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Abstract

We show that for every groupoid of partial homeomorphisms on a topological
space X there exists a topological embedding X — X and a universal group action
on the space X which extends the given groupoid action. We also show that the
construction is useful for homogenizations of topological spaces.

1 Some Useful Categories

Denote by GR and T OP the categories of all groups and of all topological spaces
respectively.

An action of a group GG on a topological space X is a triple < G, X, 7 >, where
7w : G — Homeo(X) is a homomorphism of G into the group Homeo(X) of all home-
omorphisms X — X. Denote by A the category of all actions. A morphism from
< G1,X1,m > to < Ga2,X9,m > is a pair of maps (H, f), where H : G1 — G2
is a homomorphism and f : X1 — Xg is a continuous function such that f is an
H—equwariant map, that is, f(mi(g)z) = m2(H(g))f(z) for any pair of elements
(g,a?) € G1 x X;.

Recall that a small category P is said to be a groupoid (see, for example, [Br, We])
if all of its morphisms are isomorphisms. A groupoid Q is a subgroupoid of P if Q) is a
(not necessarily, full) subcategory of P.

A category and its class of all morphisms sometimes will be denoted by the same
symbol. We write Ob(C') for the class of all objects in the category C.

For a topological space X denote by T'(X) the groupoid of all partial homeomor-
phisms of X. The objects in this category are precisely all topological subspaces of
X. A morphism o between two objects A, B is an arbitrary homeomorphism A — B.
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We use the notation im(c) = B, coim(c) = A. Let o and ¢ be two morphisms of the
category T(X). If im(8) = cotm(o) then the composition w(o,§) of these morphisms
in the category T'(X) is exactly the usual composition ¢ o § of maps. Besides this
partial operation w on T(X), define also a binary operation w*. If 0,§ € T(X) then
w*(0,8) = o * 6 is defined as the map §71(A) — o(A), where A = im(8) N coim(o)
and (o * §)(x) = o(§(x)) for every z € A. If A = 0 then w*(0,d) = 0, the empty
bijection. Clearly, w is a suboperation of w* and (7T'(X),w*) is an inverse semigroup,
a subsemigroup of a symmetric inverse semigroup of all partial bijections on X.

Definition 1.1. A preaction of a groupoid P on a topological space X is a triple
< P,X,m >, where m : P — T(X) is a functor.

Every group G is a groupoid with a single object (and vice versa). Then, an action

of a group G on X we can think of a functor 7 : G — T'(X) with n(G) = X.

Definition 1.2. We say that a preaction © : P — T(X) is effective if P is a sub-
groupoid of T(X) and 7 is the corresponding inclusion. Such preaction sometimes will
be denoted stmply by < P, X >. More specifically, let T' be a family of subspaces of
X. Denote by Pr (or, Pr(X)) the full subcategory of T(X) whose class of objects is

exactly I'. For instance, if I' denotes:
e B = {singletons}
e X = {finite subspaces}
e (' = {compact subspaces}

then Pg, Ps;, Pc will denote respectively the corresponding subgroupoids of T'(X). The
groupoid Pp is the so-called tree groupoid [BH] (or, simplicial groupoid, in terms of

[Hi]).

Definition 1.3. Let P be a subgroupoid of T(X). We say that a topological (metric)
space X is P—homogeneous (resp., metrically P—homogeneous) if for every homeomor-
phism (isometry) o : A — B from P there exists a homeomorphism (resp., isometry)
X — X which extends . If P denotes one of the following groupoids: Pg, Py, or, Pc,
then, X will be called: (metrically) homogeneneous, (metrically) ¥—homogeneous,
(metrically) C'—homogeneous, respectively.

For metrically homogeneous spaces, see [Sh, Ok, OP]. Metrically ¥ —homogeneous
spaces appear in [Us2] under the name metrically w—homogeneous.
We will deal with the following questions:

Question 1.4. (Q1) Let < P,X > be a preaction. Is it true that there exist a topo-
logical embedding i : X —'Y and a group action < G,Y > such that every partial
homeomorphism o € P of X can be realized as the trace of a g—transitionY —'Y
for a certain g € G ¢

(Q2) If such an embedding is possible, can we choose it to be universal ?
(Q3) What kind of topological properties of X may preserve Y ¢

(Q4) Can a topological space X be embedded into a C'—homogeneous
(X —homogeneous) space preserving original topological properties of X ¢
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The main aim of the present paper is to answer in affirmative to the concrete
questions (Q1), (Q2). We answer partially to the general questions (Q3), (Q4).

In order to formulate our main theorem in categorical terms we define a category
P A of all preactions.

Definition 1.5. morphism from a preaction < Pi, X1,m1 > to < Ps, Xo,m > is a
pair m = (F, f), where F' : P — P5 is a functor and f : X1 — X5 is a continuous
function such that the following two conditions are satisfied:

(M1) f(m1(A)) C m2(F(A)) for every object A in Py;

(M2) f(mi(o)x) = ma(F'(0))f(x) for every o from Py and every x € coim(mi(0)).

Observe the fact that f(z) € coim(na(F(0))) is guaranteed by (M1). The compo-
sition of morphisms is defined naturally. Clearly, the category of all actions A is a full
subcategory of PA. Denote by inc : A — PA the corresponding inclusion. We will
show that this functor has a left adjoint; or in other terms, A is a reflective subcategory
of PA (for these and other categorical concepts see, for example [HS, Ma, Hi]).

For a category C denote by E(C), or simply by F, the class of all identities. We
say that a functor F' : C1 — Cy is strictly faithful if F maps each pair of distinct
non-identical morphisms into distinct morphisms. That is, if F' is injective on C1\ E.

2 Universal Actions

We will say that a morphism m = (F, f) in the category PA is an embedding if F is
strictly faithful and the map f is a topological embedding. The following result is our
main result.

Theorem 2.1. The functor inc : A — PA has a left adjoint A < PA. That is,
for every preaction < P,X,n > there exists a universal action < G(P),X,7 >. The
corresponding morphism

g=(u,i): <P X,m> — <GP),X,7>
is an embedding.

As we will see, the most difficult part is to prove that the map i: X — X is a
topological embedding. As to just the existence of the universal action, it can alterna-
tively be obtained by purely categorical methods; namely, by Freyd’s Adjoint Functor
Theorem [Ma].

The proof of Theorem 2.1 is devided into several parts.

¢ Description of the functor u: P — G(P)

Actually we construct a universal group of a groupoid P in terms of generators and
relations. The group G(P) is generated by the set P of all morphisms, taking into
account the following identities:

€A = ¢€p, 0102 =01002

where e4,ep € E(P) and 01 o 09 is defined in P. In other words, we have elementary

reductions of two types: deleting identity morphisms and multiplying when it possible
in P.
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Proposition 2.2. FEvery element g € G(P) has a unique reduced representation
g =0102"0qp
where o; € P.

Proof. The proof easily follows from results of [Hi, ch.10], where a method of van der
Waerden (on group free products) is adapted for groupoids and graphs. For convenience
we present here a short direct proof based on J. Stallings well-known notion of pregroups
[St], representing G(P) as a universal group of a certain pregroup Py. In order to obtain
P, we identify all identities in P. That is, we consider an equivalence relation on P,
where the unique nontrivial equivalence class is E. Denote this class by 1. Now we
can define a natural partial binary operation wg on Py as follows:

1) wo(o,8) = o o4, if the latter is defined in P;
2) wo(o,1) = wo(1,0) = o;
3) Not defined, otherwise.

It is easy to show that the pair (Py,wq) is a pregroup in the sense of Stallings.
Therefore the pregroup Py defines a universal morphism j : Py — U(Py), where U(Pp)
is the so-called, universal group of Py. It follows from the main theorem on pregroups
that the two Py—reduced representations

g =0102+0p, g=06102"""6m

of the same element g necessarily have the same length, m = n, and there exists a word
(ap,ai,---ay) such that ay = a, = 1 and §; = ai__lloiai in (Py,wp). In our situation
it suffices to show that every a; is 1. Assuming the contrary, let a; # 1 for some 3.
Then o; o a; and a,fl o 041 are defined in P. Therefore, im(c;y1) = coim(o;). This
means that o; o 0,41 is defined too. Hence the word g = 0109 - 0, is not reduced, a
contradiction. O

In view of Proposition 2.2, we may naturally define the length I(g) = n for every
g € U(Py). As usual, we assume [(1) = 0. Denote the group U(P) by G(P) or, simply
by G. Then the canonical map u : P — G(P) actually is a functor between groupoids.
By Proposition 2.2 it is clear that I(g) = 1iff g € P\ E. Therefore u is strictly faithful.

The uniqueness of reduced representations allows us to define the following partial
order “ < “on G(P)=G. We write g1 < g2 if g1 = 1 or g1 = go, or if in the corresponding
reduced representations we have

g1 = 0102+ 0np, g2 = 0102 0n0n41 """ 0Om

For every pair g, h € G there exists the greatest lower bound denoted by g A h.

We introduce also a special function * : G — T'(X). If g € Gand g = 01020, is a
reduced representation then we define g* = 7(01) * 7(0o2) *- - -« w(0y,). Then o* = 7 (o)
for every ¢ € P\E. For 1, assume 1* = Ix (the identity function X — X). The
function * is very important below in our construction. Using this function, roughly
speaking, we may go back to the inverse subsemigroup generated by 7(P) in (T'(X), *).

Lemma 2.3. (1) (g_l)* = (g*)_l, im(g)* = COim(g_l)*-
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(2) The map gi * g5 is a restriction of (g1g2)*.
(3) If g1 X g2 then hgi < hga for every h € G.

(4) If g1 X g2 then im(g2)* C im(g1)".
Proof. Straightforward.

¢ Construction of the universal action

Now we are ready to construct the phase space X of the universal action. Denote
by X the topological product G x X, where G carries the discrete topology. Define
the “first-coordinate action” as follows :

7 : G — Homeo(X), 7(g)(h,z) = (gh,z) = g(h,z).

Note that here, and sometimes in the sequel, instead of 7(g)(u) we simply write gu or
g(u), and similarly for other actions. Define now an equivalence relation 2 on the set
X. We write (91,21)Q(g2, 2) if there exists an element h of G such that go = g1h and
h*(z2) = 1. The following result easily follows from Lemma 2.3.

Lemma 2.4. The relation §} is a G—invariant equivalence relation on X.

Consider the corresponding quotient space )N(/Q This space will serve as the
desired space X. Since the relation € is G—invariant, there exists a unique action
7 of G on X such that the canonical projection p : X — X is equivariant. Thus,
p(gu) = gp(u) for every u € X.

_The subspace {g} x X of the space X will be denoted by X; For its image p(X;)

in X, we reserve the symbol X,. The map

Zq:X%Xgﬁa ig(z) = (9,2)
is a homeomorphism. Define also the composition
ig=poiy: X = X,
and the restriction
pg:X;—>Xg, pg(u):p(u).

In the case of g = 1 we write 7 and i, respectively.
The proof of the following lemma is straightforward.

Lemma 2.5. For every g € G and v € X :
(1) gXn = Xgn.
(2) XgNXp=g(X1NX,1p).
(3) Gi(X)=GX1=X.
(4) Tale) = gi(e), iy(e) = gile).

(5) py: X; — Xy and i, : X = X, are continuous injective maps.

(6) g(iy'(w)) = py ' (u).
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In fact, as it follows from Proposition 2.10, every i, is a topological embedding.

Lemma 2.6. The triple < G(P),X,T > is an action and the pair (u,1) is a morphism
of the category P A.

Proof. We have already shown that u : P — G(P) is a functor and i : X — X is
continuous. We need only to show that two conditions (M1), (M2) of Definition 1.5
are satisfied. For every object A € Ob(P) the corresponding object 7(u(A)) is just
the set X. Therefore, i(7(A)) always is a subset of X. This proves (M1). In order to

check (M2), consider a morphism o of P. For every = € coim(n(c)) we have

i(r(0)(z)) = p(o(1,2)) = op(1,z) = 7(0)i(z)
This proves (M2). a

®i: X — X is a topological embedding

Let B be a cover of a space Y. We will say that a topological space Y is a free
unton of B if a subset A C Y is closed (open) in Y iff AN B is closed (open) in the
subspace B for every B € (3.

Lemma 2.7. (1) Every X; 15 a clopen subset of)? homeomorphic to X and X is a
free disjoint union of the cover {X;|g € G}.

(2) X is a free union of the cover {X4lg € G}

Proof. Since G is discrete, the first assertion is trivial.
Let A be a subset of X such that ANX, is open in the subspace X, for every g € G.
Then p~'(A) = U{p~ (AN X,)|g € G} = U{p, (AN X,)|g € G}. Since p; (AN X,)

is open in X;' then p~!(A) is open in X. By the definition of the quotient topology we
obtain that A is open in X. O

Lemma 2.8. (1) i(4)N X}, = i(ANim(h*)) = i(A N coim(h™1)*).
(2) X1 0 X, =i(im(h*)) = i(coim(h~1)*);

(3) X, N Xy, = gi(im(g~th)*) = gi(coim(h™1g)*).

(4) In particular, X, N Xy, # 0 iff (97 h)* # 0.
Proof. By the definition of Q, (1,a)Q(h, z) iff A*(x) = a, or equivalently, iff a € im(h*).
This proves (1). Now other assertions easily follow by Lemmas 2.5 and 2.3. O

The following lemma means, in particular, that {X,| g € G} is a “treelike cover”

of X.

Lemma 2.9. Let gANh < g1 =g, gANh =< hy R h. Then X,NX;, C Xy NXy,. In
particular, Xy N Xp, C Xyap.

Proof. By Lemma 2.3, we have im(h~'g)* C im(h~'g1)*. On the other hand, by
Lemma 2.8:

X, N X, = hi(im(h™'g)*), X5 N X, = hi(im(h™g1)*).

Therefore we can conclude that X, N X;, C X, N Xj,. Similarly we can check that
Xglth:Xthgl thlﬂXgl. O
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One more notation. Let ¢ = o109+ 0,-10, be a reduced representation. We
denote o109+ 0p—1 by §.

Proposition 2.10. The map i: X — X is a topological embedding.

Proof. The map 1 is injective and continuous. We need to show that the induced map
X — Xy is closed. Let F' be a closed subset of X. We will show that there exists a
closed subset M of X such that M N X3 = i(F). A subset A is closed in X iff p~1(A)
is closed in X. By Lemma 2.7 it is equivalent to say that pgl(M NX,) is closed in X;
for every g € G. By Lemma 2.5 (6) it suffices to show that i;l(MﬁXg) is closed in X.
We will construct such M inductively, by building its intersections M, = M N X, with
each X, using induction on the length of the word g € G. Set L, = {g € G|l(g) < n}.

For g =1 we set F; = i(F') and M, = {F}1}.

Let us suppose that for every k& € {0,1,--- ,n} we have constructed a system
My, = {F,|lg € L,}, such that for every g,h € L,,g1 < g,k < n — 1 the following
conditions are satisfied:

(1) My C My

Fy = i(F);

Fy © Xy

Every A, = ig_l(Fg) is closed in X;

(2)
(3)
(4)
(5) FyN Xy =F;N Xy
(6) Fyn X5 C Fynn;
(7)

Fou N Xy C Fy.

Let I(g) =n+ 1 and g = 0102 - 0,41 be its reduced representation. If the set
F;N X, is empty then define F; = (). Otherwise, consider the partial homeomorphism
Ont1 @ coim(opy1) — tm(oyy1). By the induction assumption (4), A; is a closed
subset of X. Therefore there exists a closed subset A, of X such that

(%) On+1(Ag Ncoim(op41)) = Ay Nim(opt1)

Define F as i4,(A,) and My41 = {Fy| g € Ly,41}. We will show that all conditions

are again satisfied for L,4+1. Indeed, the assertions (1), (2), (3) and (4), are trivial. In
order to check (5), we use (x) and Lemmas 2.8 (1) and 2.5 :

F,NnX; = gi(4,) ﬂng;lrl = gop41(i(Ag) N X 1 ) =

n+41
= gi(on+1(Ag Necoim(op41)) = Gi(AgNim(opy1)) =
= g(i(At)) N ern+1) = Ft) N Xg

Let us check the assertion (6) for L,4+1. Let g,h € L,4+1. The proof is nontrivial
only when g # h and g # 1. We can assume that I(g A h) < n. Observe that

FyN X, = (FyN X)) N X = FyN(X,NXp).

By our assumptions, g Ah < g < g. Therefore by Lemma 2.9 we have X, N X} C
X; N X}, Taking into account (5) and again Lemma 2.9, we get

FgﬂXhgFgﬂngth:Fg'ﬂXgﬂXhgngng/\h.



8 Michael Megrelishvili

On the other hand, since §,g A h € L,,, by our induction assumption (6), we have
F(} N Xg/\h - Fg/\g/\h = Fg/\h

Therefore, eventually we obtain Fy; N X} C Fyap.
Finally, we have to prove (7) for every g1 < g where l[(g) =n+1. Since g1 < § < g,
by Lemma 2.9 we have X, N X, C X; N X,. Thus,

FoonXy=F,, NX,, NX, CFyNX;NX,

By induction assumption (7) for g1,g € L,, we can replace Fy, N X; by Fj;. Hence,
taking into account (5), we obtain

FpNX,CF,NX;NX,CF;NX,=F,NX,;CF,

as desired.

Thus by induction we obtain a sequence {My|n € N}, where M,, = {F,lg € L}
satisfies all assertions (1)-(7) for every g € G. Define M = U{F|g € G}. Then by our
construction, M N X; = i(F'). By the assertions (6) and (7),

quXh - E(}/\h,a Fq/\thh c Fh-

Hence, Fy, N X} C Fj, for every g,h € G. Taking into account the assertion (3),
we obtain Z,TI(M NnXy = i;l(Fh) = A;. Since Aj is closed in X, the proof is
completed. O

Corollary 2.11. The morphism p = (u,1) is an embedding.

¢ The universality

Now in order to complete the proof of our main theorem, we have only to check
the universality of the morphism ¢ = (u,i) :< P, X, 7 >—=< G(P),X,7 > .

Let m = (H,¢) :< P,X,m >>< K,Y, u > be a morphism in the category A, where
< K,Y,pu > is an action. By the universality of the functor v : P — G(P) it follows
that there exists a unique group homomorphism H : G — K such that H ou = H.
Define

$: X =Y, ¢g,2)=H(g)d(x).
If (g1,21)Q(g2,x2) then by the definition, gl_lgg = h and h*(z2) = z1. Let h =
0109 -+ - 0y, be the reduced word. Taking into account that H is a homomorphism and
m is a morphism, we obtain

H(g7 92)¢(x2) = H(o1)H(02) - - H(0n)¢(22)

= H(o1)H(02) -+ H(on-1)p(m(0n)(22)) = - = ¢(h" (22)) = (1)

Thus, H(g2)é(z2) = H(g1)d(z1). Then ¢(g1,21) = (g2, x2). This means that the
map % preserves the equivalence relation 2. Therefore qg induces on X a unique map
¢ : X — Y such that gop = {5 It is easy to show that 5 is H—equivariant. Then
this implies directly that ¢ is also an H—equivariant. Hence the pair m = (H, ¢) is a
morphism.

Next we show that ¢ o1 = ¢. Indeed,

#(i(z)) = d(p(z)) = ¢((1,2)) = $(=).
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As we already know, H o u = H. Therefore, m = m o q. The uniqueness of H is
clear because the universality of G(P). As to ¢, note that ¢(p(g,z)) = ¢(gp(1,z)) ,
Gi(X) = X and ¢ must be equivariant. Therefore, the definition of ¢ is the unique
possible. Theorem 2.1 is proved.

We will identify X with the subspace i(X).

Proposition 2.12. For every effective preaction < P, X > each partial homeomor-
phism o € P of X is the trace of the homeomorphism o € G(P) of X.

Proof. Indeed, the trace of the map o : X — X on X = i(X) is the following partial
homeomorphism

XNno X)) = o(X)NX, z—plo,z)=o0(z).
Now, observe that by Lemma 2.8 (2) we have
Xno HX)=XnNX,1 = coim(o)

c(X)NX =X,NX =1im(o).

3 Homogenization of topological spaces

Definition 3.1. We say that a preaction < P, X,m > is transitive if for every pair
a,b € X there exist a finite sequence x1,x2, -+ ,2, n X and a finite sequence of
morphisms 01,02, -+ ,0n_1 in P such that

1 =a,z, =b, w(o;)(z;) = @it1
for every i € {1,2,--- ,n — 1}, equivalently, if h*(a) = b for some h € G(P).

Lemma 3.2. The universal action < G(P), X, T > is transitive iff the given preaction
< P, X,m > 1s transitive.

Proof. If the universal action is transitive and a,b € X = i(X) then ga = b for
some g € G. Therefore, (g,a)Q(1,b). Then by the definition of it is clear that
g*(a) = b. Conversely, let the preaction be transitive and u,v € X. There exist
g1,92 € G and a,b € X such that u = gia,v = gob. By Definition 3.1 there exist
T1 = a,T2, * ,Typ_1,T, = b and o1,09. -+ ,0,_1 such that n(c;)(z;) = x;4+1. Denote
h =o0102---0,. Then gghgl_l(u) = . O

Remark 3.3. The preaction < Pp,X > defined by the tree groupoid Pp of all single-
tons, clearly is transitive. Therefore the corresponding universal action < G(Pg), X g >
is transitive. This provides us some “homogenization” X — X of X. By comparing
the universal properties, it is easy to show that < G(Pg),Xp > is isomorphic to the
so-called free homogeneous space in the sense of Belnov [Be]. More information about

homogenizations can be found in [AE, Ar, Mi, Ok, OP, Sh, Usl, Us2, Ya].

We discuss now the question (Q4). We will prove that our construction frequently
preserves the normal type properties and the dimension.

We will say that a preaction < P, X, 7 > is closed (open) if 7(A) is a closed (resp.,
open) subset of X for every A € P.
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Lemma 3.4. Let < P, X,n > be a closed (open) preaction. Then every X, is a closed
(resp., open) subset of X .

Proof. Let h = o109+ 0, where o; € P. By our assumption, the subsets im(7(0;))
and coim(m(o;)) all are closed (open) in X. Since every w(o;) is a partial homeomor-
phism of X, it is easy to show by the definition of w* that the sets coim(h*) and im(h*)
also are closed (open) in X. Now the rest follows by Lemmas 2.7 (2) and 2.8 (3). O

The following definitions are inspired by [Be] and [Wal].
(D1) A subset A C X is called an F—set if A, as a topological subspace, is a free
union of the cover {4 N X |g € G}.

Clearly every closed (or open) subset A is an F'—set.
(D2) Let X,Y be topological spaces. We write X 7Y if for any closed subset S C X,

every continuous map fp: S — Y admits a continuous extension f: X — Y.

Proposition 3.5. Let < P,X, 7 > be a closed preaction, let A be an F—set, and let
(AN X )TY for every g € G. Then ATY .

Proof. Let f: M — Y be a continuous map, where M is a closed subset of the space
A. Denote by fo: M N X7 — Y the corresponding restriction. Since (AN X;1)7Y and
M N Xq is closed in A N X3, there exists a continuous extension ?(J cANXy =Y of
fo- Suppose that 0 < n and for every k& with 0 < k& < n there exists a continuous map
fi : Ax = Y such that: Ay, = U{AN X, : g € L1}, and the maps f; and f agree on
M N Ay

Let g = 0109 00,41 be a reduced word. Then § = 0105 - - - 0y,. Define the map

b (ANX; NXH)U(MNX,) =Y

bo() = f(=z), reMNX,
T fu@),  zeAnX;nX,

Clearly, M N X, is closed in AN X,. By Lemma 3.4 the set AN X; N X, is also
closed in the space AN X,. Hence, ¢, is continuous. Since (AN X,)7Y, there exists a
continuous extension $g tANX, =Y. If h € Ly41 and h # g then Lemma 2.9 implies
that X, N X; C X; N X},. Therefore, the maps 5;,, and Eg agree on AN X, NX,. By
this fact, and using the maps ¢g,7ﬂ, we can define on the set 4,11 = U{AN X, |g €
Loy1} amap f,41 : App1 — Y such that it extends f,, and coincides with f on the
intersection M N A, +1. By our assumption, A is an F'—set. This implies that ?n—i—l is
also continuous. The direct limit of the maps {f, : n € N} is the desired continuous
extension of f. O

Proposition 3.6. Let < P, X, 7 > be a closed preaction. Then
(i) If the space X is (hereditarily) normal then X is also (hereditarily) normal.
(ii) If X is normal and dimX < n then dimX < n.

(ii1) If X is a Tychonoff space and every A € Ob(P) is a C*—embedded subset of X
then X is Tychonoff.
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Proof. The normality, as well as the property dimX < n, may be formulated in terms
of X7Y for Y =10,1] and Y = S,, (the n—dimensional sphere) respectively.

Hereditary normality is equivalent to the normality of all its open subspaces (see
[En]). Hence, we can use the definition of F'—sets.

To show (iii), first observe that X is a Ty —space iff X is T} (without any restrictions
on P). This follows from Lemma 2.7. In order to prove that a point u € X and a closed
subset A C X are separated by a continuous real valued function, we can suppose that
u € i(X). Starting from a continuous function fy : X1 — [0, 1] which separates v and
AN X3, we may construct f : X — [0,1] by induction, slightly modifying the proof of
Proposition 3.5. O

Proposition 3.7. Let X be a normal space (and dimX < n). Then X can topologi-
cally be embedded into a normal C'—homogeneous space Y (resp., with dimY < n).

Proof. The effective preaction on X defined by the groupoid Pp(X) is transitive. The
corresponding universal action < G(P¢),X¢ > is transitive by Lemma 3.2. But we
need much more than homogeneity. In order to achieve the C-homogeneity, we iterate
our construction. In every step we “preserve old homeomorphisms” in the new groupoid
preaction. More precisely, as a first step, we denote Xg = X, X; = X¢ and P} =
Po(Xg). Let iy : Xyg — X3 be the corresponding topological embedding (Proposition
2.10). In order to build X3, we define a groupoid P, as the minimal subgroupoid of
T(X1) which contains both G(P;) and the set Pp(X7) of all homeomorphisms between
compact subsets of X;. Define now Xs as the phase space of the universal action
for the preaction < Ps, X7 >. We will identify X}, with its image i, (Xy) in Xj41.
Continuing in this manner, by Propositions 2.10 and 3.6 we will obtain an increasing
sequence of topological closed embeddings of normal spaces (with dim < n)

Xo=XCX1CXoC---

The crucial property of these embeddings is the fact that every partial homeomorphism
between compact subsets of X,, canonically can be extended to a homeomorphism of
Xj, for every n+ 1 < k. If we consider the direct limit space Y = U{X,,|n € N} then
every pair of compact subsets of Y are contained in some X,,. By the above mentioned
extension property, Y is C'—homogeneous. The normality of such direct limits is well-
known; see, for example [FR, Proposition 3.4]. By the countable sum theorem [En],

dimY < n. O

4 Concluding remarks and some perspectives

The present paper is a simplified version of results first presented in the dissertation
[Me2, ch.3] and in a short form in [Mel]. Some of our results have already been used
in [Pe].

There are several natural directions for possible developments:

e More properties

Find more topological properties that are inherited by X. Note, for instance, that

Proposition 3.6 is not true if we replace dim by Ind or ind. The existence of a coun-
terexample follows easily from the fact that the finite sum theorem is not valid in
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general for Ind and ind in compact Hausdorff spaces (see [En, 7.4.15]). Neverthe-
less, if the objects of P are finite subspaces of X, then inductive constructions are
still valid. Therefore, we can preserve Ind and ind substituting ¥—homogeneous for
C'—homogeneous. For these and some more results in this direction, see [Mel, Me2].

e Varying the topology on X
If we restrict our attention primarily on topological properties of homogenizations,
then we may consider weaker topologies on X. Interesting results in this direction in

the case of X g can be found in [Ok, OP].

e Topological groupoids

It seems interesting to find an appropriate generalization of our construction for
topological groupoids G (see, for example [Br, BH, HM, We]), for instance, in the case
of the free topological group G(P) of a topological groupoid P.

e Varying the group G

What happens if for a given preaction < P, X, 7 > we fix a functor v : P — G from
a groupoid P into a given group G I The question about existence of a G—universal
(with respect to 7) action admits an appropriate reformulation in categorical terms
By constructing the spaces X and X in the same way as above (but for the given
individual G and v), it is easy to show that such a universal G-action < G, X, 7 >
always exists.

e Partial actions of groups

Our construction of X uses an equivalence relation naturally defined on G x X
by a certain inverse semigroup of some partial homeomorphisms on X. The same
construction was rediscovered recently by J. Kellendonk and M.V. Lawson [KL] in the
context of universal globalizations of group partial actions on topological spaces.

e Other categories

A category C is concrete if any object X € Ob(C) is a set with some extra structure.
It is clear how to define in such categories the groupoid T'(X ) of all partial isomorphisms
of the object X. Then a preaction of a groupoid P on X can be defined as a functor P —
T(X). The definitions of actions and universal actions, can also be easily modified.

For instance, what happens if we replace TOP by other categories that are useful
in topology, e. g. UNZF (uniform spaces), and METR (the category of all metric
spaces and non-expanding maps) I' In the latter case, important concrete results can
be found in [OP, Us2]. In [OP], the authors found an interesting metric version of the
free homogeneous space X . In [Us2], Uspenskii establishes that every metric space
can isometrically be embedded into a metrically ¥ —homogeneous space.

The idea of using coproducts with amalgamations seems to be quite fruitful for
several (not necessarily topological) categories. The central question is whether the
corresponding morphism X — X is a monomorphism. For example, it is well known
that in the category GR of all groups, free products with amalgamated subgroups are
very useful. In the classical work [HNN] the authors show how partial isomorphisms
between subgroups of a group X can be realized as the trace of a conjugation in the
suitable group Y. Further, Theorem 3 in [HNN] states that for every torsion-free group
X there exists a group embedding X — Y such that in Y any two non-unit elements
are conjugate. The proof uses a “group tower” with a suitable extension property
similar to the “space tower” in the proof of Proposition 3.7.
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