ ε , (h(y), t2) ∈ ε, then (since ε3 ⊆ ε0) we have

(3.3) (t1, t2) ∉ ε.

Since h(x) is the limit point of gUx, A(x, ε) = {U ∈ Ne(τ) ∶ (gUx,h(x)) ∈
ε} ∈ J and, similarly, A(y, ε) = {U ∈ Ne(τ) ∶ (gUy, h(y)) ∈ ε} ∈ J . Also,
since F (Uε) ∈ J , the intersection A(x, ε) ∩A(y, ε) ∩ F (Uε) is not empty.
Let V ∈ A(x, ε) ∩ A(y, ε) ∩ F (Uε). In particular (gV x,h(x)) ∈ ε and
(gV y, h(y)) ∈ ε. Next, from (3.3) it follows that (gV x, gV y) ∉ ε. But
V ⊆ Uε and thus gV ∈ Uε. Since (x, y) ∈ δε we know, by the definition of
π-uniformity, that (gV x, gV y) ∈ ε and this is the desired contradiction.

Step 4. To see that h is not trivial, recall that from (3.1) we have
x0 ∈ X and ε0 ∈ U such that (gUx0, x0) ∉ ε0 for every U ∈ Ne(τ). This
implies that h(x0) ≠ x0.

Step 5. Finally, we show that h ∈ P. Denote by A the set of all gU that
satisfy (3.1), that is A = {gU ∶ U ∈ Ne(τ)}. Since P is closed, we have
A ⊆ A ⊆ P , where A is the closure of A in H +(X) with respect to the
compact-open topology τco.
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We are going to show that h ∈ A. That is, we need to show that every
neighborhood of h contains some gU . Since X is compact, τco coincides
with the topology of uniform convergence, and hence for ε ∈ U a basic
neighborhood of h is of the form ε̃(h) = {f ∈ P ∶ (f(x), h(x)) ∈ ε ∀x ∈X}.
Therefore, for every ε ∈ U we will find U ∈ Ne(τ) such that ∀x ∈ X ∶
(gUx,hx) ∈ ε.

Fix an ε ∈ U and choose a symmetric entourage δ ∈ U such that δ3 ⊆ ε.
Since τ is π-uniform at the identity, for δ there exist η ∈ U and U0 ∈ Ne(τ)
such that

(∀(x, y) ∈ η)(∀g ∈ U0) ∶ (gx, gy) ∈ δ.
Since gU ∈ U we obtain, in particular,

(3.4) ∀(x, y) ∈ η ∀U ⊆ U0 ∶ (gUx, gUy) ∈ δ.
Since h is uniformly continuous, for δ there exists κ ∈ U such that

(3.5) ∀(x, y) ∈ κ ∶ (hx,hy) ∈ δ.
If necessary, we intersect κ with η to ensure that κ ⊆ η, which we will
need later in the proof.

Now, since X is compact, for κ that satisfies (3.5) there exists a finite
collection of points x1, . . . , xn ∈X such that κ[x1] ∪ ⋅ ⋅ ⋅ ∪ κ[xn] =X.

We will show that there exists U1 ⊆ U0 such that for all i ∈ {1, . . . , n}
(3.6) (gU1xi, hxi) ∈ δ.
For a fixed index i ∈ {1, . . . , n}, since hxi = x̃i is the limit of fxi with
respect to J , we have A(xi, δ) = {U ∈ Ne(τ) ∶ (gUxi, hxi) ∈ δ} ∈ J . Recall
that F (U0) ∈ J and thus the intersection F (U0)⋂(⋂ni=1A(xi, δ)) is not
empty. Choose a set U1 from this intersection. Then U1 ⊆ U0 and for all
i ∈ {1, . . . , n} we have (gU1xi, hxi) ∈ δ, as required. We claim that U1 is
the desired neighborhood. That is, for every x ∈X we have (gU1x,hx) ∈ ε.
Indeed, fix an x ∈ X. There exists i ∈ {1, . . . , n} such that x ∈ κ[xi]. At
this point recall that κ ⊆ η and gU1

∈ U1 ⊆ U0. Since (x,xi) ∈ κ ⊆ η, by
(3.4) we have

(3.7) (gU1x, gU1xi) ∈ δ.
Also, by (3.5) we have

(3.8) (hx,hxi) ∈ δ.
Now, combining (3.7), (3.6) and (3.8) we get

(gU1x, gU1xi), (gU1xi, hxi), (hxi, hx) ∈ δ3.
Therefore, for every x ∈ X we have (gU1x,hx) ∈ δ3 ⊆ ε and thus h ∈ A,

as required. �

The following claim shows that τ is not Hausdorff.
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Claim 3.3. For every U ∈ Ne(τ), h ∈ U .

Proof. For g ∈ P and ε ∈ U define

ε̃(g) = {f ∈ P ∶ (g(x), f(x)) ∈ ε for all x ∈X}.

It can be easily verified that {ε̃(g)}ε∈U is a local base of neighborhoods
for every point g ∈ P , with respect to the compact-open topology on P .
In order to prove the statement, it suffices to show that h ∈ [ε̃3(e)]−1U0

for every U0 ∈ Ne(τ) and for every ε ∈ U . Indeed, for each U ∈ Ne(τ) we
can find U0 ∈ Ne(τ) such that U2

0 ⊆ U and U−1
0 = U0. But τ ⊆ τco, and

{ε̃(e)}ε∈U is a local base at e, thus there exists ε ∈ U with ε̃3(e) ⊆ U0.
Therefore [ε̃3(e)]−1U0 ⊆ U−1

0 U0 ⊆ U .
Let ε ∈ U and U0 ∈ Ne(τ). Choose δε ∈ U and Uε ∈ Ne(τ) from the

definition of π-uniform topology. For x ∈ X define A(h−1(x), ε) = {U ∈
Ne(τ) ∶ (gUh−1(x), x) ∈ ε}. Since h(h−1(x)) = x, from the definition of h
we have A(h−1(x), ε) ∈ J . Indeed, x = h(h−1(x)) = h̃−1(x), x is the limit
point of the map fh−1(x) ∶Ne(τ) → X defined by fh−1(x)(U) = gUh−1(x).
Since h (and thus h−1) is uniformly continuous, we can choose α ∈ U such
that α ⊆ ε and

(3.9) (t1, t2) ∈ α⇒ (h−1(t1), h−1(t2)) ∈ δε.

Since X is compact, we can find a finite subset {x1, x2, ..., xn} ⊆X such
that for every x ∈X there exists 1 ≤ i ≤ n for which (x,xi) ∈ α. Let

U ∈ (
n

⋂
i=1
A(h−1(xi), ε))⋂F (Uε ∩U0) .

For every x ∈ X there exists i such that (x,xi) ∈ α and from (3.9) we
have (h−1(x), h−1(xi)) ∈ δε. Since U ⊆ Uε, by the choice of Uε and
δε we have (gUh−1(x), gUh−1(xi)) ∈ ε. Since U ∈ A(h−1(xi), ε), it fol-
lows that (gUh−1(xi), xi) ∈ ε. Recalling that (x,xi) ∈ α ⊆ ε we obtain
(gUh−1(x), x) ∈ ε3, and therefore gUh−1 ∈ ε̃3(e). But since gU ∈ U ⊆ U0,
we get h ∈ [ε̃3(e)]−1U0, and this completes the proof. �

Claims 3.2 and 3.3 complete the proof of Theorem 3.1. �

By Remark 2.7, every Hausdorff topological space can be viewed as
an ordered topological space. Therefore, Theorem 3.1 directly yields the
following:

Theorem 3.4. Let (X,τ) be a compact topological space and let P be a
closed subgroup of H (X), the group of all homeomorphisms of X. Then
the compact-open topology τco is minimal within the class of π-uniform
topologies on P.
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By Lemma 2.9 H +(X) is a closed subgroup of H (X) for every partially
ordered compact space X. So, if P is a closed subgroup of H +(X) it is
also a closed subgroup of H (X). Therefore, by Theorem 3.4 the compact-
open topology τco is minimal within the class of π-uniform topologies on
P. It follows that Theorem 3.1 can be derived back from Theorem 3.4.

Let us extend Theorem 3.1 in some algebraic setting. Let ω ∶K×K →K
be a binary operation on a compact space K. Denote by Aut(K) the
group of all topological automorphisms of the structure (K,ω). If K
is a compact ordered space, then we denote by Aut+(K) the group of
all order preserving automorphisms of (K,ω,≤). Note that Aut+(K) =
Aut(K) ∩ H +(K). Since Aut+(K) is a closed subgroup of H +(K) by
Theorem 3.1 we obtain:

Corollary 3.5. If K is a compact ordered space with a binary operation
ω and P is a closed subgroup of Aut+(K), then the compact-open topology
is minimal within the class of π-uniform topologies on P .

By Remark 2.7, every topological group can be viewed as an ordered
topological space equipped with a group operation. Therefore, by Corol-
lary 3.5 we get the following:

Corollary 3.6. If K is a compact topological group and P is a closed
subgroup of Aut(K), then the compact-open topology is minimal within
the class of π-uniform topologies on P .

4. Minimality of G ⋋ P where P is closed

The main goal of this section is to prove that for every compact topolog-
ical groupG, the natural semidirect productG⋋P is a minimal topological
group for every closed subgroup P ≤ Aut(G) (Theorem 4.2).

We need the following technical result which is inspired by [19, Prop.
2.6] (see also [8, Theorem 4.13]).

Theorem 4.1. Let (M,γ) be a topological group, X and G are subgroups
of M such that M is algebraically a semidirect product M = X ⋋α G.
Assume that the topological subgroup (X,γ∣X) of (M,γ) is compact. Then
the action

α ∶ (G,γ/X) × (X,γ∣X) → (X,γ∣X)
is continuous at (eG, eX), where γ/X is the coset topology on G induced
by γ.

Proof. Let pr ∶M → G = M/X, (x, g) ↦ g, denote the canonical projec-
tion. Algebraically M/X = {X × {g}}g∈G, which allows us to identify G
with M/X, and thus the topological group (G,γ/X) is well defined.
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To show that α is continuous at (eG, eX) let O ∈ γ∣X be a neighborhood
of eX . We will find neighborhoods P of eG in (G,γ/X) and U of eX in
(X,γ∣X) such that α(P ×U) ⊆ O.

Since X is a compact group, there exists a neighborhood O1 of eX
such that for all x ∈X we have x−1O1x ⊆ O. The restriction M ×X →X,
(a, x) ↦ axa−1 of the conjugation M ×M → M in the topological group
(M,γ) is (well-defined, because X is a normal subgroup ofM) continuous
at (eM , eX). Therefore, for O1 there exist a neighborhood U of eX in
(X,γ∣X)) and a neighborhood V of eM in (M,γ) such that vUv−1 ⊆ O1

for all v ∈ V .
Consider the canonical projection pr ∶M → G = M/X. Then P ∶=

pr(V ) ∈ γ/X is a neighborhood of eG in (G,γ/X). We claim that P and
U satisfy the needed conditions above. That is, we want to show that
α(g, z) ∶= g(z) ∈ O for all (g, z) ∈ pr(V ) × U . Indeed, if g ∈ pr(V ) there
exists x ∈ X such that (x, g) ∈ V , and recall that z ∈ U is in fact (z, eG).
We know that vzv−1 ∈ O1. Therefore,

vzv−1 = (x, g)(z, eG)(x, g)−1 = (xg(z), g)(g−1(x−1), g−1) =
= (xg(z)g(g−1(x−1)), eG) = (xg(z)x−1, eG) = xg(z)x−1 ∈ O1.

Thus α(g, z) ∈ x−1O1x ⊆ O, which completes the proof. �

Theorem 4.2. If G is a compact topological group, then G⋋P is minimal
for every closed subgroup P of Aut(G).
Proof. Let τ be the given topology on G, and τco the compact-open topol-
ogy on P ⊆ Aut(G). Denote by γ the product topology on G ⋋ P , and
by e = idG ∈ P the identity automorphism. Assume that γ1 ⊆ γ is a
coarser Hausdorff group topology on G ⋋ P . Since G is compact we have
γ1∣G = γ∣G = τ .

The action
α ∶ (P, γ1/G) × (G,γ1∣G) → (G,γ1∣G)

is continuous at the identity (idG, eG) by Theorem 4.1. Furthermore,
γ1/G is a Hausdorff topology on Aut(G) since G is a compact (hence,
closed) subgroup of the Hausdorff group (G ⋋ P, γ1). Therefore γ1/G is
an α-uniform topology on P (Lemma 2.4.2 and Definition 2.3).

Since γ1/G ⊆ γ/G = τco and τco is minimal within the class of α-uniform
topologies on P (Corollary 3.6), we have γ1/G = γ/G. Finally, using
Merson’s Lemma 2.1, we deduce that γ1 = γ and that concludes the proof.

�

5. Minimality of G ⋋ P
In this section we provide an equivalent condition (see Theorem 5.2) for

the non-minimality of G⋋P, where G is a compact group and P ≤ Aut(G).
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As a corollary we obtain that if the compact group G is abelian, then The-
orem 4.2 holds for all (thus not necessarily closed) subgroups P of Aut(G).
Theorem 5.2 also allows us to construct relevant counterexamples (Exam-
ple 5.6 and Theorem 5.5).

We use the well known Minimality Criterion which, for compact groups,
can be traced back to Stephenson [24] and Prodanov [23]. Note that
Banaschewski [2] generalized this criterion by proving it for minimal topo-
logical algebras.

First recall that a subgroup H ≤ G of a topological group G is said to
be essential in G if H ∩N is nontrivial for every nontrivial closed normal
subgroup N of G.

The following theorem can be found, for example, in [9, Theorem 2.5.1].

Theorem 5.1 (Minimality Criterion). Let G be a topological group and
H its dense subgroup. H is minimal if and only if G is minimal and H
is essential in G.

Theorem 5.2. Let G be a compact group and P ≤ Aut(G). Then the
following two conditions are equivalent:

(1) G ⋋ P is not minimal.
(2) There exists a closed nontrivial subgroup H of G satisfying the

following conditions:
(a) H ∩Z(G) = {eG}.
(b) H is P -invariant (that is, f(H) ⊆H for every f ∈ P ).
(c) Γ(H) ⊆ P and Γ(H) ∩ P = {eP }, where Γ ∶G→ Inn(G) is the

natural homomorphism defined by Γ(g) = γg.

Proof. (2) ⇒ (1): Let H be a closed nontrivial subgroup of G satisfying
conditions (a) − (c). By Theorem 4.2 G ⋋P is minimal. Clearly, G ⋋P is
a dense subgroup of G ⋋P . We are going to construct a nontrivial closed
normal subgroup N of G ⋋ P such that N ∩ (G ⋋ P ) is trivial. Using
the Minimality Criterion this will imply that G ⋋ P is not minimal. Let
N ∶= {(h, γ−1h )∣ h ∈H}. Since H is a compact nontrivial subgroup of G and
Γ(H) is a compact subgroup of P , we obtain that N is a nontrivial com-
pact (hence closed) subgroup of G ⋋ P . Being P -invariant and closed the
subgroup H is also P -invariant. This implies that N is normal in G ⋋ P .
Indeed, (g, f)(h, γ−1h )(g, f)−1 = (f(h), γ−1f(h)). Let (h, γ−1h ) be a nontrivial
element of N. Then we necessarily have h ≠ eG. By condition (a) this
implies that γ−1h is a nontrivial element of Γ(H). It follows from (c) that
γ−1h ∉ P. Therefore, (h, γ−1h ) ∉ G ⋋ P and we conclude that N ∩ (G ⋋ P ) is
trivial as needed.
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(1) ⇒ (2) ∶ Assume that G⋋P is not minimal. If follows from Theorem 4.2
and the Minimality Criterion that G⋋P is not essential in G⋋P . So, there
exists a nontrivial closed normal subgroupN of G⋋P such thatN∩(G⋋P )
is trivial. We will prove (2) by showing that N = {(h, γ−1h )∣ h ∈H}, where
H is a nontrivial closed subgroup of G satisfying conditions (a) − (c).
First, let us show that every element in N has the form (h, γ−1h ), for some
h ∈ G. Indeed, otherwise, there exists u1 = (h, f) ∈ N such that f ≠ γ−1h .

Choose u2 = (g, eP ), where f(g) ≠ γ−1h (g). Since N is normal in G⋋P the
commutator

[u1, u2] = (h ⋅ f(g) ⋅ h−1 ⋅ g−1, eP )
is an element of N. The inequality f(g) ≠ γ−1h (g) means that h ⋅f(g) ⋅h−1 ⋅
g−1 ≠ eG. It follows that [u1, u2] is a nontrivial element of G ⋋ P. This
contradicts the fact that N ∩ (G ⋋ P ) it trivial. Therefore, all elements
of N have the form (h, γ−1h ). The group N is compact being a closed
subgroup of the compact group G ⋋ (P ∩ Inn(G)). By the continuity of
the canonical projection pr ∶G ⋋ P → G, we conclude that the subgroup
H ∶= pr(N) is closed (being compact) in G. Moreover, the structure of N
implies that H is also nontrivial.

To prove (a) assume that there exists a nontrivial element h ∈H∩Z(G).
But then (h, γ−1h ) is a nontrivial element of N ∩ (G ⋋ P ), and that is a
contradiction.

Property (b) follows from the normality ofN. Indeed, if f ∈ P and h ∈H
we have (eG, f)(h, γ−1h )(eG, f)−1 = (f(h), γ−1f(h)) ∈ N. Hence, f(h) ∈H.

Finally, we prove property (c). Let γh ∈ Γ(H), where h ∈ H = pr(N).
Then, (h, γ−1h ) ∈ N ⊆ G ⋋ P . Therefore, γ−1h ∈ P and since P is a group
we also have γh ∈ P . This proves that Γ(H) ⊆ P . Let us show that
Γ(H) ∩ P is trivial. Otherwise, there exists a nontrivial h ∈ H such that
γ−1h ∈ Γ(H) ∩P. But then (eG, eP ) ≠ (h, γ−1h ) ∈ N ∩ (G⋋P ), contradicting
the triviality of N ∩ (G ⋋ P ). This completes the proof. �

Corollary 5.3. Let G be a compact group and P ≤ Aut(G). Then G ⋋P
is minimal in each of the following cases:

(1) G is abelian;
(2) P is essential in P (e.g., P is closed);
(3) P ∩ Inn(G) is essential in P ∩ Inn(G).

Proof. In each case at least one of the conditions of Theorem 5.2.2 does
not hold.
(1): If G is an abelian group then G = Z(G). Thus for every nontrivial
H ≤ G the group H ∩Z(G) is nontrivial and so (a) is impossible.
(2): Assume for a contradiction that H is a nontrivial closed subgroup of
G satisfying conditions (a) − (c). It follows that N = Γ(H) is a nontrivial
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closed subgroup of P which trivially intersects P. This contradicts the
assumption that P is essential in P .
(3): Assume for a contradiction that H is a nontrivial closed subgroup of
G satisfying conditions (a) − (c). It follows that N = Γ(H) is a nontrivial
closed subgroup of P ∩ Inn(G) which trivially intersects P ∩ Inn(G). This
contradicts the assumption that P ∩Inn(G) is essential in P ∩Inn(G). �

Theorem 5.4. Let G be a compact group with trivial center and P ≤
Inn(G). Then G ⋋ P is minimal if and only if P is essential in P .

Proof. Sufficiency follows from Corollary 5.3.3.
To prove the necessity assume that P is not essential in P . Then, there
exists a closed normal subgroup N of P such that N ∩P is trivial. Since
the center of G is trivial, the continuous homomorphism Γ ∶G→ Inn(G) is
in fact a topological isomorphism. It follows that H = Γ−1(N) is a closed
nontrivial subgroup of G. Clearly, H ∩ Z(G) = {eG}. By the normality
of N, one can show that H is P -invariant. Furthermore, Γ(H) = N is a
subgroup of P and Γ(H) ∩ P = N ∩ P = {eP }. It follows from Theorem
5.2 that G ⋋ P is not minimal. �

Theorem 5.5. Let G be a compact group containing a non-closed Boolean
subgroup B and let P = Γ(B). If in addition B∩Z(G) is trivial, then G⋋P
is not minimal.

Proof. By Theorem 5.2, it suffices to show that there exists a closed non-
trivial subgroup H ≤ G with properties (a)−(c). Since B is a Boolean sub-
group ofG, its closureB is also Boolean. Fix h ∈ B∖B and letH = {h, eG}.
Then, H is a nontrivial closed subgroup of G with H ∩Z(G) = {eG}. For
every b ∈ B we have bhb−1 = h, since B is abelian. This implies that H
is P -invariant. Clearly, Γ(H) is a subgroup of P = Γ(B). Finally, assume
for contradiction that Γ(H) ∩ P ≠ {eP }. Hence, there exists b ∈ B such
that γb = γh. This implies that eG ≠ hb ∈ B ∩Z(G), a contradiction. �

We use Theorem 5.5 in the following example, where we show that there
exist a compact two-step nilpotent group G and a subgroup P of Aut(G)
such that G ⋋ P is not minimal. This answers a question of Dikranjan.

Example 5.6. Let R be the compact ring ZN
2 (with operations defined

coordinatewise) and consider its dense subring

R̃ ∶= {(xn)n∈N ∶ xn ∈ Z2 ∧ ∣n ∶ xn ≠ 0∣ < ∞}.
Let G ∶= (R×R)⋋R be the generalized Heisenberg group (see, for example,
[8]) defined via the action

π ∶R × (R ×R) → R ×R, π(f, (a, x)) = (a + fx, x).
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By [19, Lemma 2.1], Z(G) = (R×{0R})⋋{0R}. Let B ∶= ({0R}×R̃)⋋{0R}
and let P = Γ(B). Then, B is a non-closed Boolean subgroup of G. Indeed,
its closure B coincides with ({0R} ×R) ⋋ {0R}. Since B ∩Z(G) is trivial,
it follows from Theorem 5.5 that G ⋋ P is not minimal.
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