
Topology and its Applications 159 (2012) 2497–2505
Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Notes on non-archimedean topological groups

Michael Megrelishvili ∗, Menachem Shlossberg

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

a r t i c l e i n f o a b s t r a c t

Dedicated to Professor Dikran Dikranjan on
his 60th birthday

Keywords:
Boolean group
Heisenberg group
Isosceles
Minimal group
Non-archimedean group
Stone duality
Stone space
Ultra-metric

We show that the Heisenberg type group H X = (Z2 ⊕ V ) � V ∗ , with the discrete Boolean
group V := C(X,Z2), canonically defined by any Stone space X , is always minimal. That is,
H X does not admit any strictly coarser Hausdorff group topology. This leads us to the
following result: for every (locally compact) non-archimedean G there exists a (resp.,
locally compact) non-archimedean minimal group M such that G is a group retract of M .
For discrete groups G the latter was proved by S. Dierolf and U. Schwanengel (1979) [6].
We unify some old and new characterization results for non-archimedean groups.
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1. Introduction and preliminaries

A topological group is non-archimedean if it has a local base at the identity consisting of open subgroups. This class of
groups coincides with the class of topological subgroups of the homeomorphism groups Homeo(X), where X runs over Stone
spaces (= compact zero-dimensional spaces) and Homeo(X) carries the usual compact open topology. Recall that by Stone’s
representation theorem, there is a duality between the category of Stone spaces and the category of Boolean algebras. The
class N A of non-archimedean groups and the related class of ultra-metric spaces have many applications. For instance, in
non-archimedean functional analysis, in descriptive set theory, computer science, etc. See, e.g., [36,3,22,21,43] and references
therein.

In the present paper we provide some applications of generalized Heisenberg groups, with emphasis on minimality
properties, in the theory of N A groups and actions on Stone spaces.

Recall that a Hausdorff topological group G is minimal (Stephenson [38] and Doïchinov [12]) if it does not admit a
strictly coarser Hausdorff group topology, or equivalently, if every injective continuous group homomorphism G → P into a
Hausdorff topological group is a topological group embedding.

If otherwise is not stated all topological groups and spaces in this paper are assumed to be Hausdorff. We say that an
additive topological group (G,+) is a Boolean group if x + x = 0 for every x ∈ G . As usual, a G-space X is a topological space
X with a continuous group action π : G × X → X of a topological group G . We say that X is a G-group if, in addition, X is
a topological group and all g-translations, π g : X → X, x �→ gx := π(g, x), are automorphisms of X . For every G-group X
we denote by X � G the corresponding topological semidirect product.

To every Stone space X we associate a (locally compact 2-step nilpotent) Heisenberg type group

H X = (Z2 ⊕ V ) � V ∗,
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where V := C(X,Z2) is a discrete Boolean group which can be identified with the group of all clopen subsets of X (sym-
metric difference is the group operation). V ∗ := Hom(V ,Z2) is the compact group of all group homomorphisms into the
two element cyclic group Z2. V ∗ acts on Z2 ⊕ V in the following way: every ( f , (a, x)) ∈ V ∗ × (Z2 ⊕ V ) is mapped to
(a + f (x), x) ∈ Z2 ⊕ V . The group operation on H X is defined as follows: for

u1 = (a1, x1, f1), u2 = (a2, x2, f2) ∈ H X

we define

u1u2 = (
a1 + a2 + f1(x2), x1 + x2, f1 + f2

)
.

In Section 4 we study some properties of H X and show in particular (Theorem 4.1) that the (locally compact) Heisenberg
group H X = (Z2 × V ) � V ∗ is minimal and non-archimedean for every Stone space X .

Every Stone space X is naturally embedded into V ∗ := Hom(V ,Z2) by the natural map δ : X → V ∗, x �→ δx where
δx( f ) := f (x). Every δx can be treated as a 2-valued measure on X . Identifying X with δ(X) ⊂ V ∗ we get a restricted
evaluation map V × X → Z2 which in fact is the evaluation map of the Stone duality. Note that the role of δ : X → V ∗ for
a compact space X is similar to the role of the Gelfand map X → C(X)∗ , representing X via the point measures.

For every action of a group G ⊂ Homeo(X) on a Stone space X we can deal with a G-space version of the classical Stone
duality. The map δ : X → V ∗ is a G-map of G-spaces. Furthermore, a deeper analysis shows (Theorem 4.4) that every topo-
logical subgroup G ⊂ Homeo(X) induces a continuous action of G on H X by automorphisms such that the corresponding
semidirect product H X � G is a minimal group.

We then conclude (Corollary 4.5) that every (locally compact) non-archimedean group is a group retract of a (resp.,
locally compact) minimal non-archimedean group. It covers a result of Dierolf and Schwanengel [6] (see also Example 3.5
below) which asserts that every discrete group is a group retract of a locally compact non-archimedean minimal group.

Section 2 contains additional motivating results and questions. Several interesting applications of generalized Heisenberg
groups can be found in the papers [25–27,11,28,8,9,37].

Studying the properties of the Heisenberg group H X , we get a unified approach to several (mostly known) equivalent
characterizations of the class N A of non-archimedean groups (Lemma 3.2 and Theorem 5.1). In particular, we show that
the class of all topological subgroups of Aut(K ), for compact abelian groups K , is precisely N A.

2. Minimality and group representations

Clearly, every compact topological group is minimal. Trivial examples of nonminimal groups are: the group Z of all
integers (or any discrete infinite abelian group) and R, the topological group of all reals. By a fundamental theorem of
Prodanov and Stoyanov [32] every abelian minimal group is precompact. For more information about minimal groups see
review papers of Dikranjan [7] and Comfort, Hofmann and Remus [5], a book of Dikranjan, Prodanov and Stoyanov [10] and
a recent book of Lukacs [23].

Unexpectedly enough many non-compact naturally defined topological groups are minimal.

Remark 2.1. Recall some nontrivial examples of minimal groups.

(1) Prodanov [31] showed that the p-adic topologies are the only precompact minimal group topologies on Z.
(2) Symmetric topological groups S X (Gaughan [15]).
(3) Homeo({0,1}ℵ0 ) (see Gamarnik [14] and also Uspenskij [42] for a more general case).
(4) Homeo[0,1] (Gamarnik [14]).
(5) The semidirect product R � R+ (Dierolf and Schwanengel [6]). More general cases of minimal (so-called admissible)

semidirect products were studied by Remus and Stoyanov [35]. By [26], Rn � R+ is minimal for every n ∈ N.
(6) Every connected semisimple Lie group with finite center, e.g., SLn(R), n � 2 (Remus and Stoyanov [35]).
(7) The full unitary group U (H) (Stoyanov [39]).

One of the immediate difficulties is the fact that minimality is not preserved by quotients and (closed) subgroups. See
for example item (5) with minimal R � R+ where its canonical quotient R+ (the positive reals) and the closed normal
subgroup R are nonminimal. As a contrast note that in a minimal abelian group every closed subgroup is minimal [10].

In 1983 Pestov raised the conjecture that every topological group is a group retract of a minimal group. Note that if
f : M → G is a group retraction then necessarily G is a quotient of M and also a closed subgroup in M . Arhangel’skiı̆ asked
the following closely related questions:

Question 2.2. ([2,30]) Is every topological group a quotient of a minimal group? Is every topological group a closed subgroup of a
minimal group?

By a result of Uspenskij [41] every topological group is a subgroup of a minimal group M which is Raikov-complete,
topologically simple and Roelcke-precompact.
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Recently a positive answer to Pestov’s conjecture (and hence to Question 2.2 of Arhangel’skiı̆) was obtained in [28]. The
proof is based on methods (from [25]) of constructing minimal groups using group representations on Banach spaces and
involving generalized Heisenberg groups.

According to [25] every locally compact abelian group is a group retract of a minimal locally compact group. It is an
open question whether the same is true in the non-abelian case.

Question 2.3. ([25,28,5]) Is it true that every locally compact group G is a group retract (at least a subgroup or a quotient) of a locally
compact minimal group?

A more general natural question is the following:

Question 2.4. ([25]) Let K be a certain class of topological groups and min denotes the class of all minimal groups. Is it true that every
G ∈ K is a group retract of a group M ∈ K ∩ min?

So Corollary 4.5 gives a partial answer to Questions 2.3 and 2.4 in the class K := N A of non-archimedean groups.

Remark 2.5. Note that by [28, Theorem 7.2] we can present any topological group G as a group retraction M → G, where M
is a minimal group having the same weight and character as G. Furthermore, if G is Raikov-complete then M also has the
same property. These results provide in particular a positive answer to Question 2.4 in the following basic classes: second
countable groups, metrizable groups, Polish groups.

2.1. Minimality properties of actions

Definition 2.6. Let α : G × X → X , α(g, x) = gx be a continuous action of a Hausdorff topological group (G, σ ) on a Hausdorff
topological space (X, τ ). The action α is said to be:

(1) Algebraically exact if kerα := {g ∈ G: gx = x ∀x ∈ X} is the trivial subgroup {e}.
(2) Topologically exact (t-exact, in short) if there is no strictly coarser, not necessarily Hausdorff, group topology σ ′ � σ on

G such that α is (σ ′, τ , τ )-continuous.

Remark 2.7.

(1) Every topologically exact action is algebraically exact. Indeed, otherwise kerα is a nontrivial subgroup in G. Then the
preimage group topology σ ′ ⊂ σ on G induced by the onto homomorphism G → G/kerα is not Hausdorff (in particular,
it differs σ ) and the action remains (σ ′, τ , τ )-continuous.

(2) On the other hand, if α is algebraically exact then it is topologically exact if and only if for every strictly coarser
Hausdorff group topology σ ′ � σ on G the action α is not (σ ′, τ , τ )-continuous. Indeed, since α is algebraically exact
and (X, τ ) is Hausdorff then every coarser group topology σ ′ on G which makes the action (σ ′, τ , τ )-continuous must
be Hausdorff.

Let X be a locally compact group and Aut(X) be the group of all automorphisms endowed with the Birkhoff topology (see
[16, §26] and [10, p. 260]). Some authors use the name Braconnier topology (see [4]).

The latter is a group topology on Aut(X) and has a local base formed by the sets

B(K , O ) := {
f ∈ Aut(X): f (x) ∈ O x and f −1(x) ∈ O x ∀x ∈ K

}
where K runs over compact subsets and O runs over neighborhoods of the identity in X . In the sequel Aut(X) is always
equipped with the Birkhoff topology. It equals to the Arens g-topology [1,4]. If X is compact then the Birkhoff topology
coincides with the usual compact-open topology. If X is discrete then the Birkhoff topology on Aut(X) ⊂ X X coincides with
the pointwise topology.

Lemma 2.8. In each of the following cases the action of G on X is t-exact:

(1) ([25]) Let X be a locally compact group and G be a subgroup of Aut(X).
(2) Let G be a topological subgroup of Homeo(X), the group of all autohomeomorphisms of a compact space X with the compact open

topology.
(3) Let G be a subgroup of Is(X,d) the group of all isometries of a metric space (X,d) with the pointwise topology.

Proof. Straightforward. �



2500 M. Megrelishvili, M. Shlossberg / Topology and its Applications 159 (2012) 2497–2505
Remark 2.9. Every locally compact abelian group G can be embedded into the group Aut(X), where X is a locally compact
abelian group (with X := T × G∗ , [25, Prop. 2.3]). Note that for locally compact subgroups of Aut(X) [25, Theorem 4.4]
positively resolves Question 2.3. See also Remark 5.2(3).

2.2. From minimal dualities to minimal groups

In this subsection we recall some definitions and results from [25,28].
Let E, F , A be abelian additive topological groups. A map w : E × F → A is said to be biadditive if the induced mappings

wx : F → A, w f : E → A, wx( f ) := w(x, f ) =: w f (x)

are homomorphisms for all x ∈ E and f ∈ F .
A biadditive mapping w : E × F → A is separated if for every pair (x0, f0) of nonzero elements there exists a pair (x, f )

such that f (x0) �= 0A and f0(x) �= 0A .
A continuous separated biadditive mapping w : (E, σ ) × (F , τ ) → A is minimal if for every coarser pair (σ1, τ1) of Haus-

dorff group topologies σ1 ⊆ σ , τ1 ⊆ τ such that w : (E, σ1) × (F , τ1) → A is continuous, it follows that σ1 = σ and τ1 = τ .

Let w : E × F → A be a continuous biadditive mapping. Consider the action: w� : F × (A ⊕ E) → A ⊕ E, w�( f , (a, x)) =
(a + w(x, f ), x). Denote by H(w) = (A ⊕ E)� F the topological semidirect product of F and the direct sum A ⊕ E . The group
operation on H(w) is defined as follows: for a pair

u1 = (a1, x1, f1), u2 = (a2, x2, f2)

we define

u1u2 = (
a1 + a2 + f1(x2), x1 + x2, f1 + f2

)
where, f1(x2) = w(x2, f1). Then H(w) becomes a Hausdorff topological group which is said to be a generalized Heisenberg
group (induced by w).

Let G be a topological group and let w : E × F → A be a continuous biadditive mapping. A continuous birepresentation
of G in w is a pair (α1,α2) of continuous actions by group automorphisms α1 : G × E → E and α2 : G × F → F such that
w is G-invariant, i.e., w(gx, g f ) = w(x, f ).

The birepresentation ψ is said to be t-exact if ker(α1) ∩ ker(α2) = {e} and for every strictly coarser Hausdorff group
topology on G the birepresentation does not remain continuous. For instance, if one of the actions α1 or α2 is t-exact then
clearly ψ is t-exact.

Let ψ be a continuous G-birepresentation

ψ = (w : E × F → A, α1 : G × E → E, α2 : G × F → F ).

The topological semidirect product M(ψ) := H(w) �π G is said to be the induced group, where the action π : G × H(w) →
H(w) is defined by

π
(

g, (a, x, f )
) = (a, gx, g f ).

Fact 2.10. Let w : E × F → A be a minimal biadditive mapping and A is a minimal group. Then

(1) ([9, Corollary 5.2]) The Heisenberg group H(w) is minimal.
(2) ([25, Theorem 4.3] and [28]) If ψ is a t-exact G-birepresentation in w then the induced group M(ψ) is minimal.

Fact 2.11. ([25]) Let G be a locally compact abelian group and G∗ := Hom(G,T) be the dual (locally compact) group. Then the
canonical evaluation mapping

G × G∗ → T

is minimal and the corresponding Heisenberg group H = (T ⊕ G) � G∗ is minimal.

3. Some facts about non-archimedean groups and uniformities

3.1. Non-archimedean uniformities

For information on uniform spaces, we refer the reader to [13] (in terms of entourages) and to [19] (via coverings). If μ is
a uniformity for X in terms of coverings, then the collection of elements of μ which are finite coverings of X forms a base
for a topologically compatible uniformity for X which we denote by μfin (the precompact replica of μ).

A partition of a set X is a covering of X consisting of pairwise disjoint subsets of X . Due to Monna (see [36, p. 38]
for more details), a uniform space (X,μ) is non-archimedean if it has a base consisting of partitions of X . In terms of
entourages, it is equivalent to saying that there exists a base B of the uniform structure such that every entourage P ∈ B

is an equivalence relation. Equivalently, iff its large uniform dimension (in the sense of Isbell [19, p. 78]) is zero.
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A metric space (X,d) is said to be an ultra-metric space (or, isosceles [21]) if d is an ultra-metric, i.e., it satisfies the strong
triangle inequality

d(x, z) � max
{

d(x, y),d(y, z)
}
.

The definition of ultra-semimetric is the same as ultra-metric apart from the fact that the condition d(x, y) = 0 need not
imply x = y. For every ultra-semimetric d on X every ε-covering {B(x, ε): x ∈ X} by the open balls is a clopen partition
of X .

Furthermore, a uniformity is non-archimedean iff it is generated by a system {di}i∈I of ultra-semimetrics. The following
result (up to obvious reformulations) is well known. See, for example, [19] and [18].

Lemma 3.1. Let (X,μ) be a non-archimedean uniform space. Then both (X,μfin) and the uniform completion ( X̂, μ̂) of (X,μ) are
non-archimedean uniform spaces.

3.2. Non-archimedean groups

The class N A of all non-archimedean groups is quite large. Besides the results of this section see Theorem 5.1 below.
The prodiscrete (in particular, the profinite) groups are in N A. All N A groups are totally disconnected and for every locally
compact totally disconnected group G both G and Aut(G) are N A (see Theorems 7.7 and 26.8 in [16]). Every abelian N A
group is embedded into a product of discrete groups.

The minimal groups (Z, τp), S X ,Homeo({0,1}ℵ0 ) (in items (1), (2) and (3) of Remark 2.1) are non-archimedean. By
Theorem 4.1 the Heisenberg group H X = (Z2 ⊕ V ) � V ∗ is N A for every Stone space X . It is well known that there exist
2ℵ0 -many nonhomeomorphic metrizable Stone spaces.

Recall that, as it follows by results of Teleman [40], every topological group can be identified with a subgroup of
Homeo(X) for some compact X and also with a subgroup of Is(M,d), topological group of isometries of some metric
space (M,d) endowed with the pointwise topology (see also [34]). Similar characterizations are true for N A with compact
zero-dimensional spaces X and ultra-metric spaces (M,d). See Lemma 3.2 and Theorem 5.1 below.

We will use later the following simple observations. Let X be a Stone space (compact zero-dimensional space) and G be
a topological subgroup of Homeo(X). For every finite clopen partition P = {A1, . . . , An} of X define the subgroup

M(P ) := {g ∈ G: g Ak = Ak ∀1 � k � n}.
Then all subgroups of this form defines a local base (subbase, if we consider only two-element partitions P ) of the original
compact-open topology on G ⊂ Homeo(X). So for every Stone space X the topological group Homeo(X) is non-archimedean.
More generally, for every non-archimedean uniform space (X,μ) consider the group Unif(X,μ) of all uniform automor-
phisms of X (that is, the bijective functions f : X → X such that both f and f −1 are μ-uniform). Then Unif(X,μ) is a
non-archimedean topological group in the topology induced by the uniformity of uniform convergence.

Lemma 3.2. The following assertions are equivalent:

(1) G is a non-archimedean topological group.
(2) The right (left) uniformity on G is non-archimedean.
(3) dimβG G = 0, where βG G is the maximal G-compactification [29] of G.
(4) G is a topological subgroup of Homeo(X) for some Stone space X (where w(X) = w(G)).
(5) G is a topological subgroup of Unif(Y ,μ) for some non-archimedean uniformity μ on a set Y .

Proof. For the sake of completeness we give here a sketch of the proof. The equivalence of (1) and (3) was established by
Pestov [33, Prop. 3.4]. The equivalence of (1), (2) and (3) is [29, Theorem 3.3].

(1) ⇒ (2) Let {Hi}i∈I be a local base at e (the neutral element of G), where each Hi is an open (hence, clopen) subgroup
of G. Then the corresponding decomposition of G = ∪g∈G Hi g by right Hi -cosets defines an equivalence relation Ωi and the
set {Ωi}i∈I is a base of the right uniform structure μr on G .

(2) ⇒ (3) If the right uniformity μ is non-archimedean then by Lemma 3.1 the completion ( X̂, μ̂fin) of its precompact
replica (Samuel compactification of (X,μ)) is again non-archimedean. Now recall (see for example [29]) that this completion
is just the greatest G-compactification βG G (the G-space analog of the Stone–Čech compactification) of G .

(3) ⇒ (4) A result in [24] implies that there exists a zero-dimensional proper G-compactification X of the G-space G
(the left action of G on itself) with w(X) = w(G). Then the natural homomorphism ϕ : G → Homeo(X) is a topological
group embedding.

(4) ⇒ (5) Trivial because Homeo(X) = Unif(X,μ) for compact X and its unique compatible uniformity μ.
(5) ⇒ (1) The non-archimedean uniformity μ has a base B where each P ∈ B is an equivalence relation. Then the

subsets

M(P ) := {
g ∈ G: (gx, x) ∈ P ∀x ∈ X

}
form a local base of G . Observe that M(P ) is a subgroup of G . �
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N A-ness of a dense subgroup implies that of the whole group. Hence the Raikov-completion of N A groups are again
N A. Subgroups, quotient groups and (arbitrary) products of N A groups are also N A. Moreover the class N A is closed
under group extensions.

Fact 3.3. [17, Theorem 2.7] If both N and G/N are N A, then so is G.

For the readers convenience we reproduce here the proof from [17].

Proof. Let U be a neighborhood of e in G. We will find an open subgroup H contained in U . We choose neighborhoods
U0, V and W of e in G as follows. First let U0 be such that U 2

0 ⊆ U . By the assumption, there is an open subgroup M of
N contained in N ∩ U0. Let V ⊆ U0 be open with V = V −1 and V 3 ∩ N ⊆ M. We denote by π the natural homomorphism
G → G/N. Since π(V ) is open in G/N , it contains an open subgroup K . We set W = V ∩π−1(K ). We show that W 2 ⊆ W M.

Suppose that w0, w1 ∈ W . Since π(w0),π(w1) ∈ K , we have π(w0 w1) ∈ K . So there is w2 ∈ W with π(w2) = π(w0 w1).

Then w−1
2 w0 w1 ∈ N ∩ W 3 ⊆ M , and hence w0 w1 ∈ w2M . Using this result and also the fact that M is a subgroup of N we

obtain by induction that W k ⊆ W M ∀k ∈ N. Now let H be the subgroup of G generated by W . Clearly, H = ⋃∞
k=1 W k . Then

H is open and

H ⊆ W M ⊆ U 2
0 ⊆ U

as desired. �
Corollary 3.4. Suppose that G and H are non-archimedean groups and that H is a G-group. Then the semidirect product H � G is
non-archimedean.

Example 3.5. (Dierolf and Schwanengel [6]) Every discrete group H is a group retract of a locally compact non-archimedean
minimal group.

More precisely, let Z2 be the discrete cyclic group of order 2 and let H be a discrete topological group. Let G := ZH
2 be

endowed with the product topology. Then

σ : H → Aut(G), σ (k)
(
(xh)h∈H

) := (xhk)h∈H ∀k ∈ H, (xh)h∈H ∈ G

is a homomorphism. The topological semidirect (wreath) product G �σ H is a locally compact non-archimedean minimal
group having H as a retraction.

Corollary 4.5 below provides a generalization.

4. The Heisenberg group associated to a Stone space

Let X be a Stone space. Let V = (V (X),�) be the discrete group of all clopen subsets in X with respect to the symmetric
difference. As usual one may identify V with the group V := C(X,Z2) of all continuous functions f : X → Z2.

Denote by V ∗ := hom(V ,T) the Pontryagin dual of V . Since V is a Boolean group every character V → T can be
identified with a homomorphism into the unique 2-element subgroup Ω2 = {1,−1}, a copy of Z2. The same is true for
the characters on V ∗ , hence the natural evaluation map w : V × V ∗ → T (w(x, f ) = f (x)) can be restricted naturally to
V × V ∗ → Z2. Under this identification V ∗ := hom(V ,Z2) is a closed (hence compact) subgroup of the compact group ZV

2 .

Clearly, the groups V and Z2, being discrete, are non-archimedean. The group V ∗ = hom(V ,Z2) is also non-archimedean
since it is a subgroup of ZV

2 .

In the sequel G is an arbitrary non-archimedean group. X is its associated Stone space, that is, G is a topological
subgroup of Homeo(X) (see Lemma 3.2). V and V ∗ are the non-archimedean groups associated to the Stone space X we
have mentioned at the beginning of this subsection. We intend to show using the technique introduced in Subsection 2.2,
among others, that G is a topological group retract of a non-archimedean minimal group.

Theorem 4.1. For every Stone space X the (locally compact 2-step nilpotent) Heisenberg group H = (Z2 ⊕ V ) � V ∗ is minimal and
non-archimedean.

Proof. Using Fact 2.11 (or, by direct arguments) it is easy to see that the continuous separated biadditive mapping

w : V × V ∗ → Z2

is minimal. Then by Fact 2.10.1 the corresponding Heisenberg group H is minimal. H is non-archimedean by Corol-
lary 3.4. �
Lemma 4.2. Let G be a topological subgroup of Homeo(X) for some Stone space X (see Lemma 3.2). Then w(G) � w(X) = w(V ) =
|V | = w(V ∗).
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Proof. Use the facts that in our setting V is discrete and V ∗ is compact. Recall also that (see e.g., [13, Theorem 3.4.16])

w
(
C(A, B)

)
� w(A) · w(B)

for every locally compact Hausdorff space A (where the space C(A, B) is endowed with the compact-open topology). �
The action of G ⊂ Homeo(X) on X and the functoriality of the Stone duality induce the actions on V and V ∗ . More

precisely, we have

α : G × V → V , α(g, A) = g(A)

and

β : G × V ∗ → V ∗, β(g, f ) := g f , (g f )(A) = f
(

g−1(A)
)
.

Every translation under these actions is a continuous group automorphism. Therefore we have the associated group homo-
morphisms:

iα : G → Aut(V ),

iβ : G → Aut
(

V ∗).
The pair (α,β) is a birepresentation of G on w : V × V ∗ → Z2. Indeed,

w
(

g f , g(A)
) = (g f )

(
g(A)

) = f
(

g−1(g(A)
)) = f (A) = w( f , A).

Lemma 4.3.

(1) Let G be a topological subgroup of Homeo(X) for some Stone space X. The action α : G × V → V induces a topological group
embedding iα : G ↪→ Aut(V ).

(2) The natural evaluation map

δ : X → V ∗, x �→ δx, δx( f ) = f (x)

is a topological G-embedding.
(3) The action β : G × V ∗ → V ∗ induces a topological group embedding iβ : G ↪→ Aut(V ∗).
(4) The pair ψ := (α,β) is a t-exact birepresentation of G on w : V × V ∗ → Z2.

Proof. (1) Since V is discrete, the Birkhoff topology on Aut(V ) coincides with the pointwise topology. Recall that the
topology on G inherited from Homeo(X) is defined by the local subbase

H A := {g ∈ G: g A = A}
where A runs over nonempty clopen subsets in X . Each H A is a clopen subgroup of G . On the other hand the pointwise
topology on iα(G) ⊂ Aut(V ) is generated by the local subbase of the form{

iα(g) ∈ iα(G): g A = A
}
.

So, iα is a topological group embedding.
(2) Straightforward.
(3) Since V ∗ is compact, the Birkhoff topology on Aut(V ∗) coincides with the compact open topology.
The action of G on X is t-exact. Hence, by (2) it follows that the action β cannot be continuous under any weaker group

topology on G . Now it suffices to show that the action β : G × V ∗ → V ∗ is continuous.
The topology on V ∗ ⊂ ZV

2 is a pointwise topology inherited from ZV
2 . So it is enough to show that for every finite family

A1, A2, . . . , Am of nonempty clopen subsets in X there exists a neighborhood O of e ∈ G such that (gψ)(Ak) = ψ(Ak) for
every g ∈ O , ψ ∈ V ∗ and k ∈ {1, . . . ,m}. Since (gψ)(Ak) = ψ(g−1(Ak)) we may define O as

O :=
m⋂

k=1

H Ak .

(Another way to prove (3) is to combine (1) and [16, Theorem 26.9].)
(4) ψ = (α,β) is a birepresentation as we already noticed before this lemma. The t-exactness is a direct consequence of

(1) or (3) together with Fact 2.8(1). �
Theorem 4.4. The topological group

M := M(ψ) = H(w) �π G = (
(Z2 ⊕ V ) � V ∗) �π G

is a non-archimedean minimal group.
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Proof. By Corollary 3.4, M is non-archimedean. Use Theorem 4.1, Lemma 4.3 and Fact 2.10 to conclude that M is a minimal
group. �
Corollary 4.5. Every (locally compact) non-archimedean group G is a group retract of a (resp., locally compact) minimal non-
archimedean group M where w(G) = w(M).

Proof. Apply Theorem 4.4 taking into account Fact 2.8(1) and the local compactness of the groups Z2, V , V ∗ (resp., G). �
Remark 4.6. Another proof of Corollary 4.5 can be obtained by the following way. By Lemma 4.3 every non-archimedean
group G can be treated as a subgroup of the group of all automorphisms Aut(V ∗) of the compact abelian group V ∗ . In
particular, the action of G on V ∗ is t-exact. The group V ∗ being compact is minimal. Since V ∗ is abelian one may apply
[25, Corollary 2.8] which implies that V ∗ � G is a minimal topological group. By Lemmas 3.2 and 4.2 we may assume that
w(G) = w(V ∗ � G).

5. More characterizations of non-archimedean groups

The results and discussions above lead to the following list of characterizations (compare Lemma 3.2).

Theorem 5.1. The following assertions are equivalent:

(1) G is a non-archimedean topological group.
(2) G is a topological subgroup of the automorphisms group (with the pointwise topology) Aut(V ) for some discrete Boolean ring V

(where |V | = w(G)).
(3) G is embedded into the symmetric topological group Sκ (where κ = w(G)).
(4) G is a topological subgroup of the group Is(X,d) of all isometries of an ultra-metric space (X,d), with the topology of pointwise

convergence (where w(X) = w(G)).
(5) The right (left) uniformity on G can be generated by a system of right (left) invariant ultra-semimetrics.
(6) G is a topological subgroup of the automorphism group Aut(K ) for some compact abelian group K (with w(K ) = w(G)).

Proof. (1) ⇒ (2) As in Lemma 4.3(1).
(2) ⇒ (3) Simply take the embedding of G into S V ∼= Sκ , with κ = |V | = w(G).
(3) ⇒ (4) Consider the two-valued ultra-metric on the discrete space X with |X | = κ .
(4) ⇒ (5) For every z ∈ X consider the left invariant ultra-semimetric

ρz(s, t) := d(sz, tz).

Then the collection {ρz}z∈X generates the left uniformity of G .
(5) ⇒ (1) Observe that for every right invariant ultra-semimetric ρ on G and n ∈ N the set

H := {
g ∈ G: ρ(g, e) < 1/n

}
is an open subgroup of G .

(3) ⇒ (6) Consider the natural (permutation of coordinates) action of Sκ on the usual Cantor additive group Zκ
2 . It is

easy to see that this action implies the natural embedding of Sκ (and hence, of its subgroup G) into the group Aut(Zκ
2 ).

(6) ⇒ (1) Let K be a compact abelian group and K ∗ be its (discrete) dual. By [16, Theorem 26.9] the natural map
ν : g �→ g̃ defines a topological anti-isomorphism of Aut(K ) onto Aut(K ∗). Now, K ∗ is discrete, hence, Aut(K ∗) is non-
archimedean as a subgroup of the symmetric group S K ∗ . Since G is a topological subgroup of Aut(K ) we conclude that G is
also non-archimedean (because its opposite group ν(G) being a subgroup of Aut(K ∗) is non-archimedean). �
Remark 5.2.

(1) Note that the universality of SN among Polish groups was proved by Becker and Kechris (see [3, Theorem 1.5.1]). The
universality of Sκ for N A groups with weight � κ can be proved similarly. It appears in the work of Higasikawa, [17,
Theorem 3.1]. For universal non-archimedean actions see [29].

(2) Isometry groups of ultra-metric spaces studied among others by Lemin and Smirnov [22]. Note for instance that [22,
Theorem 3] implies the equivalence (1) ⇔ (4). Lemin [20] established that a metrizable group is non-archimedean iff it
has a left invariant compatible ultra-metric.

(3) By item (6) of Theorem 5.1, the class of all topological subgroups of Aut(K ), where K runs over all compact abelian
groups K , is N A. It would be interesting (see Remark 2.9) to characterize the corresponding classes of topological
groups when K runs over all: a) locally compact abelian groups; b) compact groups; c) locally compact groups.

(4) In item (6) of Theorem 5.1 it is essential that the compact group K is abelian. For every connected non-abelian compact
group K the group Aut(K ) is not N A containing a nontrivial continuous image of K .
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(5) Every non-archimedean group admits a topologically faithful unitary representation on a Hilbert space. It is straightfor-
ward for S X (hence, also for its subgroups) via permutation of coordinates linear action.
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