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Abstract
We say that a topological monoid S is left non-archimedean (in short: l-NA) if the left
action of S on itself admits a proper S-compactification ν : S ↪→ Y such that Y is a
Stone space. This provides a natural generalization of the well known concept of NA
topological groups. The Stone and Pontryagin dualities play a major role in achieving
useful characterizations of NA monoids. We show that many naturally defined topo-
logical monoids are NA and present universal NA monoids. Among others, we prove
that the Polish monoid C(2ω, 2ω) is a universal separable metrizable l-NA monoid
and the Polish monoid N

N is universal for separable metrizable r-NA monoids.

Keywords Equivariant compactification · Compactifiable monoid ·
Non-archimedean monoid · Stone duality · Pontryagin duality

1 Introduction

A topological group G is non-archimedean (NA, in short) if it has a local basis at the
identity everymember ofwhich is an open subgroup ofG. The importance ofNA topo-
logical groups is well known in topology and non-archimedean analysis. They play
a central role in the Kechris–Pestov–Todorcevic [15] theory regarding Fraïssé struc-
tures. For example, recall a characterization of Polish NA groups as the automorphism
groups Aut(A) of countable Fraïssé structures A [28, Section 6.6].

There are several equivalent definitions for NA groups. One may show (see [25])
that G is NA if and only if it admits a proper G-compactification ν : G ↪→ Y , where
Y is a Stone space (i.e., Y is compact and zero-dimensional) and G is treated as a
G-space with respect to the usual left action.
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This reformulation suggests a natural analog for topological monoids. Synthesizing
some ideas and techniques from the papers [22] (about compactifiable monoids) and
[25] (about NA groups), we introduce non-archimedean monoids. More precisely, we
say that a topological monoid S is left non-archimedean (in short, l-NA) if there exists
a proper S-compactification ν : S ↪→ Y of the left action of S on itself, where Y is a
Stone space (Definition 4.2). Similarly we define the right non-archimedean monoids
(r-NA).

Note that a topological monoid S is l-NA if and only if its opposite monoid Sop is
r-NA. A topological group G is l-NA if and only if it is r-NA as the inversion map
G → Gop, g �→ g−1 is a topological isomorphism. In contrast to NA groups, there
is a clear asymmetry for monoids. There are l-NA monoids which are not r-NA and
vice versa (see Example 5.13).

Every NA monoid is zero-dimensional (that is, it has a basis consisting of clopen
subsets). Not every zero-dimensional (locally compact second countable) monoid is
NA. See Example 4.4 and Remark 5.8.

In [27], we introduced non-archimedean transportation problems via the naturally
arising Kantorovich ultra-norms. In Proposition 5.18, we use these ultra-norms and
NA Arens-Eells type theorem [27, Theorem 4.2], to prove that every r-NA monoid is
a topological submonoid of �lin(V ), the set of all nonexpansive linear operators on
V , where V is an ultra-normed F-vector space and F is an arbitrary NA valued field.

The following characterization theorem, which we prove in Sect. 5, demonstrates
that the class of all NA monoids is very large and contains many important examples.

Theorem 1.1 The following assertions are equivalent for every topological monoid S

(1) S is an l-NA topological monoid.
(2) S is a topological submonoid of C(Y ,Y ) for some Stone space Y (where w(Y ) =

w(S)).
(3) The opposite monoid Sop can be embedded into the monoid EndR(B) of endomor-

phisms of some discrete Boolean ring B (with cardinality |B| ≤ w(S)).
(4) Sop is a topological submonoid of DD for somediscrete set D (where |D| ≤ w(S)).
(5) There exists an ultra-metric space (M, d) such that Sop is a topological submonoid

of the monoid �(M, d) of all 1-Lipschitz maps M → M equipped with the
pointwise topology (where w(M) ≤ w(S)).

(6) There exists a topologically compatible uniformity U on S which is generated by
a family of right S-nonexpansive ultra-pseudometrics.

(7) S is topologically isomorphic to a submonoid ofUnif(Y,Y) for some NA uniform
space (Y ,V).

(8) S can be embedded into the monoid End(K) of endomorphisms of some profinite
Boolean group K (with w(K ) ≤ w(S)).

(9) S can be embedded into the monoid End(K) of endomorphisms for a compact
abelian topological group K (with w(K ) ≤ w(S)).

One may expect that several naturally defined monoids in NA functional analysis
are NA (see, among others, Proposition 5.18). Among the technical tools we use in
the present paper are the Stone and Pontryagin dualities (Sect. 5 and, in particular,
Theorem 5.4). Also the factorization Theorem 6.3 for monoid actions provides an
important technical tool.
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Non-archimedean... 599

An interesting additional source of NA monoids is the left (or right) completion of
NAgroups.According to Proposition 4.13 ifG is anNAgroup, then the left completion
̂Gl is an r-NA monoid and the right completion ̂Gr is an l-NA monoid. Recall that the
topological monoids ̂Gl are important objects in the K-P-T theory [15]; namely, they
provide a useful tool in understanding the oscillation stability. We refer to [28] and
[15] for more details.

As usual, by the symmetric group SD we mean the group of all permutations of a
set D with the pointwise topology (inherited from DD). Recall that SD is universal
for NA groups with weight w(G) ≤ |D| (see, for example, [25]). In particular, the
Polish group SN is universal for all second countable (Polish) NA groups. The same
is true for the Polish group Homeo(2ω) (homeomorphism group of the Cantor cube
2ω) [24].

We show that similar results hold for NA monoids. More precisely, we prove the
following results in Theorem 5.9 and Theorem 5.10.

Theorem 1.2 (Universal NA monoids)

(1) The Polish monoid N
N is a universal separable metrizable r-NA monoid. More

generally, κκ is a universal r-NA monoid of weight κ for every infinite cardinal κ .
(2) The Polish monoid C(2ω, 2ω) is universal for separable metrizable l-NAmonoids.

Moreover, the action of C(2ω, 2ω) on 2ω is universal in the class of all actions
S × Y → Y , where Y is a metrizable Stone space and S is a topological submonoid
of C(Y ,Y ).

According to Proposition 5.11, C(2ω, 2ω) is embedded into (NN)op and (NN)op is
embedded into C(2ω, 2ω). On the other hand, (NN)op and C(2ω, 2ω) are not isomor-
phic as topological monoids.

Recall also a known result from [22] which asserts that the Polish topological
monoid C([0, 1]ω, [0, 1]ω) is universal for separable metrizable (hence, also Polish)
left compactifiable monoids and the action of C([0, 1]ω, [0, 1]ω) on [0, 1]ω is a uni-
versal left compactifiable action. According to an earlier result of Uspenskij [32], the
topological group Homeo([0, 1]ω) is universal for all Polish topological groups.

2 Preliminaries and some examples of topological monoids

All topological spaces below are usually assumed to be Tychonoff. Following [14],
a uniformity that is not necessarily Hausdorff is called a pre-uniformity. We say that
a (Tychonoff) topological space X is zero-dimensional if it has a topological basis
consisting of clopen subsets. This property is hereditary. If X is compact then it is
zero-dimensional if and only if its covering dimension dim(X) is zero. That is, every
finite open covering has a finite open refinement which is a partition of X . A Stone
space is a compact zero-dimensional space. A Polish space is a topological space
homeomorphic to a complete metric space

As in [25], we say that a uniformity on a set X is NA if it is zero-dimensional
(dim U = 0). It is equivalent to say that there exists a uniform base γ of U such that
every entourage ε ∈ γ is an equivalence relation on X . Every compact space K with
its unique compatible uniformity is NA if and only if K is a Stone space.

123



600 M. Megrelishvili, M. Shlossberg

Adense continuous function ν : X → Y into aHausdorff space is a compactification
of X . We say that ν is proper if it is a topological embedding.

Recall that the Samuel compactification u : (X ,U) → uX for a Hausdorff unifor-
mity U is the (always proper) compactification induced by the algebra Unifb(X, R)

of all bounded U-uniformly continuous functions.

Lemma 2.1 Let (X ,U) be a zero-dimensional uniform space. Then the corresponding
Samuel compactification νs : X ↪→ uX is a proper zero-dimensional compactification.
It can be identified with completion of the precompact replica U∗. Open equivalence
relations ε ∈ U on X with finitely many equivalence classes form a uniform basis B
of U∗. In particular, uX is a Stone space.

Proof See for example [14, Ch. 5] for a much more strong result. ��
For simplicity, we consider topological monoids (instead of semigroups) and

monoidal actions. By an action of a monoid S on a set X we mean a left or right
monoidal action. That is, (st)(x) = s(t(x)) for every s, t ∈ S, x ∈ X and the
identity element eS ∈ S acts as the identity transformation of X . Speaking about
homomorphisms (in particular, embeddings) of monoids we always assume that the
homomorphisms preserve the identity.

It is worth noting that our results can be extended to topological semigroups which
are not necessarily monoids. The reason is that every topological semigroup S can
be canonically embedded into the topological monoid Se := S � {e} as a clopen
subsemigroup by adjoining to S an isolated identity e. Furthermore, any action π : S×
X → X naturally extended to the monoidal action πe : Se × X → X (see [22, Remark
3.11]).

Recall some natural constructions of topological monoids and monoidal actions.
We will use them in the sequel to build NA monoids.

2.1 Pointwise topology

Let Y be a topological space and X be a set. Denote by Y X the set of all maps
f : X → Y . The pointwise topology τp onY X is the topology having as the topological
subbase all sets of the form

[x0, O] := { f ∈ C(X ,Y ) : f (x0) ⊂ O}.

where x0 ∈ X and O is open in Y . It is just the product topology on Y X .
If (Y ,U) is a uniform space, then Y X carries the pointwise uniformity Up which

induces the pointwise topology. That is, top(Up) = τp. Recall that the following
system of entourages {[x0, ε] : x0 ∈ X , ε ∈ U}, where [x0, ε] := {( f1, f2) ∈ Y X :
( f1(x0), f2(x0)) ∈ ε)}, is a uniform subbase of Up.

For every metric space (M, d) denote by �(M, d) the monoid of all 1-Lipschitz
maps f : X → X (that is, d( f (x), f (y)) ≤ d(x, y)). Then

(a) �(M, d) is a topological monoid with respect to the pointwise topology.
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Non-archimedean... 601

(b) The subset Iso(M) ⊂ �(M, d) of all onto isometries is a topological group.
(c) The evaluation map �(M, d) × M → M is a continuous action.

Note that the pointwise topology τp on �(M, d) is the minimal topology which
guarantees the continuity of the action �(M, d) × M → M , or, equivalently, of
the orbit maps m̃ : �(M, d) → M, s �→ s(m) for all m ∈ M .

Example 2.2 (DD, ◦, τp) is a topological monoid for every discrete set D. Indeed,
this monoid can be identified with �(D, d�), where d�(x, y) = 1 for every distinct
x, y ∈ D. The symmetric (topological) group SD can be identified with Iso(D, d�).

An action S× X → X on a metric space (X , d) is nonexpansive (or 1-Lipschitz) if
every s-translation s̃ : X → X belongs to�(X , d). It defines a natural homomorphism
h : S → �(X , d) which is continuous if and only if the action is continuous.

Let (V , || · ||) be a normed space (over the field R of reals). Denote by �lin(V ) the
set of all nonexpansive linear operators on V . That is,

�lin(V ) = {σ ∈ L(V ) : ||σ || ≤ 1}.

Let τsop be the strong operator topology on �lin(V ). It is the pointwise topology
inherited from (V , d||·||)V . Denote by Isolin(V ) the group of all onto linear isometries
V → V . It is just the group of all invertible elements in the monoid �lin(V ). Note
that (�lin(V ), τsop) is a topological submonoid of (�(V , d||·||), τp) and plays a major
role in analysis.

2.2 Compact-open topology

Let X and Y be topological spaces and C(X ,Y ) the set of all continuous functions
f : X → Y . The compact-open topology τc on C(X ,Y ) is the topology having as a
subbase all sets of the form

[K , O] := { f ∈ C(X ,Y ) : f (K ) ⊂ O},

where K is a compact subset of X and O is open in Y .
If (Y ,U) is a uniform space then the uniformity Uc of compact convergence on

C(X ,Y ) is generated by the following uniform subbase

{[K , ε]}, where [K , ε] := {( f1, f2) ∈ C(X , Y ) × C(X , Y ) : ( f1(x), f2(x)) ∈ ε∀x ∈ K )},

where K is a compact subset of X and ε ∈ U . Then top(Uc) = τc.
Let Y be a compact space. Then the following hold:

(1) The monoid C(Y ,Y ) endowed with the compact-open topology is a topological
monoid;

(2) The subset Homeo(Y ) of all homeomorphisms Y → Y is a topological group;
(3) For every submonoid S ⊂ C(Y ,Y ) the induced action S ×Y → Y is continuous.

Furthermore, it satisfies the following minimality property. If τ is an arbitrary
topology on S such that (S, τ ) × Y → Y is continuous then τc ⊆ τ .
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Let X be a locally compact group and G = Aut(X) the group of all topological
automorphisms endowed with the Birkhoff topology (see [13] or [7, p. 260]). This is
the (Hausdorff) group topology τB having as a local base at the identity idX the sets
of the form

UK ,O := { f ∈ Aut(X) : f(x) ∈ Ox and f−1(x) ∈ Ox ∀x ∈ K}

where K is a compact subset in X and O is a neighborhood of e in X . Then

(a) Aut(X) is a topological group;
(b) The evaluation map Aut(X) × X → X is a continuous action;

Moreover, the following remarkable minimality property holds. For every Haus-
dorff group topology τ on Aut(X) which satisfies (b) we have τB ⊆ τ .

2.3 Uniformity of uniform convergence

If (Y ,U) is a uniform space, then for every topological space X the uniformity Usup
of uniform convergence on C(X ,Y ) is generated by the following base

{̃ε : ε ∈ U}, where ε̃ := {( f1, f2) ∈ C(X , Y ) × C(X , Y ) : ( f1(x), f2(x)) ∈ ε ∀x ∈ X)}.

Let {ρi : i ∈ �} be a system of bounded pseudometrics which generates U . Then
the system {ρ∗

i : i ∈ �} generates Usup where

ρ∗
i ( f1, f2) := sup

x∈X
{ρi ( f1(x), f2(x))}.

If X is compact then Usup = Uc.
Denote by Unif(Y,Y) the monoid of all uniformly continuous selfmaps. Clearly,

Unif(Y,Y) is a submonoid of C(Y ,Y ).

Example 2.3 Let (Y ,U) be a uniform space. ThenUnif(Y,Y)with the topology inher-
ited from top(Usup) is a topological monoid. For every submonoid S ⊂ Unif(Y,Y)

the induced action S × Y → Y is continuous.

Remark 2.4 Recall two results from a recent paper by L. Elliott, J. Jonusas, Z.Mesyan,
J.D. Mitchell, M. Morayne and Y. Peresse.

(1) [8, Corollary 6.12] The compact-open topology is the unique second countable
Hausdorff monoid topology on the monoid C(2ω, 2ω) of continuous functions on
the Cantor set 2ω.

(2) [8, Theorem 5.4(b)] The natural pointwise topology is the unique Polish monoid
topology for N

N.

These two examples appear below (Theorems 5.10 and 5.9) in the context of uni-
versal NA monoids.

Remark 2.5 For every topological group G denote by End(G) the monoid of all con-
tinuous endomorphisms under the usual composition. If G is compact, then End(G)
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Non-archimedean... 603

is a topological monoid with respect to the compact-open topology, which, by the
compactness of G, is the topology of uniform convergence.

IfG is discrete, then we get on End(G) the pointwise topology. This is a topological
submonoid of (GG , ◦, τp). If G is a discrete ring, then EndR(G) ⊂ End(G) is the
submonoid of all ring endomorphisms G → G.

3 Compactifiability of monoid actions

An S-space is a continuous action of a topological monoid S on a topological space
X .
Compactifiability of topological spacesmeans the existenceof topological embeddings
into compact (Hausdorff) spaces. For the compactifiability of S-spaces we require, in
addition, that the original action admits a continuous extension.

Definition 3.1 Let X be an S-space with respect to the continuous left action S×X →
X .

(1) An S-compactification of X is a continuous dense S-map ν : X → K , where K
is a compact (Hausdorff) S-space.

(2) We say that ν is proper if ν is a topological embedding.
(3) X is S-compactifiable if there exists a proper S-compactification of X .

Compactifiable S-spaces are known also as S-Tychonoff spaces. The obvious rea-
son of this name is that every S-compactifiable X is Tychonoff. For locally compact
topological groups G every Tychonoff G-space is G-Tychonoff by a celebrated result
by J. de Vries [35]. However, not every Tychonoff S-space is S-Tychonoff even for
topological groups S = G (where G and X are Polish); see [20] and [29].

Of course, the S-compactifications and S-compactifiability can be defined also for
right actions X × S → X . In particular, for the particular case of the right action
S × S → S. In this case, we typically warn the reader by adding the word "right".

By a classical result of R. Brook [5], the left action of a topological group G on
itself is compactifiable. This fact was the trigger for introducing the compactifiable
monoids in [22].

Definition 3.2 A topological monoid S is said to be

(1) left compactifiable (or, simply, l-compactifiable) if the left action of S on itself is
S-compactifiable;

(2) right compactifiable (or r-compactifiable) if the right action of S on itself is S-
compactifiable.

Note that S is an l-compactifiable if and only if Sop (the opposite monoid) is r-
compactifiable.

In view of some results from [25], two remarks are in order here.

• In contrast to the topological group case, not every Tychonoff monoid S is com-
pactifiable. Even if S is locally compact and metrizable (see Remark 5.8).
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604 M. Megrelishvili, M. Shlossberg

• The asymmetry between left and right compactifiability for topological monoids
is also remarkable. There are topological monoids which are left but not right
compactifiable (and vice versa). See Example 5.13 below.

Definition 3.3 Let π : S × X → X be an action and U be a compatible uniformity on
a topological space X . We call the action (sometimes, also X ):

(1) U-saturated if every s-translation s̃ : X → X is U-uniform. That is, if s−1ε ∈ U
∀(s, ε) ∈ S × U , where s−1ε := {(x, y) ∈ X × X : (sx, sy) ∈ ε}. Equivalently,

∀ε ∈ U ∀s ∈ S ∃δ ∈ U (sx, sy) ∈ ε ∀(x, y) ∈ δ.

If U is saturated, then the corresponding homomorphism

hπ : S→Unif(X , X), s �→s̃

is well defined.
(2) U-bounded at s0 if for every ε ∈ U there exists a neighborhoodU ∈ Ns0 such that

(s0x, sx) ∈ ε for each x ∈ X and s ∈ U . If this condition holds for every s0 ∈ S,

then we simply say that X is U-bounded or that U is a bounded uniformity;
(3) U-equiuniform if it is U-saturated and U-bounded. Sometimes we say also that U

is an equiuniformity. It is equivalent to say that the corresponding homomorphism
hπ : S → Unif(X,X) is continuous. By the "3-epsilon argument" U-equiuniform
action can be expressed in an equivalent form as follows:
for every ε ∈ U there exist a neighborhood V ∈ Ns0 and δ ∈ U such that
(s1x, s2y) ∈ ε for each (x, y) ∈ δ and s1, s2 ∈ V .

(4) The definitions above make sense also for pre-uniformities.

ThedefinitionofU-bounded actions appears in [5] for group actions (under the name
‘motion equicontinuous’) and is very effective in the theory of S-compactifications. It
was widely explored in the papers of J. de Vries [33–35]. See also [12, 22, 23].

Notation: For a given S denote by EUnifS the triples (X ,U , π), where (X ,U) is a
Hausdorff uniform space, π : S × X → X is a (continuous) equiuniform action. The
class EUnifS is closed under products and subspaces. We use the same notation for
right actions.

Lemma 3.4 [12, 22] (see also [23])

(1) Every U-equiuniform action is continuous.
(2) CompS ⊂ EUnifS. Every compact S-space X is equiuniform (with respect to the

unique compatible uniformity on X).
(3) A continuous monoid action S × X → X is S-compactifiable if and only if it is

U-equiuniform with respect to some compatible uniformity U on X.
(4) The coset G-space G/H is UR-equiuniform for every topological group G and a

subgroup H. If H is closed in G, then (G/H ,UR) ∈ EUnifG.
(5) For every uniform space (X ,U) and every submonoid S of the topological monoid

Unif(X,X) the natural action S × X → X is U-equiuniform.
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Non-archimedean... 605

(6) Let π : S × X → X be a U-equiuniform action. Then the induced action on the
completion π̂ : S × ̂X → ̂X is ̂U-equiuniform. In other terms: (X ,U) ∈ EUnifS

implies that (̂X , ̂U) ∈ EUnifS.

One direction in (3) easily follows from (2). The following result explains the
second direction in (3) and is well known for group actions (see for example, [5, 18]).

The following proposition will be used in the proof of Theorem 1.1.

Proposition 3.5 Let U be a compatible uniformity on a topological space X and S be
a topological monoid and consider the monoidal action S × X → X .

(1) The family {s−1ε : s ∈ S, ε ∈ U}, where

s−1ε := {(x, y) ∈ X × X : (sx, sy) ∈ ε},

is a subbase of a saturated uniformity US ⊃ U .

(2) U is NA if and only if US is NA.
(3) If the action is U-bounded, then it is also US-equiuniform.
(4) If all s-translations X → X , x �→ s(x) are continuous, then US generates the

same topology as U .

Proof (1) Clearly, US ⊃ U since e−1ε = ε for every ε ∈ U . The equality t−1(s−1ε) =
(st)−1ε implies that the action is US-saturated.

(2) Observe that if ε ∈ U is an equivalence relation, then also s−1ε is an equivalence
relation for every given s ∈ S.

(3) By (1), the action is US-saturated. So, we only have to show the boundedness
of US . It is enough to check it for the elements of the uniform subbase {s−1ε : s ∈
S, ε ∈ U}. Let us show the boundedness for s−1

0 ε at a given element t0 ∈ S. Since the
action is U-bounded there exists a neighborhood U of s0t0 such that (s0t0x, ux) ∈ ε

for every u ∈ U and every x ∈ X . Since S is a topological monoid we can choose a
neighborhood V of t0 such that s0V ⊂ U . Then (t0x, t x) ∈ s−1

0 ε for every t ∈ V and
x ∈ X .

(4) Let x ∈ X and s ∈ S. Since the translations are U-continuous it follows that
for every ε ∈ U there exists δ ∈ U such that δ(x) ⊂ (s−1ε)(x). This implies that US

generates the same topology as U . ��
Fact 3.6 [22, 23] Let X be a (Tychonoff) S-space. Assume that π : S × X → X is a
U-equiuniform monoid action. Then the induced action πu : S × uX → uX on the
Samuel compactification uX := u(X ,U) is a proper S-compactification of X.

Remark 3.7 It is well known (see, for example, [1, 22, 23]) that an S-space X is
compactifiable if and only if it admits sufficiently many (separating points and closed
subsets) real valued continuous bounded functions f : X → R such that

∀ε > 0 ∀s0 ∈ S ∃U ∈ Ns0 | f (s0x) − f (sx)| < ε ∀x ∈ X ∀s ∈ U .

Some authors call such functions right uniformly continuous (RUC), notation f ∈
RUC(X). If S = G is a topological group with the left natural action on itself, then
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606 M. Megrelishvili, M. Shlossberg

RUC(G) is the usual algebra of all bounded right uniformly continuous functions on
G.

Definition 3.8 (1) A pseudometric d on a monoid S is right nonexpansive if
d(xs, ys) ≤ d(x, y) for every x, y, s ∈ S. Similarly can be defined left non-
expansive pseudometric.

(2) A uniform structure U on a monoid S is right invariant if for every ε ∈ U there
exists δ ∈ U such that δ ⊂ ε and (sx, t x) ∈ δ for every (s, t) ∈ δ, x ∈ S.

Here we provide some natural examples.

• For every topological group G the right uniformityR(G) of G is the unique right
invariant compatible uniformity on G, [30, Lemma 2.2.1].

• Let (X ,U) be a uniform space and Usup be the corresponding uniformity on
Unif(X , X). Assume that S is a submonoid of Unif(X , X). Then the subspace
uniformity Usup|S on S is right invariant.

• For every right invariant uniformity U on S the left action of S on itself is U-
bounded (Definition 3.3.2).

The following theorem shows that a topological monoid S is compactifiable (Def-
inition 3.2) if and only if S “lives in natural monoids".

Fact 3.9 [22] Let S be a topological monoid. The following are equivalent:

(1) S is left compactifiable;
(2) Sop (the opposite monoid of S) is a topological submonoid of �lin(V ) for some

normed (equivalently, Banach) space V ;
(3) Sop is a topological submonoid of �(M, d) for some metric space (M, d);
(4) S is a topological submonoid of C(K , K ) for some compact space K ;
(5) S is a topological submonoid of Unif(Y,Y) for some uniform space (Y ,U);
(6) The topology of S can be generated by a family {di }i∈I of right nonexpansive

pseudometrics on S.

So the semigroupUnif(Y,Y) is left compactifiable for every uniform space (Y ,U).
The same holds forC(K , K ), where K is a compact space, while the monoid�(X , d)

is right compactifiable for every metric space (X , d). It follows that �lin(V ) is right
compactifiable for every normed space V .

For more facts about compactifiability of monoid actions we refer to [1, 12, 18, 23].

4 Non-archimedean actions andmonoids

4.1 Non-archimedean topological groups

A topological group G is non-archimedean if it has a local basis every member of
which is a (necessarily clopen) subgroup of G.

Fact 4.1 [25] The following assertions are equivalent:
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(1) G is a non-archimedean topological group.
(2) The left (right) uniformity of G is NA.
(3) There exists a 0-dimensional proper G-compactification ν : G ↪→ Y of the natural

left (equivalently, right) action of G on itself.
(4) G is a topological subgroup of Homeo(X) for some Stone space X.
(5) G is a topological subgroup of the automorphisms group (with the pointwise

topology) AutR(B) for some discrete Boolean ring B.
(6) G is embedded into the symmetric topological group Sκ .
(7) G is a topological subgroup of the group Iso(X , d) of all isometries of an ultra-

metric space (X , d), with the topology of pointwise convergence
(8) The right (left) uniformity on G can be generated by a system of right (left)

invariant ultra-pseudometrics.
(9) G is a topological subgroup of the automorphism group (Aut(K), τco) for some

compact abelian group K .

Some other results onNA groups (including also free non-archimedean groups) can
be found in [26]). In this work we introduce and study non-archimedean monoids and
non-archimedean monoid actions. The definition is based on Stone compactifications.

Definition 4.2 Let S be a topological monoid.

(1) Let α : S × X → X be a continuous left action of S on a (Tychonoff) space X .
We say that this action is non-archimedean (in short: NA) if there exists a proper
S-compactification ν : X ↪→ Y of X , where Y is a Stone space. Similarly, for
right actions.

(2) We say that S is left non-archimedean (in short: l-NA) if the left action of S on
itself is NA. Similarly, for right actions (in short: r-NA).

(3) We say that S is lr-NA if it is both l-NA and r-NA.

From this definition it immediately follows that compact zero-dimensional topolog-
ical monoids are NA. It is straightforward to see that any submonoid of l-NA (r-NA)
monoid is l-NA (r-NA). Also, the topological product of l-NA (r-NA) monoids is l-NA
(r-NA).

Remark 4.3 (1) We can assume in Definition 4.2.1 that

w(X) ≤ w(Y ) ≤ w(X) · w(S)

as it follows fromTheorem6.3. So, ifw(S) ≤ w(X) (e.g., if S is second countable),
then w(X) = w(Y ).

(2) Any l-NA (r-NA) action is l-compactifiable (resp., r-compactifiable) and every
l-NA (resp., r-NA) monoid is l-compactifiable (resp., r-compactifiable).

(3) S is l-NA if and only if Sop (the opposite monoid) is r-NA.

Example 4.4 By Definition 4.2 it follows that every NA monoid S must be zero-
dimensional. However, it is easy to present compactifiable zero-dimensional commu-
tative monoids (even abelian groups) which are not NA. For example, take the group
of all rationals Q.
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Proposition 4.5 Let α : S × X → X be a continuous action. The following are equiv-
alent:

(1) The action α is NA.
(2) There exists a topologically compatibleNAuniformityU on X such that the action

α is U-equiuniform.
(3) RUC functions (see Remark 3.7) f : X → {0, 1} separate points and closed

subsets.

Proof (1) ⇒ (2) Note that CompS ⊂ EUnifS by 3.4.2.
(2) ⇒ (1) Combine Fact 3.6 and Lemma 2.1.
(2) ⇒ (3) If the action is U-equiuniform, then, in particular, X is U-bounded. This

implies that every bounded U-uniformly continuous function f : X → R is RUC
(Remark 3.7). Let A be a closed subset of X and x /∈ A. Then there exists an open
equivalence relation ε := εx,A ∈ U such that ε(x) ⊆ Ac. It is easy to see that
the characteristic function χε(x) : X → {0, 1} is a bounded U-uniformly continuous
function. This proves that {0, 1}-valued RUC functions separate points and closed
subsets.

(3)⇒ (2) The initial uniformityU with respect to the family γ := { f : X → {0, 1}}
of all {0, 1}-valued RUC functions is an NA compatible uniformity on X . Indeed, the
equivalence relations

ε f := {(x, y) ∈ X × X | f (x) = f (y)},

where f : X → {0, 1} is RUC, form a subbase for U . We will show that the action α

is U-equiuniform. Note that f : X → {0, 1} is RUC if and only if

∀s0 ∈ S ∃V ∈ Ns0 (s0x, sx) ∈ ε f ∀x ∈ X ∀s ∈ V .

This implies that X is U-bounded. It remains to show that X is U-saturated. Let t0 ∈ S.
We have to show that the corresponding translation X → X , x �→ t0x is U-uniform.
First observe that for everyRUC function f : X → {0, 1} the composition f t0 (defined
by f t0(x) := f (t0x)) is also RUC and {0, 1}-valued. Therefore, f t0 ∈ γ . Next, it is
easy to show that for every ε f ∈ γ as above we have

(x, y) ∈ ε f t0 ⇒ (t0x, t0y) ∈ ε f .

This implies that t0-translation is U-uniform because γ is a subbase of U . ��

Proposition 4.6 If d is an ultra-metric on M, then the topological monoid �(M, d)

is r-NA.

Proof We use Proposition 4.5 for the right action S × S → S, where S :=
(�(M, d), τp).

The standard basis of the pointwise uniformity Up on �(M, d) is the family

{εA : A is a finite subset of D}
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where ε > 0 and

εA := {( f1, f2) ∈ S × S : d( f1(a), f2(a)) < ε ∀a ∈ A}.

Since d is a ultra-metric, every εA is an equivalence relation on S. Therefore, we obtain
that the uniformity Up is NA.

Now we show that the right action (S,Up) × S → (S,Up) of S on itself is Up-
equiuniform. Let A ⊂ S be a given finite subset of S and s0 ∈ S. We have to show
that there exists O ∈ N (s0) such that

( f s0, f s) ∈ εA ∀s ∈ O ∀ f ∈ S.

It is enough to pick

O:={s ∈ S : d(s(a), s0(a)) < ε ∀a ∈ A}.

Indeed, take into account that every f ∈ S = �(M, d) is a 1-Lipschitz map. Hence,
d( f (s(a), f (s0(a)) ≤ d(s(a), s0(a)) < ε.

Now we check that the action is saturated. Let s0 ∈ S. For every given finite
A ⊂ M its image s0A is also a finite subset of M . Then ( f1s0, f2s0) ∈ εA for every
( f1, f2) ∈ εs0A. ��

As we already mentioned in Sect. 3 the topological monoid (DD, ◦, τp) is right
compactifiable for every discrete set D. The following result says more.

Corollary 4.7 For every discrete set D the monoid (DD, ◦, τp) is r-NA.

Proof (DD, ◦, τp) is a topological submonoid of �(D, d�) by Example 2.2. So, we
can apply Theorem 4.6. ��
Corollary 4.8 For every metric space (M, d) the monoid Emb(M, d) of all isometric
embeddings M ↪→ M with respect to the pointwise topology is right-compactifiable.
If, in addition, d is a ultra-metric, then Emb(M, d) is r-NA. In particular, the monoid
Inj(D) of all injections D ↪→ D is r-NA monoid for every discrete set D.

Proof Emb(M, d) is a natural topological submonoid of �(M, d). Now apply Propo-
sition 4.6. ��

Proposition 4.9 For everyNAuniformspace (Y ,U) the topologicalmonoidUnif(Y,Y)

(from Example 2.3) is l-NA.

Proof We use Proposition 4.5 for the left action S × X → X , where X := S =
Unif(Y,Y). If (Y ,U) isNA, then also (C(X ,Y ),Usup) (which is defined in Subsection
2.3) is NA (because if ε ∈ U is an equivalence relation on Y then ε̃ is an equivalence
relation on C(X ,Y )). In particular, the uniformity Usup is NA on the topological
monoid Unif(Y,Y).
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Nowwe show that the left action of S := Unif(Y,Y) on itself is Usup-equiuniform.
Let s0 ∈ S and ε̃ ∈ Usup. Choose the neighborhood ε̃(s0) := {s ∈ S : (s, s0) ∈ ε̃}.
Then (s f , s0 f ) ∈ ε̃ for every f ∈ S and s ∈ ε̃(s0). Since every s ∈ S is a uniform
map (Y ,U) → (Y ,U), it is straightforward to see that the left action S× (S,Usup) →
(S,Usup) is saturated. ��
Corollary 4.10 Let K be a Stone space. Then the topological monoid C(K , K ) is l-NA
in its uniform topology.

4.2 Weil completions of NA groups

It is well known that the right and left completions (̂Gr , ÛR) and (̂Gl , ÛL) of a topo-
logical group G are naturally defined (opposite to each other) topological monoids
(see for example [30, Proposition 10.12(a)]) containing G as a (dense) submonoid.
These natural monoids are not groups in general. Probably, the first who discovered
this fact was J. Dieudonne [6].

Fact 4.11 [22] Let G be a topological group. The monoid ̂Gr is l-compactifiable for
every topological group G. Similarly, the monoid ̂Gl is r-compactifiable.

Remark 4.12 In particular, if G is abelian then its completion ̂G is an (abelian) NA
topological group. In fact, the following more general result is true. For every topo-
logical group G its Raikov completion (completion with respect to the two-sided
uniformity) ̂G is an NA topological group. Indeed, if G is NA then by Fact 4.1 (asser-
tion 4) G is a topological subgroup of Homeo(X) for some Stone space X . Recall that
Homeo(X) is Raikov complete for every compact X (see, for example, [4]). Then the
closure cl(G) of G in Homeo(X) can be identified with the completion ̂G.

Proposition 4.13 For every topological group G the following conditions are equiva-
lent:

(1) G is an NA group;
(2) ̂Gr is an l-NA monoid;
(3) ̂Gl is an r-NA monoid.

Proof (1) ⇒ (2) The completion of NA uniform space is again NA (see [14, Ch.
V]). Hence, Y := (̂Gr , ÛR) is NA. Now observe that ̂Gr is naturally embedded into
Unif(Y,Y) and apply Proposition 4.9.

(2) ⇒ (1) S := ̂Gr is an l-NA monoid means that there exists a proper S-
compactification ν : S ↪→ Y of the left action of S on itself. Since G is embedded
into S, in particular, we obtain a proper G-compactification of the left action of G on
itself. By Fact 4.1 (assertion 3) we conclude that G is NA.

The equivalence (2) ⇔ (3) can be proved using the formula (̂Gl)op = ̂Gr . ��
Remark 4.14 There are concrete descriptions of ̂Gr and ̂Gl for several remarkable
groups G. For instance,
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(1) (J. Dieudonne [6]) For the symmetric groupG := SN its left completion ̂Gl can be
identified with the topological monoid Inj(N) of all embeddings (injective maps)
N ↪→ N.

(2) (Pestov [28, Prop. 8.2.6]) If (M, d) is a complete metric space and G :=
Iso(M, d), then ̂Gl is a natural topological submonoid of Emb(M, d) of all iso-
metric embeddings M ↪→ M . If, in addition, (M, d) is ultra-homogeneous (e.g.,
ifM is a Urysohn space), then ̂Gl = Emb(M, d). It is a far reaching generalization
of (1).
Note that the (non-archimedean) topological monoids ̂Gl (for NA groups G) and
Emb(M, d) are important objects in K-P-T theory [15]; namely, they provide a
useful tool for understanding the oscillation stability. We refer to [28] and [15] for
more details.

(3) (Pestov [28, Prop. 8.2.6]) The left completion ofG = Aut(Q,≤) is the monoid of
all order-preserving injections Q ↪→ Q with the pointwise topology for discrete
Q.

5 Using Stone and Pontryagin dualities

By Stone’s celebrated representation theorem, there is a duality between Boolean
algebras (or Boolean rings) and zero-dimensional compact spaces (Stone spaces).
More precisely, for every Stone space Y we have the Boolean algebra (clop(Y ),∪,∩)

of all clopen subsets. Conversely, for every Boolean algebra B the set of all ultra-filters
under a naturally defined topology is a Stone space. Moreover, one may retrieve the
original structure by applying each of these constructions.

Remark 5.1 It is also well known that one may equally consider the Boolean rings
associated with the Boolean algebras. In this case the original Stone space can be
reconstructed as the set of all ring homomorphisms B → Z2. We refer to [11] for
more details about this classical theory.

Let Y be a Stone space and B = (B(Y ),�,∩) be the discrete Boolean ring of all
clopen subsets in Y , where symmetric difference and intersection serve as the addition
and multiplication, respectively. As usual, one may identify B with the Boolean ring
B := C(Y , Z2) of all continuous functions χ : Y → Z2.By the standard compactness
arguments, it is clear that |B| = w(Y ).

Denote by B∗ := Hom(B, T) the Pontryagin dual of B. Since B is a Boolean group
(that is, χ = −χ for every χ ∈ B), every character B → T can be identified with
a group homomorphism into the unique 2-element subgroup �2 = {1,−1}, a copy
of Z2. The same is true for the characters on B∗, hence the natural evaluation map
w : B × B∗ → T, w(χ, f ) = f (χ) can be restricted naturally to B × B∗ → Z2.
Under this identification B∗ := Hom(B, Z2) is a closed (hence compact) subgroup of
the compact group Z

B
2 . In particular, B∗ is a Boolean profinite group.

Clearly, the groups B and Z2, being discrete, are non-archimedean. The group
B∗ = Hom(B, Z2) is also non-archimedean since it is a subgroup of Z

B
2 .
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Let π : S × Y → Y be an action of a monoid S on a Stone space Y , where at least
the translations πs : Y → Y , y �→ sy are continuous. It is equivalent to say that the
corresponding homomorphism h : S → C(Y ,Y ) is well defined. The functoriality
of the Stone and Pontryagin dualities induce the actions of S on B and B∗. More
precisely, we have the right action

α : B × S → B, (χs)(x) := χ(sx)

and the left action
β : S × B∗ → B∗, (s f )(χ) := f (χs).

Every translation under these actions is a continuous group endomorphism.Moreover,
every translation αs : B → B (s ∈ S) is even a ring endomorphism. Therefore we
have the associated monoid anti-homomorphism:

iα : S → EndR(B)

and the monoid homomorphism

iβ : S → End(B∗),

where EndR(B) and End(B∗) are defined as in Remark 2.5. Note that EndR(B) is a
topological submonoid of BB (B is discrete) and End(B∗) is a topological submonoid
of C(B∗, B∗) in the uniform topology (B∗ is compact). If π is continuous, then
one may show that the actions α and β are also jointly continuous (and then the
corresponding anti-homomorphism iα and homomorphism iβ are continuous). This
follows, in particular, from Theorem 5.4.

The pair (α, β) is a birepresentation of S on w : B × B∗ → Z2. Meaning that,

∀s ∈ S w(χs, f ) = w(χ, s f ) = f (χs).

Define the following adjoint map (induced by the Pontryagin duality)

� : End(B) → End(B∗), μ �→ μ∗ μ∗(f) := f ◦ μ ∀μ ∈ End(B) ∀f ∈ B∗

which is an anti-isomorphism of monoids by the Pontryagin duality properties.

Remark 5.2 It is straightforward to verify that the natural evaluation map

δ : Y → B∗, y �→ δy, δy(χ) = χ(y)

is a topological S-embedding. In these terms, δ(Y ) ⊂ B∗ is just the subset of all
ring homomorphisms HomR(B, Z2) in the set of all group homomorphisms B∗ :=
Hom(B, Z2) (see [11, Theorem 32]).
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Remark 5.3 In [25] we explore the following known fact (see [13, Theorem 26.9])
that for every locally compact abelian group G and its Pontryagin dual G∗, the canon-
ically defined adjoint map between Aut(G) and Aut(G∗) is an anti-isomorphism of
topological groups (where these automorphism groups equipped with the Birkhoff
topology). This is true also for the topological rings of group endomorphisms End(G)

and End(G∗) under the compact-open topology (see [31, Corollary 25.2]).

An invertible function f : X1 → X2 between two uniform spaces is said to be a
uniformism if it is a uniform isomorphism meaning that both f and f −1 are uniform
functions.

Theorem 5.4 Let Y be a Stone space and B := C(Y , Z2) be its (discrete) Boolean
ring. Then the canonical monoid anti-isomorphisms

� : C(Y ,Y ) → EndR(B), s �→ s∗ s∗(χ) := χ ◦ s ∀χ ∈ B (5.1)

� : End(B) → End(B∗), σ �→ σ ∗ σ ∗(f) := f ◦ σ ∀f ∈ B∗ (5.2)

are uniformisms, where End(B) and its submonoid EndR(B) carry the pointwise uni-
formity, while C(Y ,Y ) and End(B∗) carry the uniformity of uniform convergence.

Proof These maps are well defined and bijective by Pontryagin and Stone duality
properties, respectively. We have the following actions:

π : C(Y ,Y ) × Y → Y

EndR(B) × B → B (s∗χ)(x) := χ(sx) ∀s ∈ C(Y,Y).

Consider the corresponding natural uniformities U1 and U2 on C(Y ,Y ) and EndR(B),

respectively. The uniformity U1 is defined in Subsection 2.3. Since Y is a Stone space,
its uniformity (in terms of uniform coverings [14]) is generated by finite clopen par-
titions. Two element partitions

εA := {{A, Ac} : A ∈ clop(Y )}

define a subbase of the unique compatible uniformity on the Stone spaceY .Taking into
account that B is discrete we define U2 on EndR(B) ⊂ BB as the pointwise uniformity
(see Subsection 2.1).

Fortunately, typical subbase entourages in both cases can be indexed by elements
of B. Note that each χ ∈ B has the form of the characteristic function

χA : Y → Z2, χA(x) = 1 ⇔ x ∈ A

for some clopen subset A ∈ clop(Y ). Fix some χ := χA with A ∈ clop(Y ) and define

[χ ]1 := {(s1, s2) ∈ S × S : (s1(x), s2(x)) ∈ εA ∀x ∈ Y } =

= {(s1, s2) ∈ S × S : s−1
1 (A) = s−1

2 (A) ∧ s−1
1 (Ac) = s−1

2 (Ac)} =
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= {(s1, s2) ∈ S × S : s−1
1 (A) = s−1

2 (A)}.
The family {[χA]1 : A ∈ clop(Y )} is a subbase of U1. For U2 a natural subbase is

{[χA]2 : A ∈ clop(Y )}, where

[χ ]2 := {(s∗
1 , s

∗
2 ) ∈ S∗ × S∗ : s∗

1 (χ) = s∗
2 (χ)} =

= {(s∗
1 , s

∗
2 ) ∈ S∗ × S∗ : χ ◦ s1 = χ ◦ s2}.

Clearly, (s1, s2) ∈ [χ ]1 ⇔ (s∗
1 , s

∗
2 ) ∈ [χ ]2 because s−1

1 (A) = s−1
2 (A) ⇔ χ ◦ s1 =

χ ◦ s2. This proves that � : C(Y ,Y ) → EndR(B) is a uniformism.

Note that B∗ := Hom(B, Z2) ⊂ Z
B
2 carries the pointwise topology. So, the subbase

entourage on the compact space B∗ naturally defined by the point χ ∈ B is

[χ ]∗ := {( f1, f2) ∈ B∗ × B∗ : f1(χ) = f2(χ)}.

Now consider the following actions:

End(B) × B → B, (s, χ) �→ s(χ)

End(B∗) × B∗ → B∗, (s∗f)(χ) := f(χ ◦ s).

Denote by U3 the uniformity of uniform convergence on End(B∗) ⊂ Unif(B∗,B∗)
inherited from Unif(B∗,B∗), where the compact space B∗ carries the natural unifor-
mity. The corresponding uniform subbase again can be parameterized by χ ∈ B as
follows:

[χ ]3 := {(s∗
1 , s

∗
2 ) ∈ End(B∗) × End(B∗) : (s∗1ψ, s∗2ψ) ∈ [χ ]∗ ∀ψ ∈ B∗} =

= {(s∗
1 , s

∗
2 ) ∈ End(B∗) × End(B∗) : ψ(s1(χ)) = ψ(s2(χ)) ∀ψ ∈ B∗}.

Since B∗ separates the points of B we obtain that

s1(χ) = s2(χ) ⇔ ψ(s1(χ)) = ψ(s2(χ)) ∀ψ ∈ B∗

Therefore s1(χ) = s2(χ) ⇔ (s∗
1 , s

∗
2 ) ∈ [χ ]3. This proves that � : End(B) →

End(B∗) is a uniformism. ��

In Theorem 5.4 instead of Boolean rings one may consider Boolean algebras (and
the corresponding endomorphisms) as we mentioned in Remark 5.1.

Corollary 5.5 Let Y be a Stone space. The homomorphism

h = � ◦ � : C(Y ,Y ) ↪→ End(B∗)

is an embedding of topological monoids and the pair (h, δ) is equivariant (meaning
that δ( f (y)) = h( f )(δ(y)), where δ : Y ↪→ B∗ is the embedding of compact spaces
from Remark 5.2.
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Remark 5.6 Let 2ω be the Cantor cube. Its Boolean algebra is the countably infinite
atomless Boolean algebra B∞. Theorem 5.4 implies that the topological monoids
EndR(B∞) and C(2ω, 2ω) are anti-isomorphic. This fact was proved in [8] using [8,
Corollary 6.12] (the property of C(2ω, 2ω) mentioned in Remark 2.4.1).

Now we give a proof of Theorem 1.1.
We have to show that the following assertions are equivalent:

(1) S is an l-NA topological monoid.
(2) S is a topological submonoid of C(Y ,Y ) for some Stone space Y (where w(Y ) =

w(S)).
(3) The opposite monoid Sop can be embedded into the monoid EndR(B) of endo-

morphisms of some discrete Boolean ring B (with cardinality |B| ≤ w(S)).
(4) Sop is a topological submonoid of DD for some discrete set D (where |D| ≤

w(S)).
(5) There exists an ultra-metric space (M, d) such that Sop is a topological submonoid

of the monoid �(M, d) of all 1-Lipschitz maps M → M equipped with the
pointwise topology (where w(M) ≤ w(S)).

(6) There exists a topologically compatible uniformity U on S which is generated by
a family of right S-nonexpansive ultra-pseudometrics.

(7) S is topologically isomorphic to a submonoid of Unif(Y,Y) for someNA uniform
space (Y ,V).

(8) S can be embedded into the monoid End(K) of endomorphisms of some profinite
Boolean group K (with w(K ) ≤ w(S)).

(9) S can be embedded into the monoid End(K) of endomorphisms for a compact
abelian topological group K (with w(K ) ≤ w(S)).

Proof We are going to check that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (1)
and (3) ⇒ (8) ⇒ (9) ⇒ (4).

(1) ⇒ (2) By definition, there exists a 0-dimensional proper S-compactification
ν : S ↪→ Y of the left action of S. The associated continuous monoid homomorphism
hν : S → C(Y ,Y ) is a topological embedding because ν is a topological embedding
and the orbit map h(S) → ν(S), h(s) �→ ν(s) is continuous. As it was mentioned in
Remark 4.3.1, one may assume that w(Y ) = w(S).

(2) ⇒ (3) S is a topological submonoid of C(Y ,Y ) for some Stone space Y , where
w(Y ) = w(S). Let B = C(Y , Z2) be the discrete set of all clopen subsets in the Stone
space Y . Then |B| = w(Y ) = w(S). Now, by Theorem 5.4, C(Y ,Y )op (hence, also
Sop) can be embedded into the monoid EndR(B) with cardinality |B| ≤ w(S).

(3) ⇒ (4) Sop is embedded into EndR(B) which is a submonoid of BB . So, simply
take D := B.

(4) ⇒ (5) Consider the two-valued ultra-metric on the discrete space M := D.
(5) ⇒ (6) We have the left action of the opposite semigroup Sop × M → M . For

every z ∈ M consider the ultra-pseudometric

ρz(s, t) := d(s(z), t(z)) s, t ∈ Sop.
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The collection {ρz}z∈M generates a compatible zero-dimensional uniformity U of S.
Also, ρz(us, ut) = d(us(z), ut(z)) ≤ d(s(z), t(z)) = ρz(s, t) for every u, s, t ∈ Sop.
Therefore every ρz is left nonexpansive for Sop. Hence, right nonexpansive for S.

(6)⇒ (7) Let {ρi }i∈I be a family of right S-nonexpansive ultra-pseudometrics on S
which generates a (necessarily, zero-dimensional) compatible uniformity U . Consider
the left action S × S → S. Then ρi (su, tu) ≤ ρi (s, t) for every s, t, u ∈ S. This
implies that U is bounded (in the sense of Definition 3.3) with respect to the given left
action.

By Proposition 3.5, this action is V-equiuniform, where V = US is an NA
uniformity. Therefore, by Definition 3.3.3, the associated monoid homomorphism
h : S ↪→ Unif(Y,Y) is well defined and continuous, where Y = S is equipped with
the uniformity V. Since S is a monoid, h is injective. The continuity of f : h(S) →
S, h(s) �→ s · e = s follows from the containment f (̃ε(h(s)) ∩ h(S)) ⊂ ε(s). This
ensures that h is an embedding of topological monoids.

(7) ⇒ (1) Apply Theorem 4.9.
(3) ⇒ (8) Take K := B∗ and apply Theorem 5.4. Note that w(B∗) = w(Y ).
(8) ⇒ (9) Every profinite Boolean group is compact abelian.
(9) ⇒ (4) Use the anti-isomorphism � : End(K) → End(K∗) of topological rings

(in particular, of topological monoids) from Remark 5.3 and the fact that End(K∗) is
a topological submonoid of DD, where D = K ∗ is discrete. ��

Recall that a topological group is NA if and only if it has a local base at the identity
consisting of (open) subgroups. As a corollary of Theorem1.1, we obtain the following
implication.

Corollary 5.7 Let S be a topological monoid. If S is either l-NA or r-NA, then it has a
local base at the identity consisting of open submonoids.

Proof Assume first that S is an l-NA topological monoid. By the equivalence (1) ⇔
(6), there exists a family {ρi }i∈I of right S-nonexpansive ultra-pseudometrics on S
which generates its topology. For every i ∈ I and r > 0 the open ball Bρi (e, r) :=
{x : ρi (x, e) < r} is a submonoid of S. Indeed, since ρi is right S-nonexpansive
ultra-pseudometric it holds that

ρi (xy, e) ≤ max{ρi (xy, y), ρi (y, e)} ≤ max{ρi (x, e), ρi (y, e)}.

This implies that S has a local base at the identity consisting of open submonoids.
The case of an r-NA topological monoid can be proved similarly taking into account
that Bρi (e, r) is a submonoid of S also when the ultra-pseudometric ρi is left S-
nonexpansive. ��
Remark 5.8 There exists a locally compact metrizable separable zero-dimensional
topologicalmonoid S that has a local base at the identity consisting of open submonoids
which is neither l-NA nor r-NA. Indeed, onemay use themonoid S from Example 5.13
to construct topological monoids S1 := S and S2 := Sop such that S1 is l-NA but not
r-NAwhile S2 is r-NA and not l-NA. By Corollary 5.7, both S1 and S2 have a local base
at the identity consisting of open submonoids. Then, the topological monoid S1 × S2
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has the latter property while it is neither l-NA nor r-NA (even, not l-compactifiable
and nor r-compactfifiable).

In contrast, note that every locally compact zero-dimensional topological group
must be NA as it follows by a classical result of van Dantzig (see, for example, [13,
Theorem 7.7]).

Recall again that the Polish symmetric group S(N) ⊂ N
N is universal for second

countable NA topological groups. The following result is a natural analog for NA
monoids.

Theorem 5.9 The Polish monoidN
N is a universal separable metrizable r-NAmonoid.

More generally, κκ is a universal r-NA monoid of weight κ for every infinite cardinal
κ .

Proof If S is second countable thenonemayassume that B inTheorem1.1 is countable.
So, S is embedded into EndR(B) which, in turn, is embedded into BB � N

N. ��

By results of [24], Homeo(2ω) is a universal Polish NA group. Moreover, the
action of G := Homeo(2ω) on the Cantor cube 2ω is universal in the class of all
actions G × Y → Y , where Y is a metrizable Stone space and G is a topological
subgroup of Homeo(Y ). More precisely, there exists an equivariant pair (h, α), where
h : G → Homeo(2ω) is an embedding of topological groups and α : Y ↪→ 2ω is a
topological embedding.

In fact, the following monoid version holds.

Theorem 5.10 The Polish monoid C(2ω, 2ω) is universal for separable metrizable l-
NA monoids. Moreover, the action of C(2ω, 2ω) on 2ω is universal in the class of all
actions S × Y → Y , where Y is a metrizable Stone space and S is a topological
submonoid of C(Y , Y ).

Proof For every countable infinite Boolean ring B the corresponding Pontryagin dual
B∗ of the group B will be a zero-dimensional compact metric space. Since B∗ is
a (compact) topological group and infinite, it has no isolated points. Recall that a
classical (since 1910) theorem of Brouwer characterizes the Cantor space 2ω as the
unique zero-dimensional compact metric space without isolated points. Now, choose
B := C(Y , Z2) as the Boolean ring of Y . So, using again the Stone duality and
Corollary 5.5 we complete the proof. ��
Proposition 5.11 (1) C(2ω, 2ω) is embedded into (NN)op and (NN)op is embedded

into C(2ω, 2ω).
(2) (NN)op and C(2ω, 2ω) are not isomorphic as topological monoids.

Proof (1) It is an immediate corollary of Theorems 5.9 and 5.10.
(2) It is well known that the symmetric group SN is universal for NA second count-

able groups. The same is true for the group of homeomorphisms Homeo(2ω), [24].
Therefore, SN is embedded into Homeo(2ω) and also Homeo(2ω) is embedded into
SN. However, the universal minimal dynamical systems of these groups have com-
pletely different nature according to their concrete descriptions due to Glasner and
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Weiss [9, 10]. It follows that these groups are not topologically isomorphic. One more
conclusion of this observation is that (NN)op and C(2ω, 2ω) are not isomorphic as
topological monoids. The reason is that their subgroups of invertible elements are
just SN and Homeo(2ω). On the other hand, any isomorphism of monoids induces an
isomorphism of their groups of invertible elements. ��
Remark 5.12 Here we give some examples of lr-NA monoids (Definition 4.2(3)).

(1) Any compact zero-dimensional topological monoid S is lr-NA. In particular, S is
embedded into the monoid κκ . If, in addition, S is metrizable, then it is embedded
into the PolishmonoidN

N; this implies [2, Theorem 1.5]. Such S is also embedded
into C(2ω, 2ω) by Theorem 5.10.

(2) Any product of discrete monoids is lr-NA. It is enough to prove the case of a
discrete monoid S (the class lr-NA is productive). Since such S is opposite of the
discretemonoid Sop , it is enough to show that S is r-NA. In order to see this observe
that the Cayley homomorphism h : S → (SS, τp) (by the left translations) is an
embedding of topological monoids. This implies the embedding of a countable
product of countable discrete monoids into N

N which was proved in [2, Lemma
2.2].

Note that by [2, Proposition 3.6], there exists a locally compact Polish countable
topological monoid which cannot be embedded into the topological monoid N

N. This
answers Question 5.6 from [8].

Example 5.13 There exists a locally compact metrizable separable zero-dimensional
topological monoid S which is r-NA but not l-NA (even not l-compactifiable). Indeed,
consider the 2-point multiplicative monoid {0, 1} and endow the Cantor cube C :=
{0, 1}N0 with the topological monoid structure of pointwise multiplication. Let N0 :=
N ∪ {0}. Consider the following continuous left action

π : C × N0 → N0, π(c, n) = cnn,

where c = (ck)k∈N0 ∈ C .
Denote by S := C �π N0 a new monoid defined as follows. As a topological space

it is a disjoint sum C ∪ N0. The multiplication is defined by setting:
a ◦ b := π(a, b) := anb if a ∈ C, b ∈ N0
a ◦ b := ab if a ∈ C, b ∈ C
and
a ◦ b := a if a ∈ N0 ∀b ∈ S.

Clearly, 1 := (1, 1, · · · ) is the identity of S. Observe that for every neighborhood
U of 1 we have 0 ∈ UN.

Let ρ be the standard ultra-metric on the Cantor cube C defined for every s, t ∈ C
as

ρ(s, t) := 1

min{n ∈ N : sn �= tn} .
It is non-expansive under left (right) translations. Extend it to a compatible ultra-metric
d on S = C � N0 as follows: d(s, t) = ρ(s, t) for every s, t ∈ C and d(s, t) = 1 for
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every other cases with distinct s, t . Then d is a compatible ultra-metric on S which
is left nonexpansive. By Fact 5.17, S is r-NA being embedded into the topological
monoid N

N.
Assuming that S is left-compactifiable, there exists a proper S-compactification

ν : S ↪→ Y of the left action S × S → S. For simplicity we identify S and ν(S).
ConsiderN = ν(N) ⊂ S, a closed subset of S and 0 ∈ S with 0 /∈ N. Then 0 /∈ clY (N).
Clearly, K := clY (N) is a compact subset of Y . Using the standard compactness
argument and the continuity of the action, there exists a neighborhood U of 1 ∈ S
such that 0 /∈ UK . Then 0 /∈ UN, a contradiction.

The following lemma is a non-archimedean adaptation of some classical facts about
uniform spaces and pseudometrics going back to A. Weil (see, for example, [30,
Metrization Lemma 0.29]).

Lemma 5.14 (1) Let X be a set and F := {σn : n ∈ N}, with σn+1 ⊂ σn, be a
countable monotone family of equivalence relations. Then there exists an ultra-
pseudometric dF on X such that

σn+1 ⊂ {(x, y) ∈ X2 : d(x, y) < 2−n} ⊂ σn .

(2) LetU be a pre-uniformity on a set X. ThenU is NA if and only if there exists a family
γ := {di : i ∈ I } of ultra-pseudometrics on X (with di ≤ 1 for every i ∈ I ) which
generates U . Moreover, if γ is countable, then there exists an ultra-pseudometric
d on X which generates U .

Proof (1) Let σ0 := X × X be the tautological equivalence relation. The desired
ultra-metric is

dF (x, y) := inf
{

max
0≤i≤k

c(xi , xi+1) : k ∈ N, xi ∈ S, x0 = x, xk+1 = y
}

,

where c(x, y) := 2−n if there is n ∈ N ∪ {0} such that (x, y) ∈ σn \ σn+1 and
c(x, y) := 0 otherwise.

(2) Easily follows from (1) (taking into account that for every ultra-pseudometric
ρ the formula defines a new ultra-pseudometric such that ρ and ρ∗ := min{ρ, 1}
generate the same pre-uniformity).

If γ := {dn : n ∈ N} is countable with dn ≤ 1, then d := sup{dn : n ∈ N} is the
desired ultra-pseudometric. ��

Let σ be an equivalence relation on a monoid S. We say that σ is a left congruence
if left translations preserve σ .

Proposition 5.15 The following assertions are equivalent:

(1) S is an r-NA topological monoid.
(2) There exists a zero-dimensional uniformity U on S which is generated by a family

{ρi : i ∈ I } of left S-nonexpansive ultra-pseudometrics.
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(3) There exists a zero-dimensional topologically compatible uniformity U on S with
a basis γ := {σi : i ∈ I } which consists of equivalence relations σi , where each
σi is a left congruence.

Proof (1) ⇔ (2) By the equivalence (1) ⇔ (6) in the dual version of Theorem 1.1.
there exists a zero-dimensional topologically compatible uniformity U on S which is
generated by a family {ρi : i ∈ I } of left S-nonexpansive ultra-pseudometrics on S.

(2) ⇒ (3) σir := {(x, y) : ρi (x, y) < r} is an equivalence relation for every i ∈ I
and r > 0. Since ρi is left nonexpansive, then σir is a left congruence.

(3) ⇒ (2) For every σi we have the associated ultra-pseudometric defined by
ρi (x, y) = 1 for every σi -equivalent elements x, y. Then {ρi : i ∈ I } is a compatible
family of left S-nonexpansive ultra-pseudometrics on S. ��

It is well known (Lemin [17]) that a metrizable topological group G is NA if and
only if G admits a left invariant ultra-metric.

Definition 5.16 Let us say that a topological monoid S is l-ultrametrizable if there
exists a topologically compatible left S-nonexpansive ultra-metric d on S. Similarly
can be defined r-ultrametrizable monoid.

As in the proof of Lemma 5.14, one may show that S is l-ultrametrizable if and only
if there exists a countable compatible family γ := {σn : n ∈ N} of left S-nonexpansive
ultra-pseudometrics.

In particular, by Proposition 5.15 (for countable γ ) and Lemma 5.14, we obtain
that every second countable l-NA monoid S is l-ultrametrizable. Using also Theorem
5.9, the following known result, covered by [3, Theorem 2.1], is obtained.

Fact 5.17 (M. Bodirsky and F.M. Schneider [3]) Let S be a second countable topo-
logical monoid. The following conditions are equivalent:

(1) S is l-ultrametrizable;
(2) S is embedded, as a topological monoid, into N

N;
(3) There exists a zero-dimensional topologically compatible uniformityU on S with a

countable uniform basis γ := {σn : n ∈ N}which consist of equivalence relations
σn, where each σn is a left S-congruence with |σn| ≤ ℵ0.

LetF be anNA valued field and (V , ||·||) be an ultra-normed space overF. Then the
topological monoid �lin(V ) (being a submonoid of �(V , d||·||)) is r-NA by Theorem
1.1. In fact, every r-NA monoid is a topological submonoid of �lin(V ) for such V , as
the next proposition shows.

For the definition and examples of NA valued fields see, for example, [27]

Proposition 5.18 Let S be an r-NA monoid. Then for every NA valued field (F, | · |)
there exists an ultra-normed F-vector space (V , || · ||) such that S is a topological
submonoid of �lin(V ).

Proof In view of Theorem 1.1, it suffices to prove the assertion for S = �(M, d),

where (M, d) is an ultra-metric space. Moreover, we can assume that d ≤ 1, as
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�(M, d) is a topological submonoid of �(M, ρ), where ρ = min{d, 1}. Let V :=
LF(M) be the free F-vector space on the set M and M := M ∪ {0}, where 0 /∈ M
is the zero element of V . By [27, Lemma 4.1], one can extend d to an ultra-metric
on M by letting d(x, 0) = 1 for every x ∈ M . Now, let || · || be the maximal
ultra-norm on V extending d. Recall that this is just the Kantorovich ultra-norm
associated with d (see [27, Definition 4.2]). We will show that for every f ∈ �(M, d)

it holds that f ∈ �lin(V ), where f̄ : V → V denotes the linear extension of f . Since
f ∈ �(M, d) and d(y, 0) = 1 for every y ∈ M it holds that f̄ ∈ �(M, d). Let v ∈ V
and let us show that || f̄ (v)|| ≤ ||v||. By Theorem 4.2 (NA Arens-Eells embedding)
and Theorem 5.2 (Min-attaining Theorem) of [27],

||v|| = max
1≤i≤n

|λi |d(xi , yi ),

for some representation

v =
n

∑

i=1

λi (xi − yi ), xi , yi ∈ M, λi ∈ F.

Using the linearity of f̄ we have

f̄ (v) =
n

∑

i=1

λi ( f̄ (xi ) − f̄ (yi )).

At this point, recall that f ∈ �(M, d) and d( f (x), f (0)) = d(x, 0) = 1 for every
x ∈ M . So, using [27, Theorem 4.3] again we deduce that

|| f̄ (v)|| ≤ max
1≤i≤n

|λi |d( f̄ (xi ), f̄ (yi )) ≤ max
1≤i≤n

|λi |d(xi , yi ) = ||v||.

As the monoids �(M, d) and �lin(V ) are equipped with the pointwise topology
and by the interrelations between the ultra-metric d and the ultra-norm || · ||, we
conclude that the assignment f �→ f̄ is a topological embedding of �(M, d) into
�lin(V ). ��

6 Appendix: a factorization theorem for monoid actions

There are several useful factorization and approximation theorems for topological
group actions. See [21], [19] and [23]. Some of them can easily be adopted (sometimes
under more restrictive assumptions) for topological monoid actions. Theorem 6.3
below is one of such results. For the sake of completeness we include here its proof.
The proof uses the definition of uniform spaces in terms of uniform coverings (see,
for example, [14] and Definition 6.1 below). We first recall some related definitions.
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Let A be a subset of X and P be a family of subsets of X . We write A � P if A is
a subset of some B ∈ P . Let P and Q be two coverings of a set X . We say that Q is
a refinement of P and write Q � P if A � P for every A ∈ Q. Define also

P ∧ Q := {A ∩ B : A ∈ P, B ∈ Q}.

Let P be a covering of a set X and let A ⊂ X . The star of A with respect to P is
the set

st(A, P) = ∪{U ∈ P : U ∩ A �= ∅}.
For the singleton A := {a} we simply write st(a, P). So, st(a, P) = ∪{U ∈ P : a ∈
U }. The collection

P∗ := {st(A, P) : A ∈ P}
is a covering and is called the star of P . Always, P � P∗. If P∗ � Q, then we say
that P is a star-refinement of Q. Sometimes we write P �∗ Q instead of P∗ � Q.

For a covering P of X we define the order ordx (P) and ord(P) by

ordx (P) := |{A ∈ P : x ∈ A}| and ord(P) := sup{ordx (P) : x ∈ X}.

If U contains a base consisting of covers P with ord(P) ≤ n + 1, where n is a given
nonnegative integer, then we say that the (uniform) dimension dim(U) ≤ n. We write
dim(U) = ∞ if dim(U) ≥ n for every n ∈ N. For compact spaces this gives just
the usual topological covering dimension dim. Note that the notation of the uniform
dimension in [14, Ch. V] is �d and if it is finite then dim(U) ≤ n < ∞ if and only if
every finite uniform covering has a finite uniform refinement with order ≤ n + 1. The
completion and the Samuel compactification both preserve the dimension.

If S × X → X is an action, then for every subset A ⊂ S and a family P of subsets
in X define AP := {AU : U ∈ P}.
Definition 6.1 (coverings approach) [14] Let U be a family of coverings on a set X .
Then U is said to be a (covering) pre-uniformity on X if:

(C1) P, Q ∈ U implies that P ∧ Q ∈ U;
(C2) P ∈ U and P � Q imply that Q ∈ U;
(C3) for every Q ∈ U there exists P ∈ U such that P∗ � Q.

U is a uniformity (Hausdorff pre-uniformity) if for every distinct points x, y ∈ X there
exists P ∈ U such that st(x, P) and st(y, P) are disjoint.

Remark 6.2 (1) As to the link between these two approaches, note that every uniform
covering P ∈ U induces the corresponding entourage P̃ := ∪{A × A : A ∈ P}.
Every entourage ε ∈ U induces the corresponding ε-uniform cover {ε(x) : x ∈
X}, where ε(x) := {y ∈ X : (x, y) ∈ ε}.

(2) In terms of covering uniformity U we have the following condition for U-
equiuniform action (compare Definition 3.3.3):
for every covering P ∈ U there exist a neighborhood V ∈ Ns0 and a covering
Q ∈ U such that V Q � P for each x ∈ X and s1, s2 ∈ V .
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Theorem 6.3 Let ν : X ↪→ Y be a proper S-compactification of X. Then there exists
a proper S-compactification σ : X ↪→ K which is majored by ν

X

σ ���
��

��
��

�
ν �� Y

q
��
K

such that w(X) ≤ w(K ) ≤ w(X) · w(S) and dim K ≤ dim Y . In particular, if
dim Y = 0 then also dim K = 0. If w(S) ≤ w(X) (e.g., if S is second countable),
then w(X) = w(K ).

Proof Denote by U the unique compatible covering uniformity of the compact space
Y . There exists a subfamily γ ⊂ U such that γ separates points and closed subsets of
ν(X) (which is homeomorphic to X ) and |γ | = w(X).

We claim that there exists a (not necessarily, Hausdorff) coarser pre-uniformity ˜U
on the set Y such that the following four conditions are satisfied:

(a) ˜U is bounded and saturated (Definition 3.3.4) with respect to the given action;
(b) γ ⊂ ˜U ⊂ U;
(c) dim(˜U) ≤ dim(U);
(d) w(˜U) ≤ |γ | · w(S).

Since Y is compact and the action of S on Y is continuous, U is equiuniform in
the sense of Definition 3.3. Therefore, by Remark 6.2, for every pair Pα, Pβ ∈ γ and
every s ∈ S we can choose a covering Ps

αβ ∈ U and a neighborhood V s
αβ ∈ Ns of s in

S such that:
(1) V s

αβ P
s
αβ �∗ Pα ∧ Pβ .

Moreover, we can assume, in addition, that
(2) ord(Ps

αβ) ≤ dim(U) + 1.

Clearly, S = ∪{V s
αβ : s ∈ S}. One may choose a subset S1 ⊆ S such that

|S1| ≤ w(S) and S = ∪{V s
αβ : s ∈ S1}. Consider

B1 = {psαβ : s ∈ S1}.

Then the following two additional conditions hold.
(3)B1 ⊂ U and B1 ≤ |γ | · w(S);
(4) for every pair Pα, Pβ ∈ γ and for every s ∈ S there exist Oαβ ∈ Ns and

Ps
αβ ∈ B1 such that Oαβ Ps

αβ �∗ Pα ∧ Pβ .

We continue by induction. Let us assume that the families B1,B2, · · · ,Bn are
already defined. Applying the similar procedure to the family ∪n

i=1Bi we get Bn+1.
Note that, in particular, we have

(5) for every pair Pα, Pβ ∈ Bn and for every s ∈ S there exist Oαβ ∈ Ns and
Ps

αβ ∈ Bn+1 such that Oαβ Ps
αβ �∗ Pα ∧ Pβ .
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The resulting family B = ∪i∈NBn is a base for the following pre-uniformity

˜U := {P : ∃Q ∈ B Q � P}

on Y . This is the desired pre-uniformity. Indeed, from the construction it is immediate
to see that γ ⊂ ˜U ⊂ U. This proves (b). The conditions (c) and (d) are also clear. For
(a) use condition (5).

Now, let K := (Y ∗,˜U∗) be the associated (quotient) Hausdorff uniform space
(see Kulpa [16] or [21, 23]) of the pre-uniform space (Y ,˜U) and q : Y → K is
the canonical onto map. Then ˜U∗ is bounded and saturated, too. Hence, the action
S×K → K is continuous (Lemma3.4.1).Also, dim K = dim(˜U) ≤ dim(U) = dim Y
and w(K ) ≤ w(X) · w(S).

Then σ = q ◦ ν : X → K defines the desired proper S-compactification of X . ��
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