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1. Exercises

Exercise 1.1. Show that the one point compactification A(λ) of a discrete space with cardinality
λ ≥ ω is uniformly Eberlein.

Exercise 1.2. Let G be a countable discrete group. Show that there exists a topological group
embedding G→ Iso lin(l2).

Exercise 1.3. Let G be the Polish symmetric group SN (of all permutations of N) with the pointwise
topology. Show that there exists a topological group embedding SN → Iso lin(l2).

Exercise 1.4. Let V be a reflexive space and B ⊂ V,A ⊂ V ∗ are bounded subsets. Show that the
function

A×B → R, (x, f) 7→< x, f >= f(x)

has DLP.

Exercise 1.5. Show that the original norm of the Banach space c0 does not satisfy DLP.
Hint: Define un := en and vm :=

∑m
i=1 ei.

Exercise 1.6. Show that the Banach space L2k[0, 1] has DLP for every k ∈ N.

Exercise 1.7. Give an example of a bounded countable family of continuous functions F ⊂ C[0, 1]
such that F does not satisfy DLP (double limit property) on [0, 1].

Exercise 1.8. Let a topological group G admit a left-invariant metric with DLP. Show that G is
reflexively representable.

Call a continuous representation h : G → Iso lin(V ) on a Banach space V adjoint continuous if
the adjoint representation h∗ : G→ Iso lin(V ∗) is also continuous. It is a well known phenomenon in
Functional Analysis that continuous representations on general Banach spaces need not be adjoint
continuous (even for compact groups).

Exercise 1.9. The regular representation of the circle group T on V := C(T) is continuous but not
adjoint continuous.

Hint: (”Point measures are responsible for this”) Indeed, the continuity of the adjoint represen-
tation T→ Iso (C(T)∗) is equivalent to the norm continuity of all orbit maps ṽ : T→ C(T)∗, t 7→ tv
for every functional v ∈ C(T)∗. Now observe that the map T→ C(T)∗, t 7→ tδx0 is discontinuous for
every point measure δx0 , where δx0(f) := f(x0).

Exercise 1.10. Let L be the left uniform structure of the topological group Iso (l2). Show that the
uniform space (Iso (l2), L) is uniformly embedded into the uniform space l2.
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Exercise 1.11. Let π : SN × l1 → l1 be the natural (linear isometric) action of the Polish symmetric
group SN on the Banach space l1 (permutations of coordinates). Show that the dual action

SN × l∞ → l∞, (gf)(x) := f(g−1(x))

on the dual Banach space l∗1 = l∞ is not continuous. So, the natural representation of SN on l1 is
(continuous but) not adjoint continuous.

Exercise 1.12.

(1) For a topological space X consider the semigroup (XX , ◦) of all selfmaps f : X → X with
respect to pointwise (=product) topology. Show that XX is a right topological semigroup.

(2) C(X,X) is a semitopological subsemigroup of XX .
Is it true that C([0, 1], [0, 1]) is a topological semigroup ?

(3) Prove that the left translation lf : XX → XX is continuous if and only if f ∈ C(X,X).
Derive that if X is T1, then the right topological semigroup XX is semitopological iff X is
discrete.

Exercise 1.13. Let (G, ·, τ) be a locally compact non-compact Hausdorff topological group. Denote
by S := G ∪ {∞} the 1-point compactification of G.

Show that (S, ·, τ∞) is a semitopological but not topological semigroup.

Exercise 1.14. Let G be a Hausdorff topological group and H ≤ G be its topological subgroup. If
H is locally compact then H is closed in G.

Exercise 1.15. If S is a compact Hausdorff topological semigroup and if G is a subgroup of S then
cl(G) is a (compact) topological group.

Hint: eG is an idempotent of S and also a neutral element of T := cl(G).

Exercise 1.16. Let S be the interval [0, 1] with the multiplication

st =

{
t, if 0 ≤ t < 1

2 ;

1, if 1
2 ≤ t ≤ 1.

Show that: S is a compact right topological semigroup with Λ(S) = ∅. The subset T := [0, 1
2 ) is a

subsemigroup of S and cl(T ) = [0, 1
2 ] is not a subsemigroup of S.

Example 1.17. Let S := Z ∪ {−∞,∞} be the two-point compactification of Z. Extend the usual
addition by:

n+ t = t+ n = s+ t = t n ∈ Z, s, t ∈ {−∞,∞}
Show: (S,+) is a noncommutative compact right topological semigroup having dense topological
centre Λ(S) = Z. S is not semitopological.

Exercise 1.18. Show that the right topological semigroup S of the previous exercise is topologi-
cally isomorphic to the enveloping semigroup of the invertible cascade (Z, [0, 1]) generated by the
homeomorphism σ : [0, 1]→ [0, 1], σ(x) = x2.

Exercise 1.19. Prove that:

(1) for every metric space (M,d) the semigroup S := Θ(M,d) of all non-expanding maps 1

f : X → X (that is, d(f(x), f(y)) ≤ d(x, y)) is a topological monoid with respect to the
topology of pointwise convergence;

(2) the group Iso (M) of all onto isometries is a topological group;
(3) the evaluation map S ×M →M is a continuous monoidal action.

Exercise 1.20. Let S × X → X be contractive action of S on (X, d). Show that the following
conditions are equivalent:

(i) The action is continuous.

1in another terminology: Lipschitz 1 maps



3

(ii) The action is separately continuous.
(iii) The natural homomorphism h : S → Θ(X, d) of monoids is continuous.

Exercise 1.21. Prove that Θ(V ) and L(V, V ) are semitopological monoids with respect to the weak
operator topology for every Banach space V .

Exercise 1.22. For every Banach space (V, || · ||) show that:

(1) The semigroup Θ(V )s (with SOT) is a topological monoid.
(2) The subspace Iso (V )s of all linear onto isometries is a topological group.

Exercise 1.23. Let Unif(Y, Y ) be the set of all uniform self-maps of a uniform space (Y, µ). Denote
by µsup the uniformity of uniform convergence on Unif(Y, Y ). Show that

(1) under the corresponding topology top(µsup) on Unif(Y, Y ) and the usual composition we get
a topological monoid;

(2) If G is any subgroup of the monoid Unif(Y, Y ) then G is a topological group;
(3) For every subsemigroup S ⊂ Unif(Y, Y ) the induced action S × Y → Y is continuous;

Exercise 1.24. Let Y be a compact space. Show that:

(1) The semigroup C(Y, Y ) endowed with the compact open topology is a topological monoid;
(2) The subset H(Y ) in C(Y, Y ) of all homeomorphisms Y → Y is a topological group;
(3) For every subsemigroup S ⊂ C(Y, Y ) the induced action S × Y → Y is continuous;
(4) Furthermore, it satisfies the following remarkable minimality property. If τ is an arbitrary

topology on S such that (S, τ)× Y → Y is continuous then τco ⊂ τ .

Exercise 1.25. Let X be a compact space and F ⊂ C(X) be a bounded subset. Show that F has
DLP on X iff F has DLP on B∗, where B∗ = BC(X)∗ .

Exercise 1.26. Show that if V is Asplund then Iso (V )w (in WOT) is a topological group.

Exercise 1.27. If ν1 : X → Y1 and ν2 : X → Y2 are two compactifications, then ν2 dominates ν1,
that is, ν1 = q ◦ ν2 for some (uniquely defined) continuous map q : Y2 → Y1 iff Aν1 ⊂ Aν2 . Show
that if in addition, X, Y1 and Y2 are Sd-systems (i.e., all the s-translations on X, Y1 and Y2 are
continuous) and if ν1 and ν2 are S-maps, then q is also an S-map. Furthermore, if the action on Y1

is (separately) continuous then the action on Y2 is (respectively, separately) continuous. If ν1 and
ν2 are homomorphisms of semigroups then q is also a homomorphism.

Exercise 1.28. (Greatest ambit) Let G be a topological group and βG : G→ βG be the compactifi-
cation induced by the algebra RUC(G). Show that it is the universal semigroup G-compactification
of G with jointly continuous G-action. (The universality means that for every semigroup G-
compactification ν : G → P with continuous action G × P → P there exists a unique continuous
G-homomorphism q : βG→ P such that βG ◦ q = ν.

Exercise 1.29. (Enveloping semigroups)

(1) Let X be a compact S-space with the enveloping semigroup E(X) and L a subset of C(X)
such that L separates points of X. Then the Ellis compactification j : S → E(X) is equiva-
lent to the compactification of S which corresponds to the subalgebra AL := 〈m(L,X)〉, the
smallest norm closed S-invariant unital subalgebra of C(S) which contains the family

{m(f, x) : S → R, s 7→ f(sx)}f∈L, x∈X .

(2) Let q : X1 → X2 be a continuous onto S-map between compact S-spaces. There exists a
(unique) continuous onto semigroup homomorphism Q : E(X1)→ E(X2) with jX1

◦Q = jX2
.

(3) Let Y be a closed S-subspace of a compact S-system X. The map rX : E(X)→ E(Y ), p 7→
p|Y is the unique continuous onto semigroup homomorphism such that rX ◦ jX = jY .

(4) Let α : S → P be a right topological compactification of a semigroup S. Then the enveloping
semigroup E(S, P ) of the semitopological system (S, P ) is naturally isomorphic to P .

(5) If X is metrizable then E(X) is separable. Moreover, j(S) ⊂ E(X) is separable.
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Proof. (1) The proof is straightforward using the Stone-Weierstrass theorem.
(2) By Remark 1.27 it suffices to show that the compactification jX1

: S → E(X1) dominates the
compactification jX2

: S → E(X2). Equivalently we have to verify the inclusion of the corresponding
algebras. Let q(x) = y, f0 ∈ C(X2) and f = f0 ◦ q. Observe that m(f0, y) = m(f, x) and use (1).

(3) Is similar to (2).
(4) Since E(S, P ) → P, a 7→ a(e) is a natural homomorphism, jP : S → E(S, P ) dominates

the compactification S → P . So it is enough to show that, conversely, α : S → P dominates
jP : S → E(S, P ). By (1) the family of functions

{m(f, x) : S → R}f∈C(P ), x∈P

generates the Ellis compactification jP : S → E(S, P ). Now observe that each m(f, x) : S → R can
be extended naturally to the function P → R, p 7→ f(px) which is continuous.

(5) Since X is a metrizable compactum, C(X,X) is separable and metrizable in the compact
open topology. Then j(S) ⊂ C(X,X) is separable (and metrizable) in the same topology. Hence,
the dense subset j(S) ⊂ E(X) is separable in the pointwise topology. This implies that E(X) is
separable. �

Exercise 1.30. Let K be a compact space which is norm-fragmented in C(K)∗. Show that K is
scattered.

Exercise 1.31. If X is (locally) fragmented by f : X → Y , where (X, τ) is a Baire space and (Y, ρ)
is a pseudometric space then f is continuous at the points of a dense Gδ subset of X.

Exercise 1.32. Let K be a RN compactum. Show that K has a dense subset Y ⊂ X such that y
has a countable local bases in X for every y ∈ Y .

Exercise 1.33. When X is compact and (Y, ρ) metrizable uniform space then f : X → Y is frag-
mented iff f has a point of continuity property (i.e., for every closed nonempty A ⊂ X the restriction
f|A : A→ Y has a continuity point).

Exercise 1.34. Let (X, τ) be a separable metrizable space and (Y, ρ) a pseudometric space. Suppose
that f : X → Y is a fragmented onto map. Then Y is separable. Hint: use the idea of the
Cantor-Bendixon theorem.

Exercise 1.35. Show that F = {fi : X → R}i∈I is a fragmented family iff the induced map X →
(RF , ξU ) is fragmented, where ξU is the uniformity of uniform convergence on RF .

Exercise 1.36. Give an example of a bounded family F of continuous functions [0, 1]→ R such that
F is eventually fragmented but not fragmented.

2. Some Solutions

Definition. Let (Y, τ) be a topological space and X be a set. Denote by Y X the set of all maps
f : X → Y endowed with the product topology of Y X . This topology has the standard base α which
consists of all the sets:

O(x1, · · · , xn;U1, · · · , Un) := {f ∈ Y X : f(xi) ∈ Ui}
where, F := {x1, · · · , xn} is a finite subset of X and Ui are nonempty open subsets in Y . Other
names of this topology are: pointwise topology, point-open topology. Sometimes we use a short
notation (x1, · · · , xn;U1, · · · , Un) instead of O(x1, · · · , xn;U1, · · · , Un).

Exercise 2.1.

(1) For every topological spaceX consider the semigroup (XX , ◦) of all selfmaps f : X → X with
respect to pointwise (=product) topology. Show that XX is a right topological semigroup.

(2) C(X,X) is a semitopological subsemigroup of XX .
Is it true that C([0, 1], [0, 1]) is a topological semigroup ?

(3) Prove that the left translation lf : XX → XX is continuous if and only if f ∈ C(X,X).
Derive that if X is T1, then the right topological semigroup XX is semitopological iff X is
discrete.
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Proof. First a general

Remark 2. The product topology on XX can be described by nets as the pointwise topology. A net
(generalized sequence) fi in XX converges to f ∈ XX iff the net fi(x) in X converges to f(x) for
each x ∈ X. This explains the term: ”pointwise topology”.

(1)
First proof: (using the nets)

We have to show that rh : XX → XX is continuous for every given h ∈ XX . It is equivalent to
show

lim fi = f ⇒ lim fih = fu

for every net fi in XX . lim fi = f means (see Remark 2) that lim fi(x) = f(x) for every x ∈ X.
Then substituting h(x) we have lim fi(h(x)) = f(h(x)). This exactly means that lim fih = fh
(again, Remark 2).

Second proof: (using the nbds)
First we recall the following general topological

Fact 2. For the continuity of a map it is enough to show that the preimage of any basic nbd is an
nbd. Moreover, in fact, it is enough even to check the same for a subbase. 2

Consider the following family

γ := {(x;U) : x ∈ X,U ∈ τ}, (x;U) := {f ∈ XX : f(x) ∈ U}

Then γ is a subbase of the standard base (of the pointwise topology on XX)

(x1, · · · , xn;U1, · · · , Un) := {f ∈ Y X : f(xi) ∈ Ui}.

Now we can prove (1) using Fact 2. Let h ∈ XX . For every given (x;U) consider the open set
(h(x);U). Then for every f ∈ (h(x);U) we have fh ∈ (x;U).

(2) C(X,X) is evidently a subsemigroup of XX so it is enough to show that for h ∈ C(X,X) the
corresponding left translation lh : XX → XX is continuous (i.e., C(X,X) ⊂ Λ(XX)).

First proof: Let h ∈ C(X,X). If lim fi = f in XX then lim fi(x) = f(x) in X for every x ∈ X.
Then by the continuity of h we have limh(fi(x)) = h(f(x)). This means that limh(fi) = h(f). Now
use Remark 2.

Second proof: Let h ∈ C(X,X). For every standard subbase nbd (a;U) ∈ γ consider the open

set (a;h−1(U)) (the continuity of h guarantees that h−1(U) is open in X). Then f ∈ (a;h−1(U))
implies that hf ∈ (a;U). By Fact 2 we obtain that lh : XX → XX is continuous.

C([0, 1], [0, 1]) is not a topological semigroup. We have to show that the multiplication m
(the composition !) is not continuous. In fact, we will show much more that m is not continuous
at any point (h0, f0) ∈ C[0, 1] × C[0, 1]. Let a := h0(f0)(1). Consider an open nbd (a; (− 1

2 ,
1
2 )) of

h0 ◦ f0 in the space C([0, 1], [0, 1]). Then for every basic nbds

h0 ∈ (x1, · · · , xn;U1, · · · , Un) f0 ∈ (y1, · · · , ym;V1, · · · , Vm)

there exists a pair f, h such that

h ∈ (x1, · · · , xn;U1, · · · , Un) f ∈ (y1, · · · , ym;V1, · · · , Vm)

but h ◦ f /∈ (a; (− 1
2 ,

1
2 )). Indeed using a freedom 3 in the building of continuous functions (and the

fact that each of the nbds Ui and Vk are infinite sets) one may choose f ∈ (y1, · · · , ym;V1, · · · , Vm)
s.t. f(1) /∈ {x1, · · · , xn}. Now we can choose h ∈ (x1, · · · , xn;U1, · · · , Un) s.t. h(f(1)) /∈ (− 1

2 ,
1
2 ).

(3) (First part)
First proof: Let lh : XX → XX be continuous. We have to show that h ∈ C(X,X). It is

equivalent to show that h preserves the convergence of nets in X in the following sense:

limxi = x ⇒ limh(xi) = h(x)

2Recall that a family γ of open subsets is said to be a subbase if the finite intersections (that is, the family γ∩fin )

is a topological base.
3Namely the fact that every map F → [0, 1] on a finite subset F ⊂ [0.1] can be extended to a continuous map

[0, 1]→ [0, 1]
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For every y ∈ X consider the constant function cy : X → X, cy(t) = t. Then lim cxi
= cx in XX .

The continuity of lh : XX → XX means that it preserves the convergence in XX . So, in particular,
we have lim lh(cxi) = lh(cx). But this means that limh(xi) = h(x), as desired.

Second proof: (Gal Lavi and Noam Lifshitz)
We have to show that h : X → X is continuous at every given a ∈ X. Let U ∈ N(h(a)) in X.

Consider the open nbd (a;U) in XX . Consider the constant function ca : X → X,x 7→ a. Then
(h◦ca)(x) = h(a) for every x ∈ X. In particular, hca ∈ (a;U). By our assumption the left transition
lh : XX → XX is continuous. Therefore, there exists a basic nbd

W := (x1, · · · , xn;V1, · · · , Vn)

of ca in XX s.t. hW ⊂ (a;U). Each Vi is a nbd of a (because, ca(xi) = a). Then also
V := ∩iVi ∈ N(a). Now observe that cv ∈ W for every v ∈ V . On the other hand, hW ⊂ (a;U)
leads us to hcv = f(v) ∈ U for every v ∈ V . Hence, h(V ) ⊂ U . This proves the continuity of h at a.

(3) (Second part)
If X is discrete then of course XX = C(X,X) which is semitopological by (2).
If XX is semitopological then by the first part of (3) we know that XX = C(X,X). Let X ∈ T1.

We have to show that X is discrete. Since X ∈ T1, every singleton {a} is closed in X. Choose one
of them. For every nonempty A ⊂ X consider a function fA : X → X s.t. f−1

A (a) = A. Since f is
continuous we get that A is closed. So, every subset of X is closed, hence X is discrete.

One may show that in general if XX = C(X,X) then either X is discrete or X has the trivial
topology. So, the assumption X ∈ T1 can be replaced by the assumption that the topology on X is
not trivial.

�

Definition. Let X be a topological space. A compactification of X is a continuous map f : X → Y
where Y is a compact Hausdorff space and f(X) is dense in Y . We say: proper compactification
when, in addition, f is required to be a topological embedding.

One of the standard examples of a proper compactification is the so-called 1-point compactification
ν : X ↪→ X∞ := X ∪ {∞} defined for every locally compact non-compact Hausdorff space (X, τ).
Recall the topology

τ∞ := τ ∪ {X∞ \K : K is compact in X}.

Exercise 2.2. Let (G, ·, τ) be a locally compact non-compact Hausdorff topological group. Denote
by S := G ∪ {∞} the 1-point compactification of G.

Show that (S, ·, τ∞) is a semitopological but not topological semigroup.

Proof. First we show that S is semitopological. Let a ∈ S. We have to show that la : S → S and
ra : S → S are continuous. We consider only the case of la. The second case is similar. So, we have
to check that la : S → S is continuous at every y ∈ S. For a = ∞ the transition la is a constant
map. WRG assume that a 6=∞, hence a ∈ G. We have two cases for y ∈ S:

(a) If y 6= ∞ then for every open nbd U ∈ N(y), U ⊂ G just take the open nbd V := a−1U ∈
N(a−1y). Then la(V ) = U .

(b) Let y = ∞ and U ∈ N(∞) is an open nbd. Then by the definition of the 1-point compact-
ification topology, U = S \ K, where K is compact in G. Then a−1K is also compact in G. So,
V := S \ a−1K ∈ N(∞) and la(V ) = U .

Now we show that S is not topological. That is, the multiplication is not continuous. Indeed,
we show that the multiplication m : S × S → S is not continuous at the point (∞,∞).

First proof:
Choose the open nbd U := S \ {e} of ∞. It is enough to show that for every nbd V ∈ N(∞) we

have e ∈ V V (this will mean that V V is not a subset of U). Observe that every V ∈ N(∞) contains
an open nbd S \K, where K is compact and symmetric (indeed, WRG replace K by K ∪K−1).
Now observe that for every x ∈ S \K we have x−1 ∈ S \K but xx−1 = e /∈ U .

Second proof:
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Assuming the contrary let m : S × S → S be continuous. Then

A := m−1({e}) = {(x, x−1) ∈ S × S : x ∈ G}
is a closed subset of the product S × S. Since, S is compact then A is compact, too. Consider the
projection π1 : S × S → S, (a, b) 7→ a. Then π1(A) is a compact subset of S. But π1(A) = G. So,
we obtain that G is compact, a contradiction (because G is assumed to be noncompact).

�

As we know a locally compact Hausdorff group G admits an embedding into a compact Haus-
dorff group iff G is compact. Exercise 2.2 shows that such G at least admits a proper semigroup
compactification ν : G ↪→ S such that S is a compact semitopological monoid.

Exercise 2.3. Let G be a Hausdorff topological group and H ≤ G be its topological subgroup. If H
is locally compact then H is closed in G.

Proof. It is equivalent to prove in the case of cl(H) = G. So we have to show that H is closed in
cl(H). It suffices to show that H is open in G = Cl(H) (because every open subgroup is closed).

Since H is LC one may choose a compact nbd K of e in H.

∃U ∈ NG(e) ∩ τ : U ∩H ⊂ K

U = U ∩G = U ∩ cl(H) ⊂ cl(U ∩H) ⊂ cl(K) = K

(remark1: for every open O ⊂ X and A ⊂ X we have O ∩ cl(A) ⊂ cl(O ∩A))
(remark2: every compact subset is closed in a Hausdorff space)

So, U ⊂ K. Therefore, U ⊂ H. Hence, intG(H) 6= ∅. It follows that that the subgroup H is open
in cl(H). Hence, also closed. So, H = cl(H). �

It is impossible to embed a locally compact noncompact group into any Hausdorff compact group.
In particular, there is no finite-dimensional topologically faithful representation by linear isometries
of a locally compact noncompact groups (like Z, R) on finite-dimensional Euclidean spaces.

Exercise 2.4. If S is a compact Hausdorff topological semigroup and if G is a subgroup of S then
cl(G) is a (compact) topological group.

Hint: eG is an idempotent of S and also a neutral element of T := cl(G).

Proof. The simplest way here is to use the technique of the nets (generalized sequences).
1. T = cl(G) is a topological subsemigroup of S.
Indeed, let x, y ∈ T := cl(G). Then there exist nets {xi}i∈Γ and {yi}i∈Γ such that limxi =

x, lim yi = y and xi, yi ∈ G. 4 Then by the continuity of the multiplication we have lim(xiyi) =
(limxi)(lim yi) = xy. Since xiyi ∈ G we obtain that xy ∈ cl(G).

2. eG is a neutral element in T = cl(G). So, T is a topological monoid.
Indeed, if limxi = x ∈ cl(G) and xi ∈ G then lim(xieG) = limxi = x. On the other hand, by

the continuity of the multiplication we have lim(xieG) = (limxi)eG = xeG. So, xeG = x. Similarly,
eGx = x.

3. T is a group.
Let t ∈ T and gi be a net in G converging to t. By compactness we may assume that some subnet

of g−1
i converges to some s ∈ T . For simplicity (WRG) we assume that g−1

i itself converges to some

s ∈ T . Since S is topological we have gig
−1
i converges to ts. By the Hausdorff axiom we necessarily

have e = ts. Similarly, e = st.
4. T is a (compact) topological group.
Now (after 1-3) it suffices to show that the inversion j : T → T, t 7→ t−1 is continuous. Let

lim ti = t in T . We have to show that the limit lim t−1
i exists in T and it equals to t−1. Consider

the net t−1
i in T . Since T is compact, there exists a converging subnet t−1

ij
. Let lim t−1

ij
= y ∈

4Note that for every two converging nets ν1 : (Γ1,≤1)→ X, ν2 : (Γ2,≤2)→ X one may assume WRG that they

have the same domain (Γ := Γ1 × Γ2 for example)
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T . A subnet of a converging net converges (to the same limit). So, lim tij = t. Then by the

continuity of the multiplication in T we have lim(tij t
−1
ij

) = (lim tij )(lim t−1
ij

) = ty. On the other

hand, lim(tij t
−1
ij

) = lim eG = eG. By the uniqueness of the net limits in Hausdorff spaces we have

ty = eG. Therefore, y = t−1.
�

Exercise 2.5. Let S be the interval [0, 1] with the multiplication

st =

{
t, if 0 ≤ t < 1

2 ;

1, if 1
2 ≤ t ≤ 1.

Show that: S is a compact right topological semigroup with Λ(S) = ∅. The subset T := [0, 1
2 ) is a

subsemigroup of S and cl(T ) = [0, 1
2 ] is not a subsemigroup of S.

Proof. First of all it is straightforward to see that S is a semigroup and T its subsemigroup.
S is right topological. Because rt : S → S is a constant function (t or 1) for every r ∈ S.
Λ(S) = ∅. Indeed, for every s ∈ S we have that Ls : [0, 1]→ [0, 1] has a jump discontinuity point

at 1
2 .

cl(T ) = [0, 1
2 ] is not a subsemigroup of S. Indeed, cl(T ) = [0, 1

2 ) and 1
2 ∗

1
2 = 1 /∈ T . �

Exercise 2.6. Let S := Z ∪ {−∞,∞} be the two-point compactification of Z. Extend the usual
addition by:

n+ t = t+ n = s+ t = t n ∈ Z, s, t ∈ {−∞,∞}
Show: (S,+) is a noncommutative compact right topological monoid having dense commutative
topological centre Λ(S) = Z. S is not semitopological.

Proof. First of all it is straightforward to see that (S,+) is a monoid and (Z,+) its submonoid.
(S,+) is noncommutative because ∞+ (−∞) = −∞ and (−∞) +∞ =∞.
S := Z ∪ {−∞,∞} carries the topology of the natural linear order. A natural subbase for the

topology of S is the following family

An := {x ∈ S : x < n}, Bm := {x ∈ S : m < x}, n,m ∈ Z
Clearly, Z is dense in S and every x ∈ Z is an isolated point in S. The space S is homeomorphic to
a closed subset

Y := {−1} ∪ {− 1

n
: n ∈ N} ∪ {0} ∪ { 1

n
: n ∈ N} ∪ {1}

of [−1, 1], hence compact.
The right translations rt : S → S are continuous. Indeed, r∞ is the constant function r∞(x) =∞

for every x ∈ S. r−∞ is the constant function r∞(x) = −∞ for every x ∈ S. r−1
k (An) = An−k,

r−1
k (Bm) = Bm−k for every k ∈ Z.

Λ(S) = Z. Indeed, every lk : S → S is continuous for each k ∈ Z because l−1
k (An) = An−k,

l−1
k (Bm) = Bm−k.
l∞ : S → S is not continuous at the point s = −∞. Take a sequence {−k}k∈N. Then

lim(−k) = −∞ but lim l∞(−k) =∞ 6= l∞(−∞) =∞+ (−∞) = −∞
Similarly, l−∞ : S → S is not continuous at the point s =∞. �

Exercise 2.7. Show that the right topological semigroup S of the previous exercise is topologically
isomorphic to the enveloping semigroup E of the invertible cascade (Z, [0, 1]) generated by the
homeomorphism σ : [0, 1]→ [0, 1], σ(x) = x2.

Proof. Hint: Let E be the enveloping semigroup of (Z, [0, 1]) and j : Z → E be the corresponding

compactification. Observe that besides the points j(Z) = {σ̃n n ∈ Z} the enveloping semigroup
E(X) contains two more points: a, b, where a = ξ{1} the characteristic function of {1} and b = 1−ξ0,
where ξ{0} is the characteristic function of {0}. �
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Exercise 2.8. For every metric space (M,d) show that:

(1) The semigroup Θ(M,d) of all d-contractive maps f : X → X (that is, d(f(x), f(y)) ≤ d(x, y))
is a topological monoid with respect to the topology of pointwise convergence;

(2) The group Iso (M) of all onto isometries is a topological group;
(3) The evaluation map S×M →M is a jointly continuous monoidal action for every submonoid

S ≤ Θ(M,d).

Proof. (1) Algebraic part: it is trivial to see that the composition is well defined, associative, and
Θ := Θ(M,d) is a monoid.

Continuity of the multiplication
We use the following easy reformulation of the pointwise topology:

Fact. Let X be any nonempty set, (Y, d) be a metric space and τp be the pointwise (product) topology
on Y X := {f : X → Y }. Then for every f0 ∈ Y X the following family of sets is a local base at the
point f0 with respect to the topology τp:

(f0;x1, · · · , xn; ε) := {f ∈ Y X : d(f0(xk), f(xk) < ε ∀k = 1, · · · , n}.
where x1, · · · , xn is a finite subset in X and ε > 0.

Now we prove the continuity of the multiplication m : Θ×Θ→ Θ at the point (s0, t0) ∈ Θ×Θ.
We have to show that st is close to s0t0 when s and t are close enough to s0 and t0, respectively. In
order to get a ”right idea for the proof” consider the following inequalities:

d(s0t0(xk), st(xk)) ≤ d(s0t0(xk), st0(xk)) + d(st0(xk), st(xk))

≤ d(s0t0(xk), st0(xk)) + d(t0(xk), t(xk))

Note that in the last inequality we need to use the Lipshitz-1 property for s.
Now we can easily finish the proof choosing appropriate neighborhoods for t0 and s0 for a given nbd

O := (s0t0;x1, · · · , xn; ε) of s0t0. Indeed, take the following neighborhoods U := (t0;x1, · · · , xn; ε2 )
and V := (s0; t0(x1), · · · , t0(xn); ε2 ). Then for every t ∈ U, s ∈ V we have st ∈ O, as desired.

Remark. Another proof can be based on nets. Namely, to the following useful (and characterizing)
property of the pointwise topology.

a net si converges to s0 in Y X (with respect to pointwise topology) if and only if the net si(x0)
converges to s(x0) (in Y ) for every x0 ∈ X.

(2) For the continuity of the inversion Iso (M)→ Iso (M) at the point s0.
In order to estimate how close can be s−1 to s−1

0 look at the following key equality (using, this
time, that s : M →M is an isometry)

d(s−1(xk), s−1
0 (xk)) = d(xk, ss

−1
0 (xk)) = d(s0(tk), s(tk))

with xk := s0(tk).
Now the rest is easy. For a given nbd O(s−1

0 ) := (s−1
0 ;x1, · · · , xn; ε) of s−1

0 choose U(s0) :=
(s0; t1, · · · , tn; ε) of s0 with tk := s−1

0 (xk). Now if s ∈ U then s−1 ∈ O.
(3) We have to prove the continuity of the action

S ×X → X

at every given point (s0, x0). We give only a key inequality (the rest will be clear):

d(s0x0, sx) ≤ d(s0x0, sx0) + d(sx0, sx) ≤ d(s0x0, sx0) + d(x0, x).

�

An action S×X → X on a metric space (X, d) is non-expanding if every s-translation s̃ : X → X
lies in Θ(X, d). It defines a natural homomorphism h : S → Θ(X, d).

Exercise 2.9. Let S ×X → X be a non-expanding action of S on (X, d). Show that the following
conditions are equivalent:

(i) The action is continuous.
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(ii) The action is separately continuous.
(iii) The natural homomorphism h : S → Θ(X, d) of monoids is continuous.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) We have to show that h : S → Θ is continuous. Let si → s0 be a converging net in

S. We need to verify that h(si)→ h(s0). By the definition of pointwise topology it is equivalent to
check that h(si)(x0)→ h(s0)(x0). By the definition of h the latter is equivalent to si(x0)→ s0(x0).
This follows from separate continuity of S ×X → X.

(iii)⇒ (i) We know by Exercise 2.8.3 that the action Θ×M →M is continuous. Then S×M →M
is also continuous (because S ×X → Θ×X is continuous). �

Exercise 2.10. Prove that Θ(V ) and L(V, V ) are semitopological monoids with respect to the weak
operator topology for every Banach space V .

Proof. Algebraically Θ(V ) is a submonoid of L(V, V ). So, it is enough to show that L(V, V ) is a
semitopological monoid with respect to the weak operator topology. Recall the definition of weak
operator topology on L(V, V ). A net si τw-converges to s in L(V, V ) iff f(si(v)) converges to f(s(v))
in R for every v ∈ V, f ∈ V ∗.

First we show that the right translations

ρt : L(V, V )→ L(V, V ), ρt(s) := st

are continuous for every t ∈ L(V, V ). Indeed, let we have a convergence of nets si → s. We have to
show that sit→ st. It is equivalent to see that f(sit(v)) converges to f(st(v)) in R. Or, equivalently,
that f(si(tv)) converges to f(s(tv)) in R. This is clear because t(v) ∈ V (in the criterion we have
the condition for every v ∈ V ).

The case of left translations is similar by observing that ft ∈ V ∗ for every f ∈ V ∗ and t ∈ L(V, V ).
�

Exercise 2.11. For every Banach space (V, || · ||) show that:

(1) The semigroup Θ(V )s (with SOT) is a topological monoid.
(2) The subspace Iso (V )s of all linear onto isometries is a topological group.

Proof. We can apply Exercise 2.8. �

Exercise 2.12. Let Unif(Y, Y ) be the set of all uniform self-maps of a uniform space (Y, µ). Denote
by µsup the uniformity of uniform convergence on Unif(Y, Y ). Show that

(1) under the corresponding topology top(µsup) on Unif(Y, Y ) and the usual composition we get
a topological monoid;

(2) If G is any subgroup of the monoid Unif(Y, Y ) then G is a topological group;
(3) For every subsemigroup S ⊂ Unif(Y, Y ) the induced action S × Y → Y is continuous;

Proof. (Sketch) (1) Continuity of the multiplication. The elements (st(x), s0t0(x)) are ”close enough”
(uniformly for every x ∈ X) because we can force the pairs

(st(x), s0t(x)), (s0t(x), s0t0(x))

be sufficiently close.
(2) Let G be any subgroup of the monoid Unif(Y, Y ). For the continuity of the inversion in G

note that if (s0(t), s(t)) is small then (t, s−1
0 s(t)) is small for all t ∈ Y ; now substituting t = s−1(x)

we get
(t, s−1

0 s(t)) = (s−1(x), s−1
0 (x)))

is small.
(3) Continuity of S × Y → Y at point (s0, y0).
The elements (s0y0, sy) are close enough because we can force that (s0y0, s0y) and (s0y, sy) are

sufficiently close. �

Exercise 2.13. Let Y be a compact space. Show that:

(1) The semigroup C(Y, Y ) endowed with the compact open topology is a topological monoid;
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(2) The subset H(Y ) in C(Y, Y ) of all homeomorphisms Y → Y is a topological group;
(3) For every subsemigroup S ⊂ C(Y, Y ) the induced action S × Y → Y is continuous;
(4) Furthermore, it satisfies the following remarkable minimality property. If τ is an arbitrary

topology on S such that (S, τ)× Y → Y is continuous then τco ⊂ τ .

Proof. (1), (2) and (3) Follow directly from the previous Exercise 2.12 taking into account that
the uniformity of uniform convergence for compact Y induces the compact open topology (see, for
example, book of J. Kelley, General Topology).

(4) Let (S, τ)×Y → Y be continuous. Then by the compactness of Y it is easy to see the following

∀s0 ∈ S ∀ε ∈ µY ∃U ∈ Nτ (s0) : (s0y, sy) ∈ ε ∀y ∈ Y.
This proves that the topology of compactness convergence τco is weaker than τ . �

Exercise 2.14. Let G be a countable discrete group. Show that there exists a topological group
embedding G→ Iso (l2).

Proof. It is equivalent to show that there exists a co-embedding. Indeed, for every (topological)
group G the inversion map j : G → G, j(g) = g−1 is a co-isomorphism. So, if h : G → P is a
co-embedding then h ◦ j : G→ P is an embedding.

Let SN be the symmetric group. Consider the natural left action SN × N → N. It induces the
natural right action

l2 × SN → l2, (u, σ)→ uσ

where (uσ)(k) = u(s(k)) (we treat (the sequence) u ∈ l2 as a function u : N→ R). Observe that it
is an action ”by permutations of coordinates”.

By Cayley’s theorem we have an embedding of abstract (discrete) groups ν : G ↪→ SG ∼= SN. Now
consider the induced action of G on l2. More precisely, if G := {g1, g2, · · · } is an enumeration of G
then we have the action of G on N according to its left translations G → G. Consider the induced
action of G on l2

π : l2 ×G→ l2.

Then we have:

(1) π is linear.
(u+ v)σ = uσ + vσ, (cv)σ = c(vσ) for every u, v ∈ l2, c ∈ R, σ ∈ SN.

(2) π is an action by isometries.
||uσ|| ≤ ||u|| for every u ∈ l2, σ ∈ SN. So it follows that ||u|| = ||(uσ)σ−1|| ≤ ||uσ||.

Therefore ||uσ|| = ||u||.
(3) π induces a co-homomorphism h : SN → Iso (l2)

(it is similar to Exercise 2.9).
(4) h is injective.

Let σ1 6= σ2 in SN. There exists k ∈ N such that i = σ1(k) 6= σ2(k) = j. Consider the
vector ek ∈ l2 having the k-th coordinate = 1 and other coordinates = 0. Then ei = vkσ1 6=
vkσ2 = ej .

(5) h(G) is discrete.
It is equivalent to show that the identity operator id = h(e) is isolated in h(G) with

respect to the strong operator topology. By the definition of strong operator topology one
of the possible neighborhoods of id in h(G) is the following set

[id; e1; ε = 1] ∩ h(G) := {h(g) ∈ h(G) : ||e1g − e1|| < 1}
where e1 := (1, 0, 0, · · · ). By the definition of π it is clear that [id; e1; 1] ∩ h(G) = {id}
because any nontrivial left translation Lg : G → G moves any point of itself. So, h(G) is
discrete because its neutral element is isolated.

�

Exercise 2.15. If X is (locally) fragmented by f : X → Y , where (X, τ) is a Baire space and (Y, ρ)
is a pseudometric space then f is continuous at the points of a dense Gδ subset of X.
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Proof. For a fixed ε > 0 consider

Oε := {union of all τ -open subsets O of X with diamρf(O) ≤ ε}.
The local fragmentability implies that Oε is dense in X. Clearly,

⋂
{O 1

n
: n ∈ N} is the required

dense Gδ subset of X. �

Exercise 2.16. Let (X, τ) be a separable metrizable space and (Y, ρ) a pseudometric space. Suppose
that f : X → Y is a fragmented onto map. Then Y is separable. Hint: use the idea of the
Cantor-Bendixon theorem.

Proof. Assume (to the contrary) that the pseudometric space (Y, ρ) is not separable. Then there
exist an ε > 0 and an uncountable subset H of Y such that ρ(h1, h2) > ε for all distinct h1, h2 ∈ H.
Choose a subset A of X such that f(A) = H and f is bijective on A. Since X is second countable
the uncountable subspace A of X (in its relative topology) is a disjoint union of a countable set
and a nonempty closed perfect set M comprising the condensation points of A (this follows from
the proof of the Cantor-Bendixon theorem; see e.g. [?]). By fragmentability there exists an open
subset O of X such that O ∩M is nonempty and f(O ∩M) is ε-small. By the property of H the
intersection O ∩M must be a singleton, contradicting the fact that no point of M is isolated. �
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