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1. Homework 1

Exercise 1.1.

(1) Show that every normed (in fact, any seminormed) space (E,+, || · ||) is a
topological group and the family {Bn(0)}n∈N, with

Bn(0) := {x ∈ E : ||x|| < 1

n
}

is a local base at 0.
(2) Show that (Z,+, d5), where d5 is the 5-adic metric 1, is a Hausdorff topological

ring and give an example of its local base at 0 every member of which is a
subgroup of Z.

(3) Every group G with the trivial topology τtr := {∅, G} is a topological group.
The same is true with respect to the discrete topology τdiscr := P (G).

(4) Give an example of a topological group with nontrivial topology which is not
Hausdorff.

Proof.

(1) We show that addition is continuous. Indeed, let ε > 0 and define δ := 1
2
ε.

We claim that if ∥x1 − x2∥ < δ and ∥y1 − y2∥ < δ then

∥(x1 + y1)− (x2 + y2)∥ < ε.

Indeed:

∥(x1 + y1)− (x2 + y2)∥ = ∥(x1 − x2) + (y1 − y2)∥
≤ ∥(x1 − x2)∥+ ∥(y1 − y2)∥
< δ + δ = ε.

1Recall that for every distinct x, y ∈ Z we have
d5(x, y) =

1
5k
, where k = k(x, y) := max{i : 5i|(x− y)})

1
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Another quick proof comes using the sequences. Let lim an = a. lim bn = b.
Equivalently, lim ∥a− an∥ = 0, lim ∥b− bn∥ = 0. Then

lim ∥(a+ b)− (an + bn)∥ = 0

because 0 ≤ ∥(a+ b)− (an + bn)∥ ≤ ∥a− an∥+ ∥b− bn∥.

It is also easy to see that the inversion operation

E → E, x 7→ −x

is continuous. Indeed, let lim an = a. Equivalently, lim ∥a− an∥ = 0. Then
also,

lim ∥a− an∥ = lim ∥an − a∥ = lim ∥(−a)− (−an)∥ = 0.

So, lim(−an) = −a.

To see that {Bn(0)} is a local base, recall that for every ε > 0, there exists
n ∈ N such that 1

n
< ε and therefore Bn(0) ⊆ Bε(0).

(2) To see that addition and inversion are continuous we can use similar arguments
as in the previous item.

We now show that multiplication is continuous. In fact, we will show that
the multiplication map · : Z × Z → Z, (x, y) 7→ x · y is a Lipschitz map and
therefore continuous. Note that

max{n ∈ N | 5n | ab} = max{n ∈ N | 5n | a} ·max{m ∈ N | 5m | b}.
Thus, for every 0 ̸= a, b ∈ Z we have:

∥ab∥5 := (max{n ∈ N | 5n | ab})−1

= (max{n ∈ N | 5n | a})−1 · (max{m ∈ N | 5m | b})−1

= ∥a∥5∥b∥b.
We can also easily verify this identity when a = 0 or b = 0.
A basis of neighborhoods is given by Bn(0) = 5nZ, n ∈ N.

(3) If G is trivial, then the multiplication and inversion are continuous as maps
into a trivial topology. If G is discrete, they are continuous as maps from a
discrete space.

(4) Consider the topological group (R, τtr) × R. It is a product of topological
groups and therefore also a topological group. However, it is clearly not Haus-
dorff nor trivial.

□

Exercise 1.2. Let G ∈ TGr. Prove that for every U ∈ N(e) of the identity e ∈ G and
every given n ∈ N there exists V ∈ N(e) such that V = V −1 and V n := V V · · ·V︸ ︷︷ ︸

n times

⊂ U .

Proof. First of all check by induction that G → G, x 7→ xk is continuous for every
given k ∈ Z (consider separately two cases of natural k and k < 0). Then use again
induction for n ∈ N to complete the proof in general.

Now, by the continuity of G → G, x 7→ xn at the identity point e ∈ G, for every nbd
U ∈ N(e) and every given natural n ∈ N there exists W ∈ N(e) such that W n ⊂ U .
Now take the symmetric nbd V := W ∩W−1 ⊂ W . □



3

Exercise 1.3. Find Hausdorff topological groups (G1, τ1) and (G2, τ2) and a continuous
onto injective homomorphism f : (G1, τ1) → (G2, τ2) such that f is not a homeomor-
phism (that is, f−1 is not continuous). This shows that not every continuous algebraic
isomorphism is an isomorphism in the category TGr of topological groups.

Proof. id : (R, τdiscr) → R. □

Exercise 1.4. Prove that

(1) G is homogeneous 2 as a topological space.
(2) * Moreover, G is bi-homogeneous in the following sense: for every pair (x, y) ∈

G×G there exists f ∈ Homeo (G,G) such that f(x) = y and f(y) = x.
(3) Which of the following topological spaces are of the group type: 3

(a) Cantor set.
(b) X := {x ∈ R2 : ||x|| = 5}.
(c) X := {x ∈ R3 : ||x|| < 5}.
(d) The integers Z with the cofinite topology.

Proof. (1) (Sketch) la : G → G is a homeomorphism and la(x) = y for a := yx−1

(follows also directly from (2)).
(2) Consider the function f : G → G, f(g) = xg−1y. This is a homeomorphism as

a composition of three homeomorphisms f = lx ◦ ly ◦ i (where i : G → G, i(g) = g−1).
(3)
(a) Yes. C ≃ {0, 1}N and {0, 1}N is homeomorphic to the topological group

{−1, 1}N.
(b) Yes. The circle X := {x ∈ R2 : ||x|| = 5} is homeomorphic to T ≃ R/Z.
(c) Yes. The open ball X := {x ∈ R3 : ||x|| < 5} is homeomorphic to R3. Indeed,

the desired homeomorphism is

f : R3 → X, f(x) =
5x

1 + ||x||
Similar arguments work in every normed space for every open ball.

(d) No. Indeed, it is T1 but not T2.
It is also easy to prove directly that the multiplication is not continuous. Observe

that for every cofinite subset V ⊂ Z we have V + V = Z. □

Exercise 1.5. Let A and B are subsets of G ∈ TGr and g ∈ G. Prove that:

(1) If A and B are compact then AB is also compact.
(2) If A and B are connected then AB is also connected.
(3) If A and B are closed then AB need not be closed.
(4) * If A is closed and B is compact then AB is closed.

Proof.

(1) A × B is compact. Thus, its continuous image m (A×B) = AB is also
compact.

(2) A × B is connected. Thus, its continuous image m (A×B) = AB is also
connected.

2For every pair (x, y) ∈ G×G there exists f ∈ Homeo(G,G) such that f(x) = y.
3Definition: Let us say that a topological space (X, τ) is of group type if the set X admits a

group operation w : X ×X → X such that the triple (X, τ, w) is a topological group.
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(3) In the group R take the closd subsets A = Z, B =
{
n+ 1

2n

}
n∈N. Then A+B ={

m+ 1
2n

}
m∈Z,n∈N and we have 0 = lim 1

2n
∈ (A+B) but 0 /∈ A+B.

(4) Let c /∈ AB then cB−1 ∩ A = ∅. Thus {c} × B−1 ⊆ m−1 (Ac). Clearly,
{c} × B−1 is compact and m−1 (Ac) is its open nbd in G × G. By the tube
lemma there exists U ∈ N (c) with U×B−1 ⊆ m−1(Ac). Hence, UB−1∩A = ∅.
So, U ∩ AB = ∅. Therefore, c /∈ cl(AB).

□

Exercise 1.6. Let G ∈ TGr. Prove that:

(1) cl(A−1) = cl(A)−1 and cl(A)cl(B) ⊂ cl(AB) for every subsets A,B of G.
(2) If H ≤ G is a subgroup then cl(H) ≤ G is also a subgroup.
(3) If H �G is a normal subgroup then cl(H)�G is also a normal subgroup.
(4) If G, in addition, is Hausdorff and H ≤ G is abelian then cl(H) ≤ G is also

an abelian subgroup. Give a counterexample if G is not Hausdorff.

Proof. (1) The inversion is a homeomorphism. Every homeomorphism preserves the
closure operator. This explains why cl(A−1) = cl(A)−1.
Let x ∈ cl(A), y ∈ cl(B). We have to show that xy ∈ cl(AB). Let U ∈ N(xy).

By the continuity of the multiplication there exist V ∈ N(x),W ∈ N(y) such that
VW ⊂ U . By our assumptions, V ∩ A ̸= ∅,W ∩ B ̸= ∅. Then VW ∩ AB ̸= ∅. Since
VW ⊂ U we obtain U ∩ AB ̸= ∅.
Remark: In fact, cl(A)cl(B) ⊂ cl(AB) for every semitopological semigroup 4 for
every subsets A,B. Indeed, it is easy to see that cl(A)B ⊂ cl(AB) for every right
topological semigroup 5. By the continuity of the right translation rb we obtain

cl(A) · b = rb(cl(A)) ⊂ cl(rb(A)) = cl(A · b)

for every b ∈ B).
Similarly, Acl(B) ⊂ cl(AB) for every left topological semigroup. We obtain

cl(A)cl(B) ⊂ cl(Acl(B)) ⊂ cl(cl(AB)) = cl(AB).

(2) cl(H)cl(H) ⊂ cl(HH) = cl(H) and cl(H)−1 = cl(H−1) = cl(H).

(3) Let H � G. Then fa(H) = H for every conjugation fa : G → G, g 7→ aga−1.
Now use the fact that every conjugation is a homeomorphism for every topological
group. So, fa(cl(H)) = cl(fa(H)) = cl(H).

(4) The function f : G × G → G, (x, y) 7→ [x, y] := xyx−1y−1 is continuous. Since
H is abelian, the restriction fH : H × H → H is the constant function. Namely,
f(h1, h2) = e for every h1, h2 ∈ H. Consider the subgroup cl(H) and the restriction
fcl(H) : cl(H)× cl(H) → cl(H) of f . Since H is dense in cl(H) and cl(H) is Hausdorff
fcl(H) should also be the constant function.
Hausdorff property is essential. Indeed, take a noncommutative group G with the

trivial topology and choose H := {e}. Then H is abelian but not cl(H) = G. □

4semigroup with separately continuous multiplication
5right translations are continuous
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2. Homework 2

Exercise 2.1. Let G1, G2 be topological groups and f : G1 → G2 be a homomorphisms
which is continuous at the point e ∈ G1. Show that f is continuous.

Proof. Let g ∈ G1, we will show that f is continuous at g. Consider the translations
Tg−1 : G1 → G1, Tf(g) : G2 → G2 defined by:

Tg−1(h) := g−1h, Tf(g)(x) := f(g)x.

Note that since f is a group homomorphism, f = Tf(g) ◦ f ◦ Tg−1 . Indeed

(Tf(g) ◦ f ◦ Tg−1)(h) := f(g)f(g−1h) = f(h).

Since both G1 and G2 are topological groups, both Tg−1 and Tf(g) are continuous.
Furthermore, Tg−1(g) = e and f is continuous at e so f = Tf(g) ◦f ◦Tg−1 is continuous
at g.
This is true for every g ∈ G1, proving that f is continuous. □

Exercise 2.2. Let G be a topological group. Prove that:

(1) ∀U ∈ N(e) ∀ compact subset K ⊂ G ∃V ∈ N(e) :
xV x−1 ⊂ U ∀x ∈ K;

(2) for every compact subset K ⊂ G and a closed subset A ⊂ G with K ∩ A = ∅
there exists U ∈ N(e) s.t. UK ∩ A = ∅.

Proof. (1) Consider the conjugation map C : G × G → G defined by C(g, h) :=
ghg−1. This map is continuous. Also, for every x ∈ G, we have C(x, e) =
e. Therefore, we can find open nbds Vx ∈ N(e),Wx ∈ N(x) such that
C(Wx, Vx) ⊆ U . Note that {Wx}x∈K is an open cover of K in G. Since
K is compact, it has a finite subcover {Wx}x∈F , where F is a finite subset of
K. Then the finite intersection V :=

⋂
y∈F Vy ∈ N(e) is a neighorhood of e in

G. For every x ∈ K, we can find y ∈ F such that x ∈ Wy. Then

xV x−1 = C(x, V ) ⊆ C(Wy, Vy) ⊆ U.

(2) Every Hausdorff topological group is T3, so for every x ∈ K we can find an
open neighborhood Vx ∈ N(e) such that Vxx∩A = ∅. Choose Ux ∈ N(e) such
that U2

x ⊂ Vx.
Note that {Uxx}x∈K is an open cover of K and K is compact, so there is

a finite subcover {Uxx}x∈F , where F is a finite subset of K. Define U :=⋂
y∈F Uy. For every x ∈ K, we can find y ∈ F such that x ∈ Uyy. We obtain:

Ux ⊆ UUyx ⊆ UyUyx = U2
y y ⊆ Vyy ⊂ G \ A.

Now, it is clear that UK = ∪x∈KUx ⊂ G \ A.
□

Exercise 2.3. Prove or disprove: topological groups T2 and C∗ := C \ {0} are topo-
logically isomorphic.

Proof. T2 is compact and C∗ is not.
* I meant to write in the formulation: T2 is a quotient group of C∗. □
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Exercise 2.4. Let G be a Hausdorff locally compact topological group and H is a
closed subgroup of G. Prove that the coset G-space G/H is Hausdorff and locally
compact.

Proof. First we will show that G/H is Hausdorff. Suppose that

aH ̸= bH ∈ G/H.

Since H is closed, so is bH. Every locally compact Hausdorff space is Tychonoff
(also true in general for Hausdorff topological groups), so we can find a symmetric
U ∈ N(e) such that Ua∩ bH = ∅. Find a symmetric W ∈ N(e) such that WW ⊆ U .
We claim that WaH ∩WbH = ∅. Since the quotient map G → G/H onto the coset
space G/H is open, this would imply that we separated aH and bH.

By contradiction, suppose that x ∈ WaH ∩ WbH. Thus, there exists h1, h2 ∈
H, ε1, ε2 ∈ W such that x = ε1ah1 = ε2bh2. As a consequence

ε−1
2 ε1a = bh2h

−1
1 .

However, ε−1
2 ε1 ∈ W−1W = WW ⊆ U and bh2h

−1
1 ∈ bH so Ua ∩ bH ̸= ∅, a

contradiction.
Recall that the image of a locally compact space by an open, continuous map is

also locally compact (this is evident by taking the images of compact neighborhoods).
Also, the quotient map G → G/H is open. Moreover, it is clearly continuous. To-
gether, we have shown that the quotient space G/H is locally compact. □

Exercise 2.5. Let f : G → Y be a continuous homomorphism onto of topological
groups. Prove that f is open if and only if f is a quotient map.

Proof. Clearly, every open map is quotient. Conversely, suppose that f is quotient
and we will show that it is open. Using a similar argument to that of Exercise ??,
it is enough to show that f is open at e. Indeed, suppose that U ∈ N(eG). Since
f is quotient, to show that f(U) is a neighborhood of eY , it is enough to show that
f−1(f(U)) is a neighborhood of eG. Indeed, it is easy to see that:

f−1(f(U)) = (ker f)U(ker f) =
⋃

x,y∈ker f

xUy,

which is a neighborhood of eG as a union of transitions of neighborhoods of eG.
□

Exercise 2.6. Prove or disprove: GLn(R)/D is a locally compact Hausdorff topological
group, where D denotes the set of all invertible scalar matrices in GLn(R) for every
n ∈ N.

Proof. This is true. First, note that D is in the center (in fact, is the center) of
GLn(R) and therefore normal, making GLn(R)/D a group. Indeed, GLn(R) ⊆ Rn×n

is a locally compact topological group. Also, it is easy to see that D is a closed
subgroup of GLn(R). By our Exercise G/D is a locally compact Hausdorff topological
group. □

Exercise 2.7. Prove that the topological groups T2 and R2/Z2 are topologically iso-
morphic.
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Proof. We will identify T2 with (R/Z)2. The map q : R → T, q(x) = cis(2πx) is a
continuous open quotient. Then the same is true about the product map

f := q × q : R2 → T2.

Here kerf = Z2. Hence, we have a caninically defined continuous group isomorphism
γ : R2/Z2 → T2 such that f = γ ◦ p (where p : R2 → R2/Z2 is the natural projec-
tion). Since f is a quotient, the group isomorphism γ : R2/Z2 → T2 necessarily is a
homeomorphism.

□

Lemma 2.8. The only closed subgroups of R are of the form: R, {0} or aZ for some
a ∈ R.

Exercise 2.9. Prove or disprove: the subset {m
√
3 + nπ : m,n ∈ Z} is dense in R.

Proof. By contradiction, assume that G is not dense in R. Clearly, G ≤ R is a non-
trivial subgroup. By Lemma 2.8, we can find a ∈ R such that G = aZ. In particular,
there are n,m ∈ Z such that π = na,

√
3 = ma. As a consequence:

π =
n

m

√
3.

However, this would imply that π is algebraic, a contradiction.
□

Exercise 2.10. Prove that every Hausdorff topological quotient group of R is topolog-
ically isomorphic to one of the following groups: R, T, {1}.

Proof. All (op to the isomorphisms in TGr) Hausdorff topological group quotients of
R are the quotient groups R/H, where H is a closed subgroup. By Lemma 2.8 the
closed subgroups:

(1) H = R;
(2) H = {0};
(3) aZ for some a ∈ R.
Accordingly we have:

(1) R/H ≃ {0};
(2) R/{0} ≃ R;
(3) We claim that R/aZ ≃ T for every 0 ̸= a ∈ R (in the case of a = 0 we obtain

(2)).
For every 0 ̸= a ∈ R the map Ma : R → R, x 7→ ax is a topological group

automorphism. Consider the function

f = q ◦M 1
a
: R → T, f(x) = cis(

2π

a
x).

This is a continuous onto open group homomorphism (as a composition of
such homomorphisms). On the other hand, lerf = aZ. Therefore, R/kerf =
R/aZ ≃ T.

□
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3. Homework 3

Exercise 3.1. Prove or disprove: there exist closed subgroups H1, H2 ⊆ T such that
the subgroup H1H2 is not closed in T.

Proof. Disproving. Note that H1 and H2 are compact since T is compact. By an
Exercise, the product H1H2 is also compact. Also, T is Hausdorff so H1H2 is closed.

□

Exercise 3.2. Prove or disprove: on the group (R, τ) there exists a Hausdorff group
topology σ on R such that σ is strictly coarser than τ .

Proof. Proof.
Assuming the contrary, let R be a minimal topological group. That is, every

injective continuous homomorphism f : R → G into a Hausdorff topological group G
is an embedding of topological groups.

We proved in lecture notes that there exists an injective continuous homomorphism
f : R → T×T. Then f is an embedding of topological groups. Then f(R) (like, R) is
a locally compact but not compact subgroup of G. According to a result we proved
in lecture notes, f(R) must be a closed subgroup of the compact group T × T. This
implies that f(R) is compact. Contradiction ! □

Exercise 3.3. Prove or disprove: topological group T2 is a quotient group of the group
C∗ = C \ {0}.

Proof. Proof.
It is equivalent to show that there exists an open continuous onto homomorphism

C∗ → T× T.
First of all observe that C∗ is topologically isomorphic to R+ × T. Indeed, the

functions

f : C∗ → R+ × T, z 7→ (|z|, z

|z|
)

f−1 : R+ × T → C∗, (r, cisα) → rcisα

are well defined continuous homomorphisms.
Second observation is easy: the groups R+ and R are topologically isomorphic.

Indeed, consider for example the exponential function f : R → R+, f(x) = 2x.
The third observation. As we already know the natural homomorphism q : R → T

is an open map. Then the induced onto homomorphism q × id : R+ × T → T× T is
also open (the product of open maps is open).

Summing up all three observations we obtain an open continuous onto homomor-
phism C∗ → T× T, as desired. □

Exercise 3.4. Let G ∈ LCA. Prove that

(1) f1, f2 ∈ G∗ ⇒ f1 + f2 ∈ G∗.
(2) (G∗,+) is an abelian group.

Proof.

(1) First, f1+f2 is clearly a homomorphism (as the sum of two homomorphisms).
To see that f1+ f2 remains continuous, it is enough to check the continuity at
e ∈ G. Let ε > 0 and d be the metric on T. Since f1 and f2 are continuous,
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there exists some U ∈ NG(e) such that ρ(fi(x), 0) <
1
2
ε for every x,∈ U, i ∈

{1, 2}. As a consequence,

ρ((f1 + f2)(x), 0) = ρ(f1(x) + f2(x), 0) ≤ ρ(f1(x), 0) + ρ(f2(x), 0) <
1

2
ε+

1

2
ε = ε

(2) We already established that (G∗,+) is closed wrt the addition. The associa-
tivity is trivial (by the same property in T). Next, note that for every f ∈ G∗

we have −f ∈ G∗ defined as (−f)(x) = −(f(x)). Clearly, −f ∈ G∗ and
f + (−f) = 0. Therefore, we have shown that (G∗,+) is a group.

Finally, T is abelian so for every f1, f2 ∈ G∗ and x ∈ G we have:

(f1 + f2)(x) = f1(x) + f2(x) = f2(x) + f1(x) = (f2 + f1)(x).

As a consequence, f1 + f2 = f2 + f1, proving that (G∗,+) is abelian.

□

Exercise 3.5. Show that every G ∈ LCA is a closed subgroup of some P ∈ LCA such
that P is autodual (meaning that P ≃ P ∗).

Proof. Consider the group H := G × G∗. As we mentioned in class notes, the dual
group preserves preserved the finite products, so

H∗ = (G×G∗)∗ ≃ G∗ ×G∗∗ ≃ G∗ ×G ≃ G×G∗ = H.

Also, G ≡ G× {0} ⊆ H is a closed subgroup. □

Exercise 3.6. Show that the group G∗ is a topological group (with respect to the
compact open topology) for every G ∈ LCA.

Proof. After Exercise 3.4, we only need to show that addition and inversion are con-
tinuous.

We have to prove that

G∗ ×G∗ → G∗, (s, t) 7→ s− t

is continuous at every given point (s0, t0) ∈ G∗. Recall that the family

[K,O] := {f : G → T : f(K) ⊂ O}

with compact K ⊂ G and open O ⊂ T is a subbase of the compact open topology on
G∗. We use the following simple well known

Fact. Let f : X → Y be a function between topological spaces and γ be a prebase
for the topology of Y . Then for the continuity of f it is sufficient (and of course also
necessary) that f−1(U) is open for every U ∈ γ.

Let s0−t0 ∈ [K,O]. That is, (s0−t0)(K) ⊂ O. By the continuity of s0−t0 : G → T
the set (s0 − t0)(K) is compact in T. Then by Exercise 2.2.2 there exists V ∈ N(0)
in (R/Z,+) =: T such that V + (s0 − t0)(K) ⊂ O. Take a symmetric nbd W ∈ N(0)
such that W +W ⊂ V . Define

O1 := s0 + [K,W ], O2 := t0 + [K,W ].

Then if s ∈ O1, t ∈ O2 then s− t ∈ O. □
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Exercise 3.7. Let (M,d) be a metric space. Denote by G the group of all isometries,
with respect to the natural composition. Define on G the pointwise topology τp.
Prove that (G, τp) is a Hausdorff topological group.

Proof. We will show that the operation P : G×G → G defined by P (f, g) := f ◦ g−1

is continuous. Let F ⊆ M be finite and ε > 0. Write:

[F, ε] := {f ∈ G | d(x, f(x)) < ε}
Note that [F, ε] is a neighborhood of the identity e = idM of G.
We claim that P

([
F, 1

2
ε
]
×

[
F, 1

2
ε
])

⊆ [F, ε]. Let f, g ∈
[
F, 1

2
ε
]
and x ∈ F . Because

f, g are isometries, we know that:

d((P (f, g))(x), x) = d(f(g−1(x)), x)

= d(f(g−1(x)), f(f−1(x)))

= d(g−1(x), f−1(x))

≤ d(g−1(x), x) + d(f−1(x), x)

= d(x, g(x)) + d(x, f(x))

<
1

2
ε+

1

2
ε = ε.

In other words, P (f, g) ∈ [F, ε], as required.

(G, τp) is Hausdorff. Indeed, let g ̸= e in G = Iso(M,d). Then there exists x0 ∈ M
such that gx0 ̸= x0. Hence, ε := d(gx0, x0) > 0. Then g /∈ [F, ε] ∈ Ne(G). □

4. Homework 4

Exercise 4.1.

(1) Prove that G∗ is closed in TG for every discrete abelian G.
(2) Prove that the compact group G∗ is metrizable for every countable discrete

abelian group G.
Proof.

(1) Remark (indirect proof) If G is discrete, then in virtue of Pontryagin duality,
G∗ is compact (with respect to the compact open topology). As a consequence,
it is closed in every Hausdorff space that contains it.

(direct proof) Let us show that G∗ is closed in TG with respect to the
Tychonoff topology. Since every function is continuous from a discrete space,
G∗ contains all characters (all possible homomorphisms of G to T). In other
words:

G∗ =
⋂

a,b∈G

{
f ∈ TG | f(e) = 1G and f(ab) = f(a)f(b)

}
,

where 1G is the constant function mapping every g ∈ G to 1 ∈ T. It is clearly
closed as the intersection of closed subsets.

Every
{f ∈ TG | f(e) = 1G and f(ab) = f(a)f(b)}
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is closed because if the convergence of generalized sequences lim fi = f in the
product space TG means that ∀x ∈ G lim fi(x) = f(x).

(2) If G is countable and discrete, then TG is metrizable (as a countable product
of metrizable space). Therefore, G∗ is also metrizable as a subspace of TG.

□

Exercise 4.2. Prove that a (Hausdorff) topological group G is minimal if and only
if every continuous injective group homomorphism f : G → P into a Hausdorff
topological group P is an embedding.

Proof. First suppose that G is minimal and let f : G → P be a continuous, injective
group homomorphism where P is Hausdorff. Write τ for the topology of G and let σ
be the weak topology on G generated by f . Since f is injective and P is Hausdorff,
then σ is an Hausdorff group topology. In virtue of minimality, τ ⊆ σ.
Suppose now that eG ∈ O is a neighborhood of the identity in G. By the definition

of the weak topology, there exists a neighborhood eP ∈ U ⊆ f(G) such that f−1(U) ⊆
O. In other words, U ⊆ f(O), meaning that f(O) is also a neighborhood of zero.
Note that we used the fact that U ⊆ f(G). This is true for every neighborhood O
making f an open mapping (and therefore, an embedding).

Conversely, suppose that σ ⊆ τ is a Hausdorff group topology, weaker than τ .
Then the identity id : (G, τ) → (G, σ) is a continuous injective group homomorphism.
Therefore, it is an embedding. This implies that σ = τ , proving that τ is minimal. □

Exercise 4.3. Which of the following topological groups are minimal:

(1) Z
(2) R
(3) C
(4) T3

(5) C∗

Proof.

(1) Z is not minimal, it has the p-adic topology which is weaker than the discrete
topology.

(2) R is not minimal in virtue of Exercise 3.2.
(3) Let τ be a strictly weaker topology on R described in the previous item. Then

(C, τ×τ) is strictly weaker than C with the euclidean topology. By definition,
C is not minimal.

(4) T3 is compact Hausdorff and therefore minimal.
(5) It is easy to see that C∗ is topologically isomorphic to T×R. We already es-

tablished that R is not minimal, so neither is C∗ (following a similar argument
to (3)).

□

Exercise 4.4. Let G ∈ LCA. Prove that G is compact if and only if G is minimal.

Proof. First, if G is compact then it is clearly minimal.
Conversely, suppose that (G.τ) is locally compact and minimal. Consider the weak

topology τw on G generated by all possible homomorphisms f : G → T (here G
is discrete). Such homomorphisms separate the points as we already established for
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every discrete abelian G. Hence, we have a topological group embedding i : (G, τw) ↪→
TG. Clearly, τw ⊆ τ . The minimality of (G, τ) guarantees that τw = τ . Since (G, τ)
is a locally compact and TG is Hausdorff, the subgroup i(G) must be closed in TG.
Therefore, i(G) and, hence, also (G, τ)), are compact.

□

Exercise 4.5. Prove that every compact abelian Hausdorff topological group G can
be embedded into some torus group TS.

Proof. In virtue of Pontryagin duality, G∗ is discrete. Using Exercise 4.1, we know
that G∗∗ is closed in TG∗

. Recall that G ≃ G∗∗, so by writing S = G∗ we get that G
can be embedded in TS. □

Exercise 4.6. Prove that the class NA is closed under topological subgroups, products
and quotient groups.
Proof.

(1) subgroups : Let G be an NA group, and H ≤ G be a subgroup. By definition,
there exists a local basis γ = {Oj | j ∈ J} for G where {Oj}j∈J are subgroups.
It is easy to see that γH := {Oj ∩H | j ∈ J} is a local basis for H, consisting
of subgroups. By definition, H is an NA group.

(2) products : Suppose that G and H are NA groups. Write γG = {Uj | j ∈ J}
and γH = {Vi | i ∈ I} for the local bases consisting of subgroups. It is easy to
see that {Uj × Vi | (j, i) ∈ J × I} is a local basis for G×H.

(3) subgroups : Suppose that G is an NA group and H is a normal subgroup. By
definition, there exists a local basis γ = {Oj | j ∈ J} for G where {Oj}j∈J are
subgroups. It is easy to see that γ′ := {OjH | j ∈ J} is a local basis of G/H
consisting of subgroups, making G/H an NA group.

□

Exercise 4.7. Let (X,µ) be a uniform space. Prove that (X, top(µ)) (defined in lecture
notes) is a topological space. Show that this topology is Hausdorff iff

∩{ε : ε ∈ µ} = {(x, x) : x ∈ X}

Proof. We will show the following properties:

(1) {∅, X} ⊆ top(µ): obvious.
(2) If U, V ∈ top(µ), then U ∩ V ∈ top(µ): Let x ∈ U ∩ V . By definition, there

exists ε1, ε2 ∈ µ such that if (x, y1) ∈ ε and (x, y2) ∈ ε then y1 ∈ U, y2 ∈ V .
Define δ := ε1∩ ε2 ∈ µ. It is easy to see that if (x, y) ∈ δ, then (x, y) ∈ ε1 and
(x, y) ∈ ε2. As a consequence, y ∈ U ∩ V , as required.

(3) Suppose that {Oj}j∈J is a family in top(µ). Write O :=
⋃

j∈J Oj. Suppose
that x ∈ O. By definition, there exist some j0 ∈ J and ε ∈ µ such that if
(x, y) ∈ ε then y ∈ Oj0 . In particular, y ∈ O. This is true for every x ∈ O
making it open in top(µ).

Now, suppose that top(µ) is Hausdorff. Thus, for every x ̸= y ∈ X there exists
ε ∈ µ such that (x, y) ̸= ε. As a consequence, (x, y) /∈

⋂
µ. On other words,

{(x, x) | x ∈ X} = {(x, y) ∈ X2 | x ̸= y}c ⊇
⋂

µ
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Also, since every ε ∈ µ is reflexive, (x, x) ∈ ε. Therefore, (x, x) ∈
⋂
µ for every

x ∈ X. We have successfully shown that

∩{ε | ε ∈ µ} = {(x, x) : x ∈ X}.
Conversely, assume that ∩{ε | ε ∈ µ} = {(x, x) : x ∈ X}. Suppose that x ̸= y ∈ X.

Since (x, y) /∈
⋂

µ, there exists some ε ∈ µ such that (x, y) /∈ ε. Find δ ∈ µ such that
δ ◦ δ ⊆ ε. Write

U := δ[x] := {z ∈ X | (x, z) ∈ δ} and V := δ[y] := {z ∈ X | (y, z) ∈ δ}.
We claim that U and V are disjoint. Indeed, if w ∈ U ∩ V , then (x,w), (w, y) ∈ δ.
As a consequence, (x, y) ∈ δ ◦ δ ⊆ ε, a contradiction. □

Exercise 4.8.

(1) Let G be a (Hausdorff) topological group. Show that (G, µr) (defined in
lecture notes) indeed is a (Hausdorff) uniform space.

(2) Let G1, G2 be topological groups and f : G1 → G2 be a group homomorphism.
Show that f is continuous iff f is uniformly continuous with respect to the
corresponding right uniformities µ1

r, µ
2
r.

Proof.

(1) We show the properties for the basis elements {Er
U}e∈U⊆X .

(a) ∀ε ∈ µr : ∆ ⊆ ε: Indeed, for every neighborhood e ∈ U ⊆ G we have
(x, x) ∈ Er

U . As a consequence, ∆ = {(x, x) | x ∈ X} is contained in
every entourage.

(b) ∀ε ∈ µr : ε−1 ∈ ε: Suppose that e ∈ U ⊆ G is a neighborhood of
zero. Define If (x, y) ∈ Er

U , then xy−1 ∈ U by definition. Therefore,

(y, x−1) ∈ U−1. Equivalently, (y, x) ∈ Er
U−1 . Thus (Er

U)
−1 = Er

U−1 ∈ µr.
(c) ∀ε ∈ µr∃δ ∈ µr : δ ◦ δ ⊆ ε: let e ∈ U ⊆ G be an open neighborhood.

Find a neighborhood V such that V V ⊆ U . It is easy to see that:

Er
V ◦ Er

V ⊆ Er
U .

(d) ∀ε1, ε2 ∈ µr : ε1 ∩ ε2 ∈ µr: let e ∈ U, V ⊆ G be neighborhoods of G. It is
easy to see that:

Er
U ∩ Er

V = Er
U∩V ∈ µr.

(e) δ ∈ µr, δ ⊆ ε ⇒ ε ∈ µ: the uniformity µr is defined via a basis and so it
satisfies this requirement.

(f) If G is Hausdorff, then so is µr: application of Exercise ?? and the fact
that top(µr) is the original topology of G.

(2) Clearly, if f is uniformly continuous, then it is continuous. Conversely, let
e2 ∈ U ⊆ G2 be a neighborhood. We need to find a neighborhood e1 ∈ V ⊆ G1

such that if (x, y) ∈ Er
V then (f(x), f(y)) ∈ Er

U . Define V := f−1(U). Indeed,
if (x, y) ∈ Er

V , then xy−1 ∈ V and therefore

f(x)(f(y))−1 = f(xy−1) ∈ f(V ) ⊆ U.

By definition, (f(x), f(y)) ∈ Er
U .

□
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5. Homework 5

Exercise 5.1. Let f : G1 → G2 be a continuous homomorphism between topological
groups. Prove that f : (G1, µr) → (G2, µr) is a uniform map.

Proof. Exercise 4.8.2. □

Exercise 5.2. Let G be a NA topological group. Show that (G, µr) is a NA uniform
space.

Proof. By definition, there exists a local basis {Hλ}λ∈Λ consisting of subgroups for
the topology of G. As a consequence, {Er

Hλ
}λ∈Λ is a basis for the right uniformity of

(G, µr). We claim that each Er
Hλ

is an equivalence relation, proving that (G, µr) is
indeed an NA uniform space.

We only need to show transitivity, namely, let λ ∈ Λ and x, y, z ∈ G such that
(x, y), (y, z) ∈ Er

Hλ
. By definition, xy−1, yz−1 ∈ Hλ. As a consequence:

xz−1 = x(y−1y)z−1 = (xy−1)(yz−1) ∈ HλHλ = Hλ,

as required. □

Exercise 5.3. Prove that there exists a proper representation h : SN ↪→ Iso(l2) of the
symmetric topological group SN on the Hilbert space l2.

Proof. Consider the map h : SN → Iso(l2) defined as

(h(σ)) ({an}n∈N) := {aσ(n)}n∈N.
We will show that this map is continuous. Indeed, suppose that {σλ}λ∈Λ ⊆ SN
converges to σ. We will show that lim

λ∈Λ
h(σλ) converges in Iso(l2). Let a ∈ l2 and

ε > 0. There exists some n0 ∈ N such that
∞∑

n=n0

an < 1
2
ε. Also, we can find λ0 ∈ Λ

such that for every λ0 ≤ λ ∈ Λ we have σλ(n) = σλ0(n) for every 1 ≤ n < n0. For
such λ, we have

∥(h(σλ))(a)− (h(σ))(a)∥ = |
∞∑
n=0

aσλ(n) − aσ(n)|

= |
n0−1∑
n=0

(
aσλ(n) − aσ(n)

)
+

∞∑
n=n0

(
aσλ(n) − aσ(n)

)
|

= |
∞∑

n=n0

aσλ(n) − aσ(n)|

≤
∞∑

n=n0

aσλ(n) +
∞∑

n=n0

aσ(n)

≤ 2
1

2
ε = ε.

To see that the inverse of h is continuous, recall that N is embedded in l2 via
n 7→ en. Let r : Im(h) → NN defined as the restriction to {en}n∈N. The SOT is
actually the same as the weak topology induced on Iso(l2) by l2 and therefore the
restriction is continuous. It is easy to see that r = h−1, proving our claim. □
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Exercise 5.4. Show that every discrete countable group G admits a proper represen-
tation h : G ↪→ Iso(l∞) on the Banach space (l∞, || · ||sup).

Proof. Since G is countable, it is easy to see that l∞ is isomorphic to l∞(G), so we
can equivalently find a representation on Iso(l∞(G)). Consider the map h : G →
Iso(l∞(G)) defined as

∀f ∈ l∞(G), x, y ∈ G : ((h(x)) (f))(y) := f(x−1y).

Since G is discrete, h is continuous.
Now, we will see that h is open, proving that it is indeed an embedding. It is

enough to show that h({e}) is open. In-fact, consider 1e ∈ l∞(G) defined by:

1e(g) :=

{
1 g = e

0 else
.

Also, consider the neighborhood h({e}) ∈ U ⊆ Iso(l∞(G)):

U := {T ∈ Iso(l∞(G)) | ∥1e − T (1e)∥∞ < 1}.
We claim that U ∩ Im(h) = {h(e)}. Indeed, for every e ̸= g ∈ G we have:

∥1e − (h(g))(1e)∥1 ≥ |1e(e)− ((h(g))(1e))(e)|
= |1− 1e(g

−1)|
= |1− 0| = 1.

□

Exercise 5.5. Let G×X → X be a continuous action on a compact Hausdorff space
X. Show that C(X) = RUCG(X).

Proof. Clearly, RUCG(X) ⊆ C(X). To see the converse, suppose that f ∈ C(X)
and ε > 0. Since f is continuous, for every x ∈ X we can find a neighborhood
x ∈ Ux ⊆ X such that for every y ∈ Ux, |f(x) − f(y)| < 1

2
ε. Moreover, since the

action is continuous, we can find a neighborhood e ∈ Vx ⊆ G such that VxVxx ⊆ Ux.
Since X is compact, we can find a finite subcover x1, . . . , xn ∈ X of {Vxx}x∈N.

Define V :=
n⋂

i=1

Vn. We claim that for every v ∈ V and x ∈ X we have |f(vx)−f(x)| <

ε. Indeed, for every x ∈ X there exists 1 ≤ i ≤ n such that x ∈ Vxi
xi. As a

consequence,
vx ∈ V x ⊆ Vxi

x ⊆ Vxi
Vxi

xi ⊆ Uxi
.

Therefore:

|f(vx)− f(x)| = |f(vx)− f(xi) + f(xi)− f(x)|
≤ |f(vx)− f(xi)|+ |f(xi)− f(x)|

≤ 1

2
ε+

1

2
ε = ε.

□

Exercise 5.6. Let T×R2 → R2 be the natural action by rotations (of the circle group
T on the plane X = R2). Construct a continuous bounded function f ∈ Cb(X) such
that f /∈ RUCG(X).
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Proof. For t ∈ T = R/Z, we have the following action (by rotations) :

T× R2 → R2, t · (x, y) := (x cos t+ y sin t,−x sin t+ y cos t).

In particular,

Consider the function f(x, y) =


1 y ≥ 1

y −1 ≤ y ≤ 1

−1 y ≤ −1
Let ε = 1. For every nbd U of identity in T there exists t ∈ U and x ∈ R such

that −x sin t + cos t ≤ −1. Since t · (x, 1) = (x cos t + sin t,−x sin t + cos t), we have
f(t · (x, y)) = −1. Therefore we get

|f(t · (x, y))− f((x, y))| = | − 1− 1| = 2 > ϵ = 1.

□
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