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1. Introduction

Banach representations of dynamical systems is a relatively new theory already
having several important applications. In the present course we study some hierar-
chies of topological dynamical systems and topological groups coming from Banach
space theory. This allows to find new links between many different research lines.
Among others: abstract topological dynamics, geometry of Banach spaces and the
theory of Polish topological groups.

During this course I will expose some results and ideas mainly from recent joint
works with Eli Glasner (Tel Aviv University). A part of the presented results are joint
with Vladimir Uspenskij [30]. We mention also a major influence of several works of
Vladimir Pestov. See, for instance, [59].
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You can download this lecture, some exercises, as well as, some related papers,
from the site www.math.biu.ac.il/∼megereli/seminar.html

First let us ask some intuitive questions.

Question 1.1. What is common between:

(1) Grothendieck’s Double Limit Property, (weak) almost periodicity and reflexive
Banach spaces;

(2) Lack of ”butterfly effects”, averages of functions on topological groups and
Asplund Banach spaces;

(3) Fibonacci binary sequence (”cutting sequences”), quasicrystals, monotonic maps
and Rosenthal Banach spaces.

By the Fibonacci binary sequence we mean the following particular case of a cutting

binary sequence cn of 0-s and 1-s (with the slope φ− 1, φ= golden ratio = 1+
√

5
2

).

Figure 1. The Fibonacci binary sequence

It can be defined also by the finite blocks sn using the Fibonacci substitution:
s0 = 0, s1 = 01, sn = sn−1sn−2. So, we have 0100101001001 · · · .

One may prove (Theorem 15.6) that the Fibonacci cutting sequence ”lives in a
Rosenthal Banach space” as a generalized matrix coefficient. That is, there exist: a
Rosenthal Banach space V , a linear isometry σ ∈ Iso (V ) and two vectors v ∈ V ,
f ∈ V ∗ such that

cn =< σn(v), f >= f(σn(v)) ∀n ∈ N.
It is impossible to choose V reflexive or even Asplund.

Note that even ”simple” bisequences sometimes are not reflexively representable.
For example c = χN : Z→ {0, 1}

· · · 000111 · · ·

is not reflexively representable but it is Asplund representable.
Our aim is to show that Questions like 1.1 can be studied by developing a relatively

new tool: representations of dynamical systems on Banach spaces.
Like topological groups, compact dynamical systems, can be represented on (duals

of) Banach spaces. We study dynamical analogs of Eberlein, Radon-Nikodým and
weakly Radon–Nikodým compacta; that is the classes of dynamical systems which
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can be represented on reflexive, Asplund and Rosenthal Banach spaces. They corre-
spond to important classes of compact metrizable dynamical systems: weakly almost
periodic (WAP), hereditarily nonsensitive (HNS) and tame.

This approach naturally extends some classical research themes and at the same
time opens new and sometimes quite unexpected directions. One of the examples
is a connection between the lack of chaotic behavior (lack of ”butterfly effects”) of
a dynamical system (HNS systems) and the existence of weak-star continuous rep-
resentations on the dual of Asplund Banach spaces. The topological concept of the
fragmentability (originally coming from Banach spaces) and the famous factorization
theorem of Davis-Figiel-Johnson-Pelczyński are the main tools in the present theory.

We provide the necessary background. Besides some new results we give soft geo-
metric proofs of several classical results (like: Teleman’s regular representations of
topological groups, Ellis and Ellis-Lawson theorems; Helmer’s theorem about WAP
functions; Ryll-Nardzewski’s fixed point theorem, etc.). At the same time we discuss
perspectives of the theory and pose several open questions.

1.1. Some concrete questions. To every Banach space V one may associate several
important structures. For example: compact spaces X ⊂ B∗ := (BV ∗ , w

∗), topologi-
cal groups G ≤ Iso (V ) and continuous actions G×X → X, where G ≤ Iso (V ) and
X is a G-subset of (V ∗, w∗).

Let K be a nice subclass of Banach spaces. For example: Hilbert, reflexive, As-
plund, Rosenthal. There are several good reasons explaining our interest just to these
classes.

Question 1.2.

(1) Which compact dynamical G-systems X can be represented on some V ∈ K ?
(2) Which topological groups can be embedded into Iso (V ) where V ∈ K ?

Remark 1.3. A classical result of Teleman [69] (see also the survey of Pestov [59] for a
detailed discussion (downloadable from the course website)) is that every (Hausdorff)
topological group can be embedded into Iso (V ) for some Banach space V (namely, one
can take V := RUC(G)). Furthermore, every continuous dynamical system (G,X)
has a faithful representation on V := C(X), where one can identify x ∈ X with
the point mass δx viewed as an element of C(X)∗. This is true also for semigroup
actions. So, any compact dynamical S-system X is Banach representable (on C(X)).
However, the Banach spaces RUC(G), C(X) very rarely are in a nice class.

For a given topological semigroup S, one way to measure the complexity of a
compact dynamical S-system X is to investigate its representability on nice Banach
spaces, [28, 27, 25]. Another way is to ask whether the points of X can be separated
by a norm bounded S-invariant family F ⊂ C(X) of continuous functions on X, such
that F is “small” in some sense or another. More precisely, Questions 1.2 are closely
related to the next question. For every F ⊂ V and a weak-star compact subset
X ⊂ V ∗ one may consider the evaluation map

w : F ×X → R
induced by the canonical bilinear mapping V × V ∗ → R, (v, f) 7→ f(v). For example,
BV separates the points of V ∗ (hence also of X). For every F ⊂ C(X) the evaluation
map F ×X → R obviously is represented on V := C(X).
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Question 1.4. Which abstract evaluation maps can be realized as a part of the canon-
ical bilinear map on a Banach space V ∈ K ?

Usually F is “small” means that the pointwise closure cl p(F) of F (the envelope of
F ) in RX is a “small” topological space. For example, (a) when cl p(F) ⊂ C(X), or
(b) when cl p(F) consists of fragmented functions (Baire 1, when X is metrizable).

It turns out that the first case (a) characterizes the reflexively representable dy-
namical systems, (i.e., the dynamical analog of Eberlein compacta) or, for metric
dynamical systems X, the class of Weakly Almost Periodic (in short: WAP) systems.

In the second case (b) we get the characterization of Rosenthal representable dy-
namical systems, or, for metric dynamical systems X, the class of tame systems (a
Banach space V is said to be Rosenthal if it does not contain an isomorphic copy of
the Banach space l1.)

We have the natural intermediate case of Asplund representable or hereditarily non
sensitive (HNS) systems. Namely, an S-system X is HNS iff there exists a separating
bounded family F ⊂ C(X) which is a fragmented family.

2. Preliminaries

2.1. Notation. The closure and the interior operators in topological spaces will be
denoted by cl and int, respectively. ”Compact” will mean ”compact and Hausdorff”.

As usual hereditarily Baire means that every closed subspace is a Baire space. A
function f : X → Y is Baire class 1 function if the inverse image f−1(O) of every
open set is Fσ in X. A topological space X is said to be Polish if it admits a complete
separable metrizable metric. For Polish spaces X a function f : X → R is Baire 1 iff
f is a pointwise limit of a sequence of continuous functions.

Banach spaces and locally convex vector spaces are over the field R of real numbers.
When V is a Banach space we denote by B, or BV , the closed unit ball of V .

B∗ = BV ∗ and B∗∗ := BV ∗∗ will denote the weak∗ compact unit balls in the dual V ∗

and second dual V ∗∗ of V respectively.

2.2. From representations to compactifications. Let X be a topological space,
Y be a compact Hausdorff space and let f : X → Y be a function such that f(X)
is dense in Y . If f is continuous, then Y (more precisely, the pair (Y, f)) is called
a compactification of X. If f is a homeomorphic embedding, then Y is called a
proper compactification of X. Denote by (C(X),≤) the partially ordered set of all
compactifications of X up to the standard equivalence. For a topological space X
denote by C(X) the Banach algebra of real valued continuous and bounded functions
equipped with the supremum norm. Recall that the unital closed subalgebras of C(X)
determine the compactifications of X.

Fact 2.1. (Gelfand-Kolmogoroff) There exists a natural order preserving bijective
correspondence between C(X) (different compactifications of X) and closed unital
subalgebras of C(X). In particular, C(X) determines the greatest compactification
β : X → βX.

Proof. (Sketch) Let A be a Banach unital subalgebra A of C(X). Denote by A∗ the
dual Banach space of A. Consider the canonical A-compactification αA : X → XA,



5

where XA ⊂ B∗ ⊂ A∗ is the Gelfand space (or, the spectrum) of the algebra A. The
map

αA : X → XA, x 7→ δx

is defined by the Gelfand transform, the evaluation at x multiplicative functional,
that is α(x)(f) = δx(f) = f(x) and XA is the closure of αA(X) in A∗ with respect to
the weak∗ topology w∗. Therefore XA is compact by Alaoglu Theorem.

Conversely, every compactification ν : X → Y is equivalent to the canonical Aν-
compactification αAν : X → XAν , where the algebra Aν (corresponding to ν) is defined
as the image jν(C(Y )) of the natural embedding of Banach algebras

jν : C(Y )→ C(X), φ 7→ φ ◦ ν.
If A1 ⊂ A2 then the adjoint operator induces the weak-star continuous onto map

A∗2 → A∗1. Its restriction on c2(X) gives the desired morphism of compactifications
c2 → c1. �

Categorical view: the assignment K 7→ C(K) defines an important contravariant
functor from the category Comp into the categories of Banach spaces Ban and
Banach algebras.

For every (Tychonoff) space X and for the algebra A = C(X) we get the maximal
(Chech-Stone) compactification.

δ : X → β(X) ⊂ B∗ ⊂ C(X)∗

For every compact space K we have a topological embedding (Gelfand representa-
tion)

δ : K ↪→ C(K)∗, x 7→ δx.

Its image δ(K) affinely generates P (K) (i.e. cow
∗
(δ(K)) = P (K)), where

P (K) := {µ ∈ C(K)∗ : ‖µ‖ = µ(1) = 1}
the weak-star compact set of all probability measures on K. We have K := δ(K) ⊂
P (K) ⊂ BC(K)∗ .

2.3. Topological prototypes. An important direction in the classical study of (large)
compact spaces went via the following general principle: Given a compact space X
find a nice class K of Banach spaces such that there always is an element V ∈ K

where X can be embedded into V ∗ equipped with its weak-star topology ?
Eberlein compacta in the sense of Amir and Lindenstrauss are exactly the weakly

compact subsets in the class of all (equivalently, reflexive) Banach spaces. If X is a
weak∗ compact subset in the dual V ∗ of an Asplund space V then, following Namioka
[55], X is called a Radon–Nikodým compactum (in short: RN). In other words, re-
flexively representable compact spaces are the Eberlein compacta and Asplund rep-
resentable compact spaces are the Radon–Nikodým compacta. Hilbert representable
compacta are the so-called uniformly Eberlein compact spaces. Another interesting
class of compact spaces, namely the weakly Radon–Nikodým (WRN) compacta, oc-
curs by taking K to be the class of Rosenthal Banach spaces (i.e. those Banach spaces
which do not contain an isomorphic copy of l1). Comparison of the above mentioned
classes of Banach spaces implies the inclusions of the corresponding classes of compact
spaces:

(Comp ∩Metr) ⊂ uEb ⊂ Eb ⊂ RN ⊂ WRN ⊂ Comp.
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Note that this classification makes sense only for large compact spaces, where X is
not metrizable. In fact, any compact metrizable space is even norm embeddable in a
separable Hilbert space.

Example 2.2.

(1) For every Hilbert space H the (weak compact) unit ball (BH , w) is uniformly
Eberlein.

(2) 1-point compactification A(κ) of a discrete space of cardinality κ is uniformly
Eberlein.

A topological space (X, τ) is scattered if every (closed) subset L ⊂ K has an isolated
point in L. A(κ) is Scattered. For every ordinal λ the linearly ordered compact space
[0, λ] is scattered.

Fact 2.3. (Namioka-Phelps75) Let K be a compact space. The following are equiva-
lent:

(1) K is scattered 1.
(2) C(K) is an Asplund space.

Example: c = C(K) with K = A(ω).
Note that infinite dimensional space C(K) never can be reflexive.

Corollary 2.4. Every scattered compact space is RN.

Remark 2.5.

(1) A(κ) ∈ Eberlein.
(2) [0, ω1] ∈ RN \ Eberlein.
(3) Two arrows space D ∈ WRN \RN .

Indeed, every compact linearly ordered space is WRN (a recent result [29]).
D is not RN by a result of Namioka [55, Example 5.9].

(4) βN /∈ WRN .

This was done by Todorc̆ević (private communication).

One of the main directions taken in our research is the development of a dynamical
analog, for compact S-dynamical systems (where S is a semigroup), of the above
mentioned classification of large compact spaces (this is made precise in Definition
2.12 below).

Remark 2.6. Perhaps the first outstanding feature of this new theory is that, in
contrast to the purely topological case (i.e., the case of trivial actions), for dynamical
systems, the case of metrizable systems is ”full of life”. Moreover, the main interest
of the dynamical theory is just within the class of metrizable dynamical systems. For
example, even for X := [0, 1], the unit interval, the action of the cyclic group Z on
X generated by the map f(x) = x2 is RN and not Eberlein. There exists a compact
metric Z-system which is reflexively but not Hilbert representable, i.e., Eberlein but
not uniformly Eberlein. There are compact metric Z-systems which are WRN but
not RN, etc. See Example 9.1.

1dispersed in other terminology
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It turns out that the corresponding classes of metric dynamical systems coincide
with well known important classes whose study is well motivated by other independent
reasons. For example we have, Eberlein = WAP (weakly almost periodic systems),
RN = HNS (hereditarily non-sensitive), WRN = tame systems. The investigation
of Hilbert representable (i.e., “uniformly Eberlein”) systems is closely related to the
study of unitary and reflexive representability of groups.

2.4. Some connections to Banach space theory. Another remarkable feature is
the fact that the correspondence goes both ways. Thus, for example, to construct
some nontrivial examples of Banach spaces. Every metric WRN but not RN Z-system
leads to an example of a separable Rosenthal Banach space which is not Asplund. One
of the important questions in Banach space theory until the mid 70’s was to construct
a separable Rosenthal space which is not Asplund. The first counterexamples were
constructed independently by James and Lindenstrauss-Stegall.

In view of the representation Theorem below we now see that a fruitful way of pro-
ducing such distinguishing examples comes from dynamical systems. Just consider a
compact metric tame G-system which is not HNS and then represent it on a (separa-
ble) Rosenthal space V . Then V is not Asplund (otherwise, (G,X) is HNS). We have
several examples of dynamical systems of this type; e.g. (H+[0, 1], [0, 1]), the Stur-
mian cascades, or the projective actions of GLn(R) on the sphere or the projective
space.

One may make this result sharper by using representation theorem. There exists
a separable Rosenthal space V without the adjoint continuity property. Indeed, the
Polish group G := H+[0, 1], which admits only trivial adjoint continuous representa-
tions (and, hence, trivial Asplund or reflexive representations), is however Rosenthal
representable.

Finally, let us mention yet another potentially interesting direction, which may
lead to a new classification inside Rosenthal Banach spaces induced by topological
classification of Rosenthal compacta (Todorcevic trichotomy) applied to the Rosenthal
compacta of the form E(V ) (enveloping semigroups of Banach spaces V ).

2.5. Some typical applications.

Theorem 2.7. [46, 49] Let V be a reflexive space (remains true for PCP spaces).
Then

(1) norm topology = weak topology on every orbit Gv for every G ≤ Iso (V ).
(2) WOP=SOP. The weak and the strong operator topologies coincide on Iso (V ).
(3) Every weakly continuous (co)homomorphism h : G→ Iso (V ) is strongly con-

tinuous.

Proof. It is enough to show (1). Let z ∈ X := Gv. Denote by τ the weak topology
on X ⊂ V . We have to show that for every ε > 0 there exists a τ -neighborhood O(z)
of z in X such that O is ε-small. Since X is (τ, norm)-fragmented (non-sensitivity is
enough), we can pick a non-void τ -open subset W ⊂ X such that W is ε-small in V .
Choose g0 ∈ G such that g0z ∈ W . Denote by O the τ -open subset g−1

0 W of (X, τ).
Then O is a τ -neighborhood of z and is ε-small. �

Theorem 2.8. (Shtern, Megrelishvili) If P is a compact semitopological monoid then
there exists a reflexive Banach space V and an embedding P ↪→ Θ(V )w into the
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compact semitopological monoid

Θ(V )w := {σ ∈ L(V, V ) : ||σ|| ≤ 1}.

Theorem 2.9.

(1) Let S be a compact semitopological monoid and G be its subgroup. Then G is
a topological group.

(2) Ellis Theorem Every compact semitopological group G is a topological group.

Proof. It is enough to show (1). Combine previous two theorems. By Theorem 2.8,
G ≤ Iso (V )w ⊂ Θ(V )w for some reflexive V . By Theorem 2.7, WOP=SOP on Iso (V )
for every V ∈ PCP . So, G ≤ Iso (V )w = Iso (V )s is a topological group. �

Theorem. ([27], 2012) Rosr 6= Aspr

The Polish topological group H+[0, 1] is representable on a separable Rosenthal Banach
space (and not representable on any Asplund space, [24], 2007).

⇓
(Well known) There exists a separable Rosenthal Banach space which is not As-

plund.

Remark 2.10. Well known but once it was a famous problem, resolving by James (JT
space) and Lindenstrauss-Stegall (JF space).

Another corollary: There exists a separable Rosenthal space V without the adjoint
continuity property.

2.6. The hierarchy of Banach representations. With every Banach space V
one may naturally associate several structures which are related to the theories of
topological dynamics, topological groups and compact right topological semigroups:

Definition 2.11.

(1) Iso (V ) is the group of linear onto self-isometries of V . It is a topological
(semitopological) group with respect to the strong (respectively, weak) opera-
tor topology. It is naturally included in the semigroup Θ(V ) := {σ ∈ L(V, V ) :
||σ|| ≤ 1} of non-expanding linear operators. The latter is a topological (semi-
topological) monoid with respect to the strong (respectively, weak) operator
topology. Notation: Θ(V )s, Iso (V )s (respectively, Θ(V )w, Iso (V )w) or simply
Θ(V ) and Iso (V ), where the topology is understood.

(2) For every subsemigroup S ≤ Θ(V )op the pair (S,B∗) is a dynamical system,
where B∗ is the weak star compact unit ball in the dual space V ∗, and Θ(V )op

is the opposite semigroup (which can be identified with the adjoint) to Θ(V ).
The action is jointly (separately) continuous where S carries the strong (weak)
operator topology.

(3) The enveloping semigroup E(S,B∗) of the system (S,B∗) is a compact right
topological semigroup (it can be identified with the pointwise closure of S
in B∗B

∗
). In particular, E(V ) := E(Θ(V )op, B∗) will be called the envelop-

ing semigroup of V . Its topological center is just Θ(V )opw which is densely
embedded into E(V ). Note that E(V ) = Θ(V )op iff V is reflexive.
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A representation of a semigroup S (with identity element e) on a Banach space V
is a co-homomorphism h : S → Θ(V ), where Θ(V ) := {T ∈ L(V ) : ||T || ≤ 1} and
h(e) = idV . Here L(V ) is the space of continuous linear operators V → V and idV is
the identity operator. This is equivalent to the requirement that h : S → Θ(V )op be a
monoid homomorphism, where Θ(V )op is the opposite semigroup of Θ(V ). If S = G,
is a group then h(G) ⊂ Iso (V ), where Iso (V ) is the group of all linear isometries
from V onto V .

Definition 2.12. [49, 23, 24, 25] Let X be a dynamical S-system.

(1) A representation of (S,X) on a Banach space V is a pair

h : S → Θ(V ), α : X → V ∗

where h : S → Θ(V ) is a weakly continuous representation (co-homomorphism)
of semigroups and α : X → V ∗ is a weak∗ continuous bounded S-mapping
with respect to the dual action

S × V ∗ → V ∗, (sϕ)(v) := ϕ(h(s)(v)).

We say that the representation is strongly continuous if h is strongly con-
tinuous. A representation (h, α) is said to be faithful if α is a topological
embedding.

(2) If S := G is a group then a representation of (G,X) on V is a pair (h, α),
where α is as above and h : G→ Iso (V ) is a group co-homomorphism.

(3) If K is a subclass of the class of Banach spaces, we say that a dynamical
system (S,X) is (strongly) K-representable if there exists a weakly (respec-
tively, strongly) continuous faithful representation of (S,X) on a Banach space
V ∈ K.

(4) A dynamical system (S,X) is said to be (strongly) K-approximable if it can
be embedded in a product of (strongly) K-representable S-spaces.

Remark 2.13. The notion of a reflexively (Asplund) representable compact dynam-
ical system is a dynamical version of the purely topological notion of an Eberlein
(respectively, a Radon-Nikodym (RN, in short)) compactum, in the sense of Amir
and Lindenstrauss (respectively, in the sense of Namioka). As in [25], we call Rosen-
thal representable systems Weakly Radon-Nikodym (WRN) systems.

Remark 2.14.

(1) Of course not every K-approximable is K-representable. Take for example,
(S,X) with S := {e} and X := [0, 1]R. Then (S,X) is clearly reflexively-
approximable but not reflexively-representable (because X, as a compactum,
is not Eberlein).

(2) In some particular cases K-approximability and K-representability are equiv-
alent. This happens for example if X is metrizable and K is closed under
countable l2-sums.

(3) The classes of Eberlein, RN and WRN compact dynamical systems are closed
under countable products.

Proof. Use the l2-sum of representations (hn, αn) of (S,Xn) on Vn where
||αn(x)|| ≤ 2−n for every x ∈ Xn and n ∈ N with V := (Σn∈NVn)l2 . �
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(4) (”building blocks” of dynamical systems) Let S × X → X be a continuous
action on a compact space X. Then the S-system X can be S-embedded into a
topological S-product

∏
f∈F Xf of ”cyclic S-systems” Xf . Here F ⊂ C(X) is

a point separating family and Xf is defined as the Gelfand space of the algebra
Af = the smallest closed S-invariant subalgebra generated by fS in C(X). It
follows that if any Xf is s K-approximated then X is K-approximated, too.
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3. Actions and semigroups

Definition 3.1. Let S be a semitopological semigroup with a neutral element e. Let
π : S × X → X be a left action of S on a topological space X. This means that
ex = x and s1(s2x) = (s1s2)x for all s1, s2 ∈ S and x ∈ X, where as usual, we write
sx instead of π(s, x) = λs(x) = ρx(s). Let S × X → X and S × Y → Y be two
actions. A map f : X → Y between S-spaces is an S-map if f(sx) = sf(x) for every
(s, x) ∈ S ×X.

We say that X is a dynamical S-system (or an S-space or an S-flow) if the action
π is separately continuous (that is, if all orbit maps ρx : S → X and all translations
λs : X → X are continuous). If otherwise is not stated we assume that X is compact.
We sometimes write it as a pair (S,X).

A right system (X,S) can be defined analogously. If Sop is the opposite semigroup
of S with the same topology then (X,S) can be treated as a left system (Sop, X) (and
vice versa).

Fact 3.2. (J. Lawson [41]) Let G be a Čech-complete (e.g., locally compact or com-
pletely metrizable) semitopological group. Then every separately continuous action of
G on a compact space X is continuous.

Notation: All semigroups S are assumed to be monoids, i.e, semigroups with a neu-
tral element e. Also actions are monoidal (meaning ex = x,∀x ∈ X) and separately
continuous. We reserve the symbol G for the case when S is a group.

Let h : S1 → S2 be a semigroup homomorphism, S1 act on X1 and S2 on X2. A map
f : X1 → X2 is said to be h-equivariant if f(sx) = h(s)f(x) for every (s, x) ∈ S1×X1.
For S1 = S2 with h = 1S, we say S-map. The map h : S1 → S2 is a co-homomorphism
iff h : S1 → Sop2 (the same assignement) is a homomorphism.

Given x ∈ X, its orbit is the set Sx = {sx : s ∈ S} A point x with cl (Sx) = X is
called a transitive point, and the set of transitive points is denoted by Xtr. We say
that the system is point-transitive when Xtr 6= ∅. The system is called minimal if
Xtr = X. Equivalently: any nonempty closed S-subsystem of X is X.

By an (invertible) cascade on X we mean a continuous action S ×X → X, where
S := N∪{0} := N0 is the additive semigroup of all nonnegative integers (respectively,
S = (Z,+)).

3.1. Some old and new classes of semigroups. Let S be a semigroup which is
also a topological space. By λa : S → S, x 7→ ax and ρa : S → S, x 7→ xa we denote
the left and right a-transitions. The subset Λ(S) := {a ∈ S : λa is continuous} is
called the topological center of S.

Definition 3.3. A semigroup S with a given topology is called:

(1) right topological semigroup if every ρa is continuous;
(2) admissible if S is right topological and Λ(S) is dense in S;
(3) topological if the multiplication S × S → S is continuous;
(4) topological group if S, algebraically, is a group, topological semigroup and if

the inversion s 7→ s−1 is continuous.
(5) semitopological if the multiplication m : S × S → S is separately continuous

(i.e., if S is left and right topological);

Define two new classes of compact right topological semigroups.
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Definition 3.4. [23, 25] A compact admissible right topological semigroup (P, τ) is
said to be:

(1) [25] tame if the left translation λa : (P, τ) → (P, µ) is a fragmented map
(Definition 12.1) for every a ∈ P .

(2) HNS-semigroup if {λa : P → P}a∈P is a fragmented family of maps.

These classes are closed under factors. We have the inclusions:

{compact semitopological semigroups} ⊂ {HNS-semigroups} ⊂ {Tame semigroups}

3.2. Functions with small orbits. Let S × X → X be an action. It induces the
right action C(X)× S → C(X) and a co-homorphism h : S → Θ(C(X)).

A (bounded) function f ∈ C(X) is said to be:

(a) Right uniformly continuous if the orbit map f̃ : S → C(X) is continuous; i.e.

∀ε > 0 ∀s0 ∈ S ∃U ∈ N(s0) |f(sx)− f(s0x)| < ε ∀x ∈ X, s ∈ U.

notation: f ∈ RUC(X). If the action is continuous and X is compact then
RUC(X) = C(X).

(b) Almost periodic if the norm closure cl(fS) of the orbit fS is norm compact
in C(X); notation: f ∈ AP(X).

(c) Weakly almost periodic if the weak closure clw(fS) of the orbit fS is weak
compact in C(X); Notation: f ∈WAP(X).

In particular we have WAP(S) for usual left action of S on itself. Note that for
the right action of S on itself the corresponding (right) version of WAP(S) gives the
equivalent definition [9, 6].

A compact S-space X is said to be (weakly) almost periodic if (resp., C(X) =
WAP(X)) C(X) = AP(X). For any S-space X the collections WAP(X) and AP(X)
are S-invariant subalgebras of C(X). The corresponding Gelfand spaces and com-
pactifications define S-equivariant compactifications uap : X → XAP and uwap : X →
XWAP . The compactification S → SWAP (for X := S) is the universal semitopologi-
cal semigroup compactification of S.

For every topological group G, treated as a G-space, the corresponding universal
AP compactification is the classical Bohr compactification b : G→ bG, where bG is a
compact topological group.

(d) Let X be a compact DS. We say that f ∈ C(X) is Asplund if fS is a frag-
mented family (Definition 12.1) of maps X → R; notation: f ∈ Asp(X). It is
equivalent saying that clp(fS) is a fragmented family.

Define also, Asp(G) := Asp(βGG).
(e) Let X be a compact DS. We say that f ∈ C(X) is tame if clp(fS) is an

eventually fragmented family of maps X → R; notation: f ∈ Tame(X). Or,
equivalently, if fS does not contain an independent subsequence (Definition
12.7).

Another equivalent condition is: clp(X) ⊂ F(X), where F(X) is the set of
all fragmented real valued functions on X. (See Theorem 12.10.)



13

3.3. Semigroup compactifications. A good introduction to semigroup compact-
ifications of topological groups is a work of Uspenskij [73] (downloadable from the
course website). See also a book of Berglund-Junghenn-Milnes [6].

Definition 3.5. Let S be a semitopological semigroup. [6, p. 105] A right topological
semigroup compactification of S is a pair (γ, T ) such that T is a compact right topo-
logical semigroup, and γ is a continuous semigroup homomorphism from S into T ,
where γ(S) is dense in T and the left translation λs : T → T, x 7→ γ(s)x is continuous
for every s ∈ S, that is, γ(S) ⊂ Λ(T ).

It follows that the associated action

πγ : S × T → T, (s, x) 7→ γ(s)x = λs(x)

is separately continuous.

Example 3.6.

(1) Maximal (jointly continuous) G-compactification G ↪→ βGG := GRUC (the
greatest ambit). The corresponding algebra is RUC(G).

(2) Universal semitopological compactification: G → wG := GWAP. The corre-
sponding algebra is WAP (G).

(3) universal topological compact group compactification (Bohr compactification):
G→ bG = GAP .

G ↪→ βGG = GRUC → GTame → GAsp → GWAP → GAP = bG

By [52], q : GRUC → GWAP is a homeomorphism iff G is precompact.

3.4. Enveloping semigroups. For every (separately continuous) compact S-system
X we have a (pointwise continuous) monoid homomorphism j : S → C(X,X), j(s) =
s̃, where s̃ : X → X, x 7→ sx = π(s, x) is the s-translation (s ∈ S).

Definition 3.7. The enveloping semigroup E(S,X) (or just E(X)) of the compact
dynamical S-system X is defined as the pointwise closure E(S,X) = cl p(j(S)) of

S̃ = j(S) in XX .

The associated homomorphism j : S → E(X) is a right topological semigroup
compactification (say, Ellis compactification) of S, j(e) = idX and the associated
action πj : S ×E(X)→ E(X) is separately continuous. Furthermore, if the S-action
on X is continuous then πj is continuous. E(X) is always a right topological compact
monoid. Algebraic and topological properties of the families j(S) and E(X) reflect
the asymptotic dynamical behavior of (S,X).

Exercise 3.8. (A concrete computation) Let S := Z ∪ {−∞,∞} be the two-point
compactification of Z. Extend the usual addition by:

n+ t = t+ n = s+ t = t n ∈ Z, s, t ∈ {−∞,∞}
Show:

(1) (S,+) is a noncommutative compact right topological semigroup having dense
topological centre Λ(S) = Z.

(2) S is topologically isomorphic to the enveloping semigroup of the invertible
cascade (Z, [0, 1]) generated by the homeomorphism σ : [0, 1]→ [0, 1], σ(x) =
x2.
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Proof. Let E be the enveloping semigroup of (Z, [0, 1]) and j : Z → E be the corre-
sponding compactification. Observe that besides the points j(Z) = {σn : n ∈ Z}
the enveloping semigroup E(X) contains two more points: a, b, where a = ξ{1} the
characteristic function of {1} and b = 1− ξ0, where ξ{0} is the characteristic function
of {0}. �

Exercise 3.9. Is it true that E from Example 3.8 is: (a) semitopological; (b) HNS;
(c) Tame ?

Hint: use the fact that the compactum E is countable.

Remark 3.10.

(1) {enveloping semigroupsE(S,X)}= {compact right topological admissible semi-
groups}.

(2) (G,X) is AP (equiv., equicontinuous) iff E is a group of continuous maps.
(3) (Ellis-Nerurkar) [15]) X is a WAP system iff every p ∈ E is a continuous map

X → X.
(4) Enveloping semigroup E(Z,Ω) of the Bernoulli shift symbolic system Ω :=
{0, 1}Z is βZ.

Sketch: To see this recall that the collection {Ā : A ⊂ Z} is a basis for the
topology of βZ consisting of clopen sets. Next identify Ω with the collection
of subsets of Z in the obvious way: A←→ 1A. Now define an “action” of βZ
on Ω by:

p ∗ A = {g ∈ Z : g−1p ∈ A−1}.
This action extends the action of Z on Ω and defines an isomorphism of βZ
onto E(Ω).

(5) If σ : [0, 1] → [0, 1], t 7→ 4t(1 − t) then for the corresponding cascade N0 ×
[0, 1]→ [0, 1] the enveloping semigroup E topologically contains βN. (So, also
in this case E is not a Frechet topological space.)

Below we answer the questions: for which compact metrizable dynamical systems
the enveloping semigroup is: (a) metrizable; (b) Frechet.

3.5. Enveloping semigroups of Banach spaces.

Definition 3.11. Given a Banach space V we denote by E(V ) the enveloping semi-
group of the dynamical system (Θ(V )op, B∗). We say that E(V ) is the enveloping
semigroup of V .

In the sequel whenever V is understood we use the following simple notations
E := E(V ), Θ := Θ(V ), Θop := Θ(V )op. By SV we denote the unit sphere of V .

Lemma 3.12. [27] For every Banach space V , every v ∈ SV and ψ ∈ SV ∗ we have

(1) Θv = B.
(2) vE = B∗∗.
(3) clw∗(Θ

opψ) = B∗.
(4) Eψ = B∗.
(5) Λ(E) = Θop.
(6) V is reflexive iff E = Θop iff E is semitopological.

Some DS results below will lead us to
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Theorem 3.13. Let V be a separable Banach space.

(1) V is Asplund iff E is metrizable.
(2) V is Rosenthal iff E is Frechet.

Theorem 3.14. Let V be a (not necessarily separable) Banach space.

(1) V is Asplund iff E is HNS semigroup.
(2) V is Rosenthal iff E is a tame semigroup.

4. Representations of topological groups I

By a (t-faithful) representation of a topological group G on a Banach space V
we mean a continuous homomorphism (resp., topological group embedding) h : G →
Iso (V ) of G into the top. group Iso (V ) of all linear onto isometries of V with SOT.
Every (topological) group is topologically isomorphic to its opposite group by the
assignment g 7→ g−1. Hence, G is representable on V iff it is co-representable on V .

Problem 4.1. Which (Polish) groups can be represented on nice Banach spaces ?

Let K ⊂ Ban be a subclass of Banach spaces. We write: G ∈ Kr if ∃ a t-faithful
representation of G on V ∈ K.

TGr = Banr ⊇ Rosr ⊃ Aspr ⊇ Refr ⊃ Hilbr ⊃ {LC top. gr.}

Remark 4.2.

(1) (Teleman’s theorem) Any topological group G is Banach representable.
(2) (Gelfand-Raikov) Every locally compact group is Hilbert representable. If G

is a locally compact topological group then the regular representation of H =
L2(G, µ) (where µ is the Haar measure) defines an embedding G ↪→ Iso (H).

(3) (Me [48]) G := L4[0, 1] ∈ Refr \Hilbr (For proofs see Section 11).
(Glasner-Weiss 2012) ∃G ∈ Refr\Hilbr s.t. G = l2/D is Polish monothetic.

(4) Unknown if: Aspr = Refr, Banr = Rosr.
It is an open question if every Polish group is Rosenthal representable
(enough to examine the universal Polish group G := Homeo ([0, 1]N)).

Remark 4.3.

(1) (Me 2001) TGr 6= Refr H+[0, 1] /∈ Refr
∀ representation h : H+ → Iso (V ) is trivial ∀ V ∈ Ref .
⇓
Every semitopological compactification of H+ is trivial.

(2) (Gl-Me 2007, independently also by Uspenskij)
∀ representation h : H+ → Iso (V ) is trivial ∀ V ∈ Asp.
⇓

(3) ∀ metrizable semigroup compactification of H+ is trivial.
(4) ∃ a proper semigroup compactification H+ → S which is Fréchet (in fact,

topologically S ⊂M+([0, 1], [0, 1] = Helly compactum).
⇑

Theorem. (Gl-Me 2012) Rosr 6= Aspr

The Polish topological group H+[0, 1] is representable on a separable Rosenthal Banach
space (and not representable on any Asplund space – 2007).



16

⇓
(Well known) There exists a separable Rosenthal Banach space which is not As-

plund.

Remark 4.4. (Ferri-Galindo [17]) The topological group c0 is not reflexively repre-
sentable.

Note that c0 as a Banach space is Asplund (because, c∗0 = l1 is separable). However
the following concrete question is open

Question 4.5. Is it true that c0 is Asplund representable ?

Question 4.6. (Ferri-Galindo [17]) Is it true that for every abelian topological group
G there exists a continuous injective representation h : G→ Iso (V ) with reflexive V
?

Question 4.7. When a Polish topological group G can be embedded into a good
right topological compact semigroup P ? For example: when P can be semitopological,
metrizable, Frechet, ... ?

The latter is equivalent to asking when the group G is representable on a reflexive,
Asplund or Rosenthal space.

4.1. Elementary observations.

Exercise 4.8. Every locally compact topological group is closed in every Hausdorff
topological group.

For example, Z and R cannot be embedded into compact groups. In particular, such
groups do not admit finite dimensional orthogonal representations h : G ↪→ On(R)
where h is an embedding. More precisely, we have

Fact 4.9. Let G be a topological group. The following are equivalent:

(1) G can be embedded into a compact topological semigroup.
(2) G can be embedded into a compact group (i.e., the Bohr compactification b :

G→ bG is an embedding).
(3) G is embedded into a product of finite dimensional orthogonal group On(R).

The equivalence of (1) and (3) is a consequence of Peter-Weyl theorem. The equiv-
alence of (1) and (2) easily follows from the following

Exercise 4.10. If S is a compact topological semigroup and if G is a subgroup of S
then cl(G) is a (compact) topological group.

Exercise 4.11. Let (G, ·, τ) be a locally compact non-compact Hausdorff topological
group. Denote by S := G ∪ {∞} the 1-point compactification of G. Recall the
topology

τ∞ := τ ∪ {S \K : K is compact in G}.
Show that (S, ·, τ∞) is a semitopological but not a topological semigroup.

Corollary 4.12. Let G be a locally compact group. Then

(1) G is embedded into a topological semigroup iff G is compact.
(2) G is embedded into a compact semitopological semigroup.

Theorem 4.13. (Ellis thm) Every (locally) compact semitopological group is a topo-
logical group.
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4.2. Examples of topological (semi)groups.

Exercise 4.14. Prove that:

(1) for every metric space (M,d) the semigroup S := Θ(M,d) of all contractive
maps 2 f : X → X (that is, d(f(x), f(y)) ≤ d(x, y)) is a topological monoid
with respect to the topology of pointwise convergence;

(2) the group Iso (M) of all onto isometries is a topological group;
(3) the evaluation map S ×M →M is a continuous monoidal action.

Exercise 4.15. Let Y be a compact space. Show that:

(1) The semigroup C(Y, Y ) endowed with the compact open topology is a topo-
logical monoid;

(2) The subset H(Y ) in C(Y, Y ) of all homeomorphisms Y → Y is a topological
group;

(3) For every subsemigroup S ⊂ C(Y, Y ) the induced action S × Y → Y is
continuous;

(4) Furthermore, it satisfies the following remarkable minimality property. If τ0

is an arbitrary topology on S such that (S, τ0) × Y → Y is continuous then
τco ⊂ τ0.

4.3. Operator topologies.

Definition 4.16. Let V be a Banach space. The strong operator topology (SOT)
on L(V, V ) is the pointwise topology inherited from (V, || · ||)V . That is, a net si
converges to s iff si(v) converges to s(v) in the norm topology for every v ∈ V .

Replacing the norm topology of V by its weak topology we obtain the weak operator
topology (WOT). A net si in (L(V, V ),WOT ) converges to s iff f(si(v)) converges to
f(s(v)) in R for every given pair of vectors (v, f) ∈ V × V ∗.
Exercise 4.17. Prove that:

(1) Θ(V ) and L(V, V ) are semitopological monoids with respect to WOT.
(2) The semigroup Θ(V ) endowed with the SOT is a topological monoid. The

subspace Iso (V )s of all linear onto isometries is a topological group.

Recall that (by Theorem 2.7) WOT=SOT on Iso (V ) for reflexive V . Below in
Theorem 10.2 we show this for a larger class of Banach spaces (PCP).

It is well known (de Leeuw-Glicksberg [12]) that Θ(V )w is a compact (semitopolog-
ical) semigroup for every reflexive V . One may show that this property characterizes
reflexive spaces.

Lemma 4.18. For any Banach space V and any given norm 1 vector v ∈ SV the
map

Θ(V )w → (B,w), s 7→ sv

is onto (and continuous).

Proof. Take f ∈ SV ∗ such that f(v) = 1. For every z ∈ B define the rank 1 operator

z ⊗ f : V → V, x 7→ f(x)z.

Then z ⊗ f(v) = z and z ⊗ f ∈ Θ since ||z ⊗ f || = ||f || · ||z|| = ||z|| ≤ 1. �

2in another terminology: Lipschitz 1 maps
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Proposition 4.19. The following are equivalent:

(1) V is reflexive;
(2) B := BV is weakly compact;
(3) Θ(V )w is compact.

Proof. (1) ⇔ (2) is a well known criterion.
(2) ⇒ (3) Θ(V ) ⊂ (B,w)B is a closed subset. Apply now Tychonoff Theorem.
(3) ⇒ (2) Is a corollary of Lemma 4.18. �

Every left action π : S×X → X induces the co-homomorphism hπ : S → C(X) and
the right action C(X) × S → C(X) where (fs)(x) = f(sx). While the translations

s̃ : V → V are continuous, the orbit maps f̃ : S → C(X) are not necessarily norm
(even weakly) continuous and require additional assumptions for their continuity. As
before denote by RUC(X), the set of all functions f ∈ C(X) such that the orbit map

f̃ is norm continuous.

For every normed space V the usual adjoint map

adj : L(V )→ L(V ∗), s 7→ s∗ (< s(v), f >=< v, s∗(f) >)

is an injective co-homomorphism of monoids. Sometimes we write simply s instead
of s∗.

Lemma 4.20. For every normed space V the injective map

γ : Θ(V )ops ↪→ C(B∗, B∗)

induced by the adjoint map adj : L(V ) → L(V ∗), is a topological (even uniform)
monoid embedding. In particular,

Θ(V )op ×B∗ → B∗

is a jointly continuous monoidal action of Θ(V )ops on the compact space B∗.

Proof. The strong uniformity on Θ(V ) is generated by the family of pseudometrics
{pv : v ∈ V },where pv(s, t) = ||sv − tv||. On the other hand the family of pseudo-
metrics {qv : v ∈ V },where qv(s, t) = sup{|(fs)(v) − (ft)(v)| : f ∈ B∗} generates
the natural uniformity inherited from C(B∗, B∗). Now observe that pv(s, t) = qv(s, t)
by the Hahn-Banach theorem. This proves that γ is a uniform (and hence, also,
topological) embedding. �

Corollary 4.21. Let V be a Banach space. Suppose that π : V × S → V is a right
action of a topologized semigroup S by linear contractive operators. The following are
equivalent:

(i) The co-homomorphism h : S → Θ(V ), h(s)(v) := vs is strongly continuous.
(ii) The induced affine action S × B∗ → B∗, (sψ)(v) := ψ(vs) is jointly continu-

ous.

For a compact space X we denote by H(X) the topological group of all self-
homeomorphisms of X endowed with the compact open topology.

Lemma 4.22. Let X be a compact G-space, where G is a topological subgroup of
H(X). Assume that (h, α) is a faithful representation (that is, α : X → (V ∗, w∗)
is an embedding) of (G,X) on a Banach space V . Then h is a topological group
embedding.
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4.4. Theorems of Teleman and Uspenskij. Teleman’s theorem below 4.25 shows
that any topological group is represented on a Banach space by linear isometries..

For example, every finite group G can be represented on Rn with n = |G|. Indeed,
take

G ↪→ Sn ↪→ Iso (Rn) = On(R).

Exercise 4.23. Every discrete group G admits an effective isometric representation on
the Banach space l∞(G) and also on the Hilbert space H := l2(G). So, on l∞ := l∞(N)
and on l2 := l2(N) if G is countable.

For every compact space K we have the Gelfand representation δ : K ↪→ C(K)∗.
Now let S ×K → K be a continuous action. The induced action C(K)×S → C(K)
is: linear, norm-preserving and continuous. We obtain a natural representation (h, δ),
where h : S → Θ(V ) is a strongly continuous co-homomorphism of monoids. Call it
the Teleman’s representation. This is a dynamical version of Gelfand’s representation.

Theorem 4.24. [69] Let S ×K → K be a continuous action on a compact space K.
Then

(1) Teleman’s representation (h, δ) of the dynamical system (S,K) on the Banach
space V = C(K) is faithful and strongly continuous. That is, h : S → Θ(V )s
is continuous. If S = G is a group then h is a co-homomorphism of groups
h : G→ Iso (V )s;

(2) Moreover, if S carries the compact open topology inherited from C(K,K) then
the homomorphisms S → C(B∗, B∗) and h : S → Θ(V )ops are topological
embeddings.

Proof. (1) The induced right linear action C(K)×S → C(K) is continuous (because
the orbit maps are norm continuous). This action is contractive (||fs|| ≤ 1|| for every
f ∈ C(X)). It follows that h : S → Θ(V )op is a well defined strongly continuous
homomorphism. Clearly, B∗ is an S-subset under the dual action. By Lemma 4.20
we obtain that the action S × B∗ → B∗ is continuous. Furthermore, h is injective
(because, if s1 6= s2 are distinct elements of S ⊂ C(X,X) then s1x 6= s2x for some
x ∈ X. Choose f ∈ C(X) such that f(s1x) 6= f(s2x). Then fs1 6= fs2). It is
straightforward to see that α(sx) = h(s)(α(x)) for every s ∈ X, x ∈ X. So, (h, α) is
equivariant.

(2) Let S ⊂ C(K,K). Denote by τ0 the induced topology on S. The action
S ×K → K can be treated as a restriction of the bigger action S ×B∗ → B∗, where
K naturally is embedded into B∗ via Gelfand’s map. Then the topology τ on S
inherited from C(B∗, B∗) majors the original topology τ0. Hence, τ0 ⊂ τ .

On the other hand, the continuity of (S, τ0)×B∗ → B∗ easily implies (minimality
property in Exercise 4.15.4) that τ ⊂ τ0 on S. Summing up we conclude that τ = τ0

on S. �

Theorem 4.25. (Teleman’s theorems) Let G be a topological group. Then

(1) G is embedded into Iso (V ) for some Banach space V .
(2) G is embedded into Iso (M,d) for some metric space (M,d).
(3) G is embedded into Homeo (K) for some compact space K.

Proof. Clearly, (1) ⇒ (2). By Theorem 4.24, (3) ⇒ (1). So it is enough to show (3).



20

The left action G × G → G is G-compactifiable. The algebra RUC(G) separates
the points and closed subsets. Then the maximal G-compactification G→ βGG is an
embedding and G ↪→ H(K), where K := βGG. �

Theorem 4.26. [50] (universal small actions) Let K := [0, 1]N be the Hilbert cube.
Denote by U := C(K,K) the topological monoid and the natural action U ×K → K.
Then this action is universal for all monoidal actions on compact metrizable spaces.
The pair (H(K), K) is universal for continuous group actions on compact metrizable
spaces.

[That is, for every compact metrizable X and a topological submonoid S of U there
exists an equivariant pair (h, α) : (S,X) ⇒ (U, Iω) such that h : S ↪→ U is an
embedding of topological semigroups and α : X ↪→ Iω is a topological embedding.]

Proof. Use Equivariant Teleman’s representation on V := C(K) and the fact that by
Keller’s theorem B∗ = (BV ∗ , w

∗) is homeomorphic to the Hilbert cube K for every
separable V . �

Corollary 4.27. (Uspenskij [72]) H([0, 1]N) is a universal Polish topological group.

5. Matrix coefficients

For every h : S → L(V, V ) and any pair of vectors v ∈ V and ψ ∈ V ∗, we have a
canonically associated (generalized) matrix coefficient

mv,ψ : S → R, s 7→< vs, ψ >=< v, sψ >

S

h
��

mv,ψ // R

L(V, V )
ṽ // V

ψ

OO

Easy to adopt this definition for any bilinear mappings V ×W → R and a pair of
compatible (co)-homomorphisms from S to L(V, V ) and to L(W,W ).

Remark 5.1. In order to justify the name ”matrix coefficient” note the following. For
V = Rn (rows 1× n) consider V ∗ (columns n× 1) and v = ei ∈ V and w = etj ∈ V ∗
taken from the standard basis.

Then for a matrix A = (aij)n×n we have

aij =< ei · A, etj >= ei · A · etj
(where < v,w >:= v · w matrix multiplication).

Exercise 5.2. Let h : S → Θ(V ) be a co-homomorphism. The following are equivalent:

(1) h is weakly continuous;
(2) The action S ×B∗ → B∗ is separately continuous (where B∗ := (B∗, w∗));
(3) Every (matrix coefficient) mv,ψ : S → R, s 7→< vs, ψ > is continuous for any

(v, ψ) ∈ V × V ∗.
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It is natural to expect that matrix coefficients reflect good properties of flow rep-
resentations. We recall two well-known facts. The first example is the case of Hilbert
representations. Let h : G → Iso (H) be a continuous homomorphism, where H is
Hilbert with its scalar product H×H → R. Then the corresponding matrix coefficient
mu,v is the so-called Fourier-Stieltjes functions on G. If u = v, then we get positive
definite functions on G. The converse is also true: every continuous positive definite
function comes from some continuous Hilbert representation. Recall that a continu-
ous bounded function f : G→ R is said to be positive definite if

∑
αiαjf(g−1

i gj) ≥ 0
for all α1, · · · , αn ∈ R, g1, · · · , gn ∈ G. Every positive definite function is WAP.

The second example comes from Eberlein (see [6, Examples 1.2.f]). If V is reflexive,
then every bounded V -representation (h, α) and arbitrary pair (v, ψ) lead to a weakly
almost periodic function mv,ψ on S. This follows easily by the (weak) continuity of
the natural operators defined by the following rule. For every fixed ψ ∈ V ∗ (v ∈ V )
define

Lψ : V → C(S) and Rv : V ∗ → C(S),where Lψ(v) = Rv(ψ) = mv,ψ.

We say that a vector v ∈ V is strong (weak) continuous if the corresponding orbit
map ṽ : S → V, ṽ(s) = vs, defined through h : S → Θ(V ), is strongly (weakly)
continuous.

Fact 5.3. Let h : S → Θ(V ) be a weakly continuous co-homomorphism (homomor-
phism). Then

(1) Lψ : V → C(S) is a linear bounded S-operator between right (left) S-actions.
(2) If v ∈ V is strong continuous, then mv,ψ is right uniformly continuous on S.

If ψ is norm continuous then mv,ψ is left uniformly continuous on S.

Proof. (1) Is straightforward.
(2) In order to establish that mv,ψ ∈ RUC(S), observe that

|mv,ψ(st)−mv,ψ(s0t)| = | < vst, ψ > − < vs0t, ψ > | =
| < vs, tψ > − < vs0, tψ > | ≤ ||vs− vs0|| · ||tψ|| = ||vs− vs0||.

The second case is similar. �

Fact 5.4. Let (h, α) : (S,X) ⇒ (Θ(V )opp, B∗) be an equivariant pair with weak∗

continuous α.

(i) The map T : V → C(X), v 7→ T (v), where T (v) : X → R is defined by

T (v)(x) =< v, α(x) >

is a linear S-operator (between right S-actions) with ||T || ≤ 1.
(ii) T (v0) ∈ RUC(X) for every strongly continuous vector v0 in V . Hence, if h is

strongly continuous then T (V ) ⊂ RUC(X).
(iii) If V is reflexive, then T (V ) ⊂WAP(X).

Proof. (i) Is straightforward.
(ii) Observe that ||α(x)|| ≤ 1 for every x ∈ X. We get

||T (v0)s− T (v0)s0|| = sup{| < v0s− v0s0, α(x) > | : x ∈ X} ≤
≤ ||v0s− v0s0|| · ||α(x)|| ≤ ||v0s− v0s0||.

This implies that T (v0) ∈ RUC(X).
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(iii) If V is reflexive, the orbit vS is relatively weakly compact for each v ∈ V . By
the (weak) continuity of the S-operator T , the same is true for the orbit of T (v) in
C(X). Therefore we get T (v) ∈WAP(X). �

Proposition 5.5. For every S-flow X the following are equivalent:

(1) f ∈ RUC(X).
(2) There exist: a Banach space V , a strongly continuous antihomomorphism

h : S → Θ(V ), a weak∗ continuous equivariant map α : X → B∗, and a vector
v ∈ V such that

f(x) =< v, α(x) >= T (v)(x).

Proof. (1) =⇒ (2) The function f belongs to an S-invariant Banach subalgebra A of
RUCS(X). The right action of S on V := A is jointly continuous. Then by Corollary
4.21, corresponding left action of S on the dual ball (B∗, w∗) is jointly continuous.
Then the naturally associated map α : X → B∗ and the vector v := f satisfy the
desired property.

(1) ⇐= (2) Immediate by Fact 5.4 (ii). �

Proposition 5.6. For every semitopological monoid S the following are equivalent:

(1) f ∈ RUC(S).
(2) There exist: a Banach space V , a strongly continuous antihomomorphism

h : S → Θ(V ), and a pair of vectors v ∈ V and ψ ∈ V ∗ such that f = mv,ψ.
If G is a topological group then h(G) ⊂ Is(V ).

Proof. (1) =⇒ (2) Consider the Gelfand compactification uR : S → SR defined by
RUC(S) = C(SR). Then the action S × SR → SR is jointly continuous. Now define:
V := C(SR), corresponding strongly continuous h : S → Θ(V ) (induced by the right
action of S on C(SR)), v := f ∈ V and ψ = uR(e) ∈ V ∗.

(1) ⇐= (2) Immediate by Fact 5.3.2. �

So we see that every right uniformly continuous function on a (semi)group can be
represented as a matrix coefficient mv,ψ of some strongly continuous Banach represen-
tation. We mentioned also that a positive definite function on a topological group G is
a matrix coefficient of some Hilbert representation. One of our aims is to understand
the role of matrix coefficients for reflexive, Asplund and Rosenthal representations.
We show that wap functions are exactly the reflexive matrix coefficients. In the “As-
plund case” this approach leads to a definition of Asplund functions. For ”Rosenthal
case” we will get the so-called tame (regular (Kohler [40]) functions.

6. Reflexive spaces and WAP systems

6.1. Double Limit Property. Let F,X, Y be topological spaces and w : F ×X →
Y,w(f, x) := f(x) be a function. We say that F has the Double Limit Property
(DLP) on X if for every sequence {fn} ⊂ F and every sequence {xm} ⊂ X the limits

lim
n

lim
m
fn(xm) and lim

m
lim
n
fn(xm)

are equal whenever they both exist.

Example 6.1. Let V be a reflexive space. Then B has DLP on B∗.
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Proof. By Eberlein-Shmulian theorem B and B∗ in their weak topologies are sequen-
tially compact. �

Theorem 6.2. (Raynaud [62, Prop. 1.1], Krivine-Maurey [39, Theorem II.3] for
metrizable X, F ) Let w : F × X → R be a separately continuous bounded function
with compact spaces F and X. Then it can be represented on a reflexive space. That
is, there exists a reflexive space V and weak continuous maps ν : F → V, α : X → V ∗

such that < ν(f), α(x) >= w(f, x).

Remark 6.3. One may refine these results (even keeping the general action setting) as
follows. The fundamental DFJP-factorization construction from [10] has an “isomet-
ric modification” [42]. Taking into account this modification note that we can prove
a little bit more. Namely, if the given family F ⊂ C(X) is bounded by constant 1,
then we can assume that ν(F ) ⊂ B and α(X) ⊂ B∗. Hence the following sharper
diagram commutes:

F ×X
ν

��
α

��

// [−1, 1]

id
��

B ×B∗ // [−1, 1]

For more details see [27].

Corollary 6.4. Let F and X are compact spaces and w : F ×X → R be a separately
continuous bounded function. Then:

(1) F has DLP on X;
(2) The induced (bounded) images j1(F ) ⊂ Cp(X) and j2(X) ⊂ Cp(F ) are Eber-

lein compacta (hence, Frechet and sequentially compact).

Note that (1) admits also a direct proof easily reducing the proof to the case of
metrizable F , X.

Lemma 6.5. (Grothendieck) Let X be a compact space. Then a bounded subset F of
C(X) is weakly compact iff F is pointwise compact.

Proof. By Lebesgue dominated convergence theorem it follows that any pointwise
converging bounded sequence in C(X) is weakly converging. So, id : (F, p)→ (F,w) is
sequentially continuous. The evaluation map (F, p)×X → R is separately continuous.
Therefore, (F, p) is a Frechet compactum (Corollary 6.4). So we obtain that the
pointwise and weak topologies on F ⊂ C(X) are the same. �

Lemma 6.6. (Grothendieck; see for example [6, Appendix A]) Let F be a bounded
subset in a Banach space V . The following are equivalent:

(1) The weak closure of F in V is weakly compact;
(2) F has DLP on B∗.

Theorem 6.7. Let V be a Banach space. The following conditions are equivalent:

(1) V is reflexive.
(2) B has DLP on B∗.
(3) every bounded subset F ⊂ V has DLP on every bounded X ⊂ V ∗.
(4) B ⊂ V is weakly compact.
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Proof. (1) ⇒ (2) As in Example 6.1 use Eberlein-Shmulian theorem.
(2) ⇒ (3) Is trivial.
(3) ⇒ (4) Apply Lemma 6.6.
(4) ⇒ (1) BV is w∗-closed in V ∗∗. By Goldstine’s theorem the w∗-closure of BV in

V ∗∗ is B∗∗ := BV ∗∗ . Hence, B = B∗∗. This implies directly that V = V ∗∗. �

Exercise 6.8. Let X be a compact space and F ⊂ C(X) be a bounded subset. Show
that F has DLP on X iff F has DLP on B∗, where B∗ = BC(X)∗ .

Lemma 6.9. (Grothendieck) A bounded function f ∈ C(G) is wap iff

lim
n

lim
m
f(gnhm) = lim

m
lim
n
f(gnhm)

whenever all the limits exist.

6.2. WAP dynamical systems. Given a function f ∈ C(X) we consider its orbit
fS := {f ◦ s̃ : s ∈ S} ⊂ C(X). For every f ∈ C(X) the function E → RX , s 7→ fs is
pointwise continuous. So we have fE = clp(fS).

One may estimate the dynamical complexity of f is by considering the pointwise
compact subset cl p(fS) in RX . Various kinds of ”smallness” of this compactum leads
to a natural hierarchy. The classical example is (weakly) almost periodic functions.

Definition 6.10. Let X be a compact S-system.

(1) f ∈ C(X) is said to be WAP if one of the following equivalent conditions is
satisfied:
(a) fS is weakly precompact in C(X);
(b) cl p(fS) ⊂ C(X);
(c) fS has DLP on X.

(2) (S,X) is said to be WAP if one of the following equivalent conditions is sat-
isfied:
(a) every member p ∈ E(S,X) is a continuous function X → X;
(b) WAP(X) = C(X).

The equivalences can be verified using Grothendieck’s classical results. See for
example, [6, Theorem A4] and [6, Theorem A5]. If X is metrizable (or, sequentially
compact) then (a) and (b) in (2) are equivalent to the condition: (c) S×X → X has
DLP.

Theorem 6.11. (Ellis and Nerurkar [15]) Let X be a compact S-dynamical system.
The following conditions are equivalent.

(1) (S,X) is WAP.
(2) The enveloping semigroup E(S,X) consists of continuous maps. That is,

E(S,X) ⊂ C(X,X).

Proof. (1)⇒ (2) By Definition 6.10, cl p(fS) ⊂ C(X) for every f ∈ C(X) = WAP(X).
Therefore, fp : X → R is continuous for every f ∈ C(X) and p ∈ E(X). Since X is
compact this guarantees that every p : X → X is continuous.

(2)⇒ (1) If E ⊂ C(X,X) then fE = clp(fS) ⊂ C(X). By Grothendieck’s Lemma
6.5, clp(fS) is weakly compact. Hence, f ∈WAP(X). �

Corollary 6.12. When (S,X) is WAP the enveloping semigroup E(X) is a semi-
topological semigroup. The converse holds if in addition we assume that (S,X) is
point transitive.
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Example 6.13.

(1) (Eberlein, see for example [6, Examples 1.2.f]) If V is reflexive, then every
weakly continuous representation (h, α) of an S-system X on V and every
pair (v, ψ) ∈ V × V ∗ lead to a weakly almost periodic function mv,ψ on S.
This follows easily by the (weak) continuity of the bounded operator Lψ :
V → C(S),where Lψ(v) = mv,ψ.

(2) Analogously, every v ∈ V , with reflexive V , defines a wap function Tv : X → R
on the G-system X which naturally comes from the given dynamical system
representation (h, α). Precisely, define

T (V ) = Tv : X → R, x 7→ 〈v, α(x)〉.
Then the set of functions {Tv}v∈V is a subset of WAP(X).

Proof. (1) If the orbit of vS is relatively weakly compact in V . Then Lψ(vS) = mv,ψS
is relatively weakly compact in C(S). Thus, mv,ψ ∈WAP(S).

For the case when h is a ”homomorphism” recall (see [9] or [6]) that fS is weakly
precompact iff Sf is weakly precompact in C(S).

(2) Is similar. �

If in (2) α is an embedding (which implies that X is reflexively representable)
then it follows that the collection {Tv}v∈V (and hence also WAP(X)) separates the
points of X. If, in addition, X is compact it follows that WAP(X) = C(X) (because
WAP(X) is always a closed subalgebra of C(X)). That is, in this case (S,X) is WAP
in the sense of Ellis and Nerurkar.

The converses of Example 6.13 is also true as we show below.

Theorem 6.14. [49] Let S × X → X be a separately continuous action of a semi-
topological semigroup S on a compact space X. For every f ∈ WAP(X) there exist:
a reflexive space V , a functional φ ∈ V ∗ and an equivariant pair

(h, α) : (S,X) ⇒ (Θ(V ), BV )

such that h : S → Θ(V ) is a weakly continuous homomorphism, α : X → BV is a
weakly continuous S-map, and f(x) = 〈φ, α(x)〉 = φ(α(x)) for every x ∈ X.

If S = G is a semitopological group then one can assume in addition that h(G) ⊂
Iso (V ) and h : G→ Iso (V ) is strongly continuous.

Theorem 6.15. [49, section 4] Let S be a semitopological semigroup.

(1) A compact (continuous) S-space X is WAP if and only if (S,X) is weakly
(respectively, strongly) reflexively approximable.

(2) A compact (continuous) metric S-space X is WAP if and only if (S,X) is
weakly (respectively, strongly) reflexively representable.

(3) Every f ∈WAP(S) is a matrix coefficient of a reflexive representation.

It is important to take into account the following characterization of reflexive
spaces.

Lemma 6.16. Let V be a Banach space. The following conditions are equivalent:

(1) V is reflexive.
(2) The semitopological semigroup Θ(V )w is compact.
(3) The compact right topological semigroup E(V ) is semitopological.
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(4) (Θop, B∗) is a WAP system.

Proof. (1) ⇒ (2) Always, Θ(V ) is a closed subset of the product (B,w)B. So, if V
is reflexive then by Theorem 6.7 (B,w)B is compact. Hence, we obtain by Tychonoff
theorem that Θ(V ) is compact.

(2) ⇒ (3) Use the fact that Θ(V )opw is dense in E(V ) (Lemma 3.12).
(3) ⇒ (4) One may apply Corollary 6.12 because (Θ(V )op, B∗) is transitive.
(4) ⇒ (1) Choose any v ∈ SV and treat it as a (continuous) function on the

dynamical Θop-system B∗. Then v ∈WAP(B∗). Then its orbit has DLP on B∗. So,
vΘop = Θv = B has DLP on B∗. �

Another consequence of Theorem 6.15 (taking into account Lemma 6.16) is

Theorem 6.17. ([67] and [46]) Every compact semitopological semigroup S can be
embedded into Θ(V ) for some reflexive V .

Thus, compact semitopological semigroups S can be characterized as closed sub-
semigroups of E(V ) for reflexive Banach spaces V .

6.3. DFJP factorization for WAP dynamical systems.

Theorem 6.18. Let X be a compact S-space and F ⊂ C(X) a norm bounded S-
invariant subset of C(X). The following are equivalent:

(1) (F, S,X) admits a reflexive representation.
(2) cl p(F) ⊂ C(X).
(3) F has DLP on X.

Proof. (1)⇒ (3) If V is a reflexive space then every bounded subset F of the dual V ∗

has DLP on every bounded subset X ⊂ V . This follows from the Eberlein-Šmulian
theorem. See Theorem 6.7.

(2) ⇒ (1) Theorem 6.20 below.
(2) ⇔ (3) It can be found for example in [6, Theorem A.4]. �

Theorem 6.19. (S,X) is a WAP (continuous) system if and only if (S,X) is weakly
(respectively, strongly) reflexively-approximable. If the compactum X is metrizable
then “approximable” can be replaced by “representable”.

Proof. The “only if” part: Use the fact that (Θop, B∗) is a WAP system (Theorem
14.4) for every reflexive space V .

The “if” part: (1) For every f ∈ C(X) = Tame(X) the orbit fS has DLP (being
weakly precompact) family for X. Applying Theorem 15.4 below we conclude that
every f ∈ C(X) = Tame(X) on a compact S-space X comes from a reflexive repre-
sentation. Since continuous functions separate points of X, this implies that reflexive
representations of (S,X) separate points of X. So, it is enough to prove the following
result which gives a proof of Theorem 6.18.

Theorem 6.20. Let X be a compact S-space and let F ⊂ C(X) be a bounded S-
invariant pointwise compact family. Then there exist: a reflexive Banach space V , an
injective S-equivariant mapping ν : F → BV and a representation

h : S → Θ(V ), α : X → V ∗
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of (S,X) on V such that h is weakly continuous, α is a weak∗ (in fact, weakly)
continuous map and

f(x) = 〈ν(f), α(x)〉 ∀ f ∈ F ∀ x ∈ X.
Thus the following diagram commutes

(6.1) F ×X
ν
��

α
��

// R
idR
��

V × V ∗ // R
If X is metrizable then in addition we can suppose that V is separable.
If the action S×X → X is continuous we may assume that h is strongly continuous.
If S = G is a group then h(G) ⊂ Iso (V ).
If F separates points of X then α : X → (V ∗, w∗) is a topological embedding.

Proof. Step 1: The construction of V .

For brevity of notation let A := C(X) denote the Banach space C(X), B will
denote its unit ball, and B∗ will denote the weak∗ compact unit ball of the dual space
A∗ = C(X)∗. Let W be the symmetrized convex hull of F ; that is, W := co (F ∪−F ).
Then W is convex and symmetric. Consider the sequence of sets

(6.2) Mn := 2nW + 2−nB.

We apply the construction of Davis-Figiel-Johnson-Pelczyński [10] as follows. Let
‖ ‖n be the Minkowski functional of the set Mn, that is,

‖v‖n = inf {λ > 0
∣∣ v ∈ λMn}.

Then ‖ ‖n is a norm on A equivalent to the given norm of A. For v ∈ A, set

N(v) :=

(
∞∑
n=1

‖v‖2
n

)1/2

and let V := {v ∈ A
∣∣ N(v) <∞}.

Denote by j : V ↪→ A the inclusion map. Then (V,N) is a Banach space, j : V → A

is a continuous linear injection and

(6.3) W ⊂ j(BV ) = BV ⊂
⋂
n∈N

Mn =
⋂
n∈N

(2nW + 2−nB)

Indeed, if v ∈ W then 2nv ∈ Mn, hence ‖v‖n ≤ 2−n and N(v)2 ≤
∑

n∈N 2−2n < 1.
This proves W ⊂ j(BV ). In order to prove the second inclusion recall that the norms
‖·‖n on A are equivalent to each other. It follows that if v ∈ BV then ‖v‖n < 1 for all
n ∈ N. That is, for every n ∈ N, v ∈ λnMn for some 0 < λn < 1. By the construction
Mn is a convex subset containing the origin. This implies that λnMn ⊂ Mn. Hence
j(v) = v ∈Mn for every n ∈ N.

Step 2: The construction of the representation (h, α) of (S,X) on V .

The given action S ×X → X induces a natural linear norm preserving continuous
right action C(X) × S → C(X) on the Banach space A = C(X). It follows by the
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construction that W and B are S-invariant subsets in A. This implies that V is an S-
invariant subset of A and the restricted natural linear action V ×S → V, (v, g) 7→ vg
satisfies N(vs) ≤ N(v). Therefore, the co-homomorphism h : S → Θ(V ), h(s)(v) :=
vs is well defined.

Let j∗ : A∗ → V ∗ be the adjoint map of j : V → A. Define α : X → V ∗ as follows.
For every x ∈ X ⊂ C(X)∗ set α(x) = j∗(x). Then (h, α) is a representation of (S,X)
on the Banach space V .

By the construction, F ⊂ W ⊂ BV . Define ν : F ↪→ BV as the natural inclusion.
Then

(6.4) f(x) = 〈ν(f), α(x)〉 ∀ f ∈ F ∀ x ∈ X.

Step 4: V is a reflexive space.

Proof. By Grothendieck Lemma F is weakly compact. Now use that by Krein-
Smulian theorem W := co (F ∪ −F ) is relatively weakly precompact. Now follow
the arguments of [10]. Sketch: j∗∗(BV ∗∗) ⊂ A. Hence, j∗∗ is 1-1 and (j∗∗)−1(A) = V .
It follows that V ∗∗ ⊂ V (reflexivity).

Step 3: Weak continuity of h : S → Θ(V ).

By our construction j∗ : C(X)∗ → V ∗, being the adjoint of the bounded linear oper-
ator j : V → C(X), is a norm and weak∗ continuous linear operator. By [16, Lemma
1.2.2] we obtain that j∗(C(X)∗) is norm dense in V ∗. Since V (being reflexive) is
Rosenthal, Haydon’s theorem (Fact 12.11.4) gives Q := clw∗(co(Y )) = clnorm(co(Y )),
where Y := j∗(X). Now observe that j∗(P (X)) = Q. Since S × X → X is sep-
arately continuous, every orbit map x̃ : S → X is continuous, and each orbit map

j̃∗(x) : S → j∗(X) is weak∗ continuous. Then also j̃∗(z) : S → V ∗ is weak∗ continuous
for each z ∈ clnorm(co(j∗(X))) = Q. It is well known that P (X) generates C(X)∗

(even algebraically). So, sp(Q = j∗(P (X))) is norm dense in V ∗. Since ||h(s)|| ≤ 1

for each s ∈ S, it easily follows that ˜j∗(z) : S → V ∗ is weak∗ continuous for every
z ∈ V ∗. This is equivalent to the weak continuity of h.

If the action S×X → X is continuous we may assume that h is strongly continuous.
Indeed, by the definition of the norm N , we can show that the action of S on V is
norm continuous (use the fact that, for each n ∈ N, the norm ‖·‖n on A is equivalent
to the given norm on A).

�

If the compact space X is metrizable then C(X) is separable and it is also easy to
see that (V,N) is separable. �

This proves Theorem 15.4 and hence also Theorem 15.3.1. �

7. Applications

Theorem 7.1. (WAP Representation Theorem) Let X be a compact semitopo-
logical S-system and f ∈ C(X). The following conditions are equivalent:

(i) f : X → R is weakly almost periodic.
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(ii) There exist: a representation (h, α) of (S,X) into reflexive V with a weak con-
tinuous antihomomorphism h : S → Θ(V ), weak (eq., weak-star) continuous
α : X → B∗, and a vector v ∈ V such that f(x) =< v, α(x) >.

If either: a) S = G is a semitopological group; or b) X is compact and the action
S × X → X is jointly continuous, then in (ii) we can suppose that h is strongly
continuous.

Proof. Recall that a continuous function f ∈ C(X) is WAP iff the orbit fS is relatively
weakly compact in C(X). That is, clw(fS) is weakly compact. Apply Theorem 6.20
for F := clw(fS). �

Theorem 7.2. A compact S-system X is WAP iff X is reflexively approximable.

Proof. If X is REFL-approximable then X is wap by Fact 5.4 (iii) (in fact, WAP
separates points but since WAP(X) is an algebra and X is compact it is enough).

The nontrivial part follows from Theorem 7.1 because if X has sufficiently many
wap functions, then (S,X) has sufficiently many reflexive representations. �

Corollary 7.3. Every metrizable compact WAP system is Eberlein.

Theorem 7.4. For every semitopological monoid S the function f : S → R is wap
iff f is a matrix coefficient of a weak continuous antihomomorphism S → Θ(V ) for
a reflexive V . That is, there exist v ∈ V and ψ ∈ V ∗ such that f(s) =< vs, ψ >.

If S = G is a group then h(G) ⊂ Iso (V ) (and h is strongly continuous).

Proof. Apply Theorem 7.1 to the flow (S, S). Then for f ∈ WAP (S) there exists a
reflexive V and a representation h : S → Θ(V ), α : S → B(V ∗) such that f(s) =<
v, α(s) > for a suitable v ∈ V . Denote by e the identity of S. Then f = mv,ψ where
ψ = α(e). �

If we wish to get a homomorphism, just consider h : S → Θ(V )opp = Θ(V ∗).

Fact 7.5. ( [67] and [46]) Let S be a semitopological semigroup. The following are
equivalent:

(i) S is embedded into a compact semitopological monoid.
(ii) There exists a reflexive space E such that S is embedded (as a semitopological

subsemigroup) into Θ(E)w.
Therefore, compact semitopological semigroups are exactly the class of all

closed subsemigroups of Θ(E)w for some reflexive V .

Proof. (i) =⇒ (ii) We can suppose that S is a monoid. Consider X := SW the
universal semitopological compactification of S. Then the corresponding universal
map uW : S → SW is a topological embedding by (i) and hence, the action (S, SW )
is left strict. That is, there is no strictly coarser topology on S under which S is
a semitopological semigroup and SW is still a semitopological S-flow. By Theorem
7.1 there exists a separating family (hi, αi) of reflexive Vi-representations (i ∈ I)
of (S, SW ). Then the l2-sum of these representations defined on the Banach space
V := (

∑
i Vi∈I)l2 will induce a weakly continuous antihomomorphism h : S → Θ(V ).

Since the original action is left strict, it is easy to show that h must be a topological
embedding. Define E := V ∗. It is clear that the antihomomorphism h defines the
desired homomorphism h : S → Θ(V )opp = Θ(V ∗) = Θ(E).
(ii) =⇒ (i) Use Lemma 6.16. �
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By Theorem 2.7, Iso (V )s = Iso (V )w for every reflexive V . Therefore we obtain

Fact 7.6. Let G be a topological group. The following are equivalent:

(i) G→ GW is an embedding.
(ii) G is a topological subgroup of the group Is(V )s (endowed with the strong op-

erator topology) of all linear isometries for a suitable reflexive V .

We next recall a version of Lawson’s theorem and a soft geometric proof using
representations of dynamical systems on reflexive spaces.

Theorem 7.7. (Ellis-Lawson Joint Continuity Theorem) Let G be a subgroup of
a compact semitopological monoid S. Suppose that S × X → X is a separately
continuous action with compact X. Then the action G×X → X is jointly continuous
(and G is a topological group).

Proof. A sketch of the proof from [49]: We show the joint continuity of G×X → X
(for the last part take X := S and the natural action G × S → S). It is easy to
see by Grothendieck’s Lemma (Theorem 6.5) that C(X) = WAP(X). Hence (S,X)
is a weakly almost periodic system. By Theorem 6.15 the proof can be reduced to
the particular case where (S,X) = (Θ(V )op, BV ∗) for some reflexive Banach space V
with G := Iso (V ), where Θ(V )op is endowed with the weak operator topology. By
Theorem 2.7, the weak and strong operator topologies coincide on Iso (V ) for reflexive
V . In particular, G acts continuously on BV ∗ . �

As a corollary one gets the classical result of Ellis.

Theorem 7.8. (Ellis’ Theorem) Every compact semitopological group is a topological
group.

8. Some parallel hierarchies

8.1. Representation theorems.

Theorem 8.1. (Small families of functions) Let X be a compact S-space and let
F ⊂ C(X) be a norm bounded S-invariant subset of C(X).

(1) (F, S,X) admits a Rosenthal representation iff F is an eventually fragmented
family iff cl p(F) ⊂ F(X) iff F does not contain an independent subsequence.

(2) (F, S,X) admits an Asplund representation iff F is a fragmented family iff the
envelope cl p(F) of F is a fragmented family.

(3) (F, S,X) admits a reflexive representation iff cl p(F) ⊂ C(X) iff F has DLP
on X.

Proof. (3) Already was proved in Section 6.3.
(1) and (2): The “only if part” is a consequence of the characterizations of Asplund

and Rosenthal spaces in terms of fragmented and eventually fragmented families,
Theorems 12.5.4 and 12.11.4. �

Recall the definitions of HNS and tame compact dynamical systems.

Definition 8.2. We say that a compact S-system X is hereditarily non-sensitive
(HNS, in short) if one of the following equivalent conditions are satisfied:
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(1) For every closed nonempty subset A ⊂ X and for every entourage ε from the
unique compatible uniformity on X there exists an open subset O of X such
that A ∩O is nonempty and s(A ∩O) is ε-small for every s ∈ S.

(2) The family of translations S̃ := {s̃ : X → X}s∈S is a fragmented family of
maps.

(3) E(S,X) is a fragmented family of maps from X into itself.

It is equivalent to the condition that fS is fragmented for every f ∈ C(X).

Definition 8.3. A compact separately continuous S-system X is said to be tame if
the translation λa : X → X, x 7→ ax is a fragmented map for every element a ∈ E(X)
of the enveloping semigroup.

It is equivalent to saying that fS is free of independent subsequences for every
f ∈ C(X) or that fS is eventually fragmented.

Theorem 8.4.

(1) (S,X) is a tame (continuous) system if and only if (S,X) is weakly (respec-
tively, strongly) Rosenthal-approximable.

(2) (S,X) is a HNS (continuous) system if and only if (S,X) is weakly (respec-
tively, strongly) Asplund-approximable.

If X is metrizable then in (1) and (2) “approximable” can be replaced by “repre-
sentable”.

Theorem 8.5. A compact S-system X is RN (WRN, Eberlein) iff there exists a
bounded S-invariant X-separating family F ⊂ C(X) which is fragmented (resp.: even-
tually fragmented, DLP).

In the following table we encapsulate some features of the trinity: dynamical sys-
tems, enveloping semigroups, and Banach representations. Here X is a compact
metrizable G-space and E(X) denotes the corresponding enveloping semigroup. The
symbol f stands for an arbitrary function in C(X) and fG = {f ◦ g : g ∈ G} denotes
its orbit. Finally, cl (fG) is the pointwise closure of fG in RX .

DS Dynamical characterization Enveloping semigroup Banach representation

WAP cl (fG) is a subset of C(X) Every element is continuous Reflexive

HNS cl (fG) is metrizable E(X) is metrizable Asplund

Tame cl (fG) is Fréchet Every element is Baire 1 Rosenthal

Table 1. The hierarchy of Banach representations

9. Some examples

Example 9.1.

(1) Let X = [0, 1] be the unit interval. Consider the cascade (Z, X) generated
by the homeomorphism σ(x) = x2. Then (Z, X), as a dynamical system,
is RN and not Eberlein (not WAP). To see this observe that the pair of
sequences xn = 1 − 1

n
in X = [0, 1] and σm ∈ G with σm(x) = x2m does

not satisfy DLP. The corresponding limits are 0 and 1. This means that
(Z, [0, 1]) is not Eberlein. The enveloping semigroup E(Z, [0, 1]) is metrizable
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being homeomorphic to the two-point compactification of Z. Hence, by [30],
(Z, [0, 1]) is RN. The sequence {σm : [0, 1]→ [0, 1]}m∈N is a fragmented family
which does not satisfy DLP.

(2) χN : Z → {0, 1} is not a WAP function. Indeed, it does not satisfy DLP.
Choose sn := n, xm := −m. Then

lim
m

lim
n
f(n−m) = 1 6= 0 = lim

n
lim
m
f(n−m)

The ”simple signal”
· · · 000111 · · ·

is not reflexively representable (as a matrix coefficient). However it can be
represented on an Asplund space.

(3) Let P0 be the set [0, c) and P1 the set [c, 1); let z be a point in [0, 1) (identified
with T) via the rotation Rα we get the binary bisequence un, n ∈ Z defined
by un = 0 when Rn

α(z) ∈ P0, un = 1 otherwise. These are called Sturmian
codings. With c = 1−α we retrieve the previous example. For example, when

α :=
√

5−1
2

and c = 1 − α the corresponding sequence, computed at z = 0, is
called the Fibonacci bisequence.

(4) The Sturmian symbolic dynamical Z-system (σ,X) ⊂ Ω = {0, 1}Z is WRN
but not RN (being tame but not HNS). The sequence {σn : X → X}n∈Z is an
eventually fragmented but not fragmented family. As a (nontrivial) corollary:

Every (irrational slope) ”cutting bisequence” (like Fibonacci) is Rosenthal
representable (but not Asplund representable).

The corresponding enveloping semigroup of (σ,X) topologically is a copy of
E = Z∪Y , where Y is the double arrow space. So, E topologically is Frechet
but not metrizable ([23], Pikula [61], Aujogue [2]). This means that (σ,X) is
tame but not HNS.

(5) The natural action of the Polish group H+[0, 1] of all increasing homeomor-
phisms of [0, 1] on [0, 1] is tame but not HNS. The family H+[0, 1] of functions
(or its dense subsequence) is eventually fragmented but not fragmented.

(6) The Bernoulli shift system (Z, {0, 1}Z) is not WRN (equivalently, nontame).
In fact, it is well known that the enveloping semigroup of this system can be
identified with βZ. Now use the dynamical version of BFT dichotomy (Fact
14.8).

Another way to see that the shift system is not tame is the well known fact
that the sequence of projections

{πm : {0, 1}Z → {0, 1}}m∈Z
is independent. Hence by Theorem 12.10 this family fails to be eventually
fragmented.

(7) In his paper Ellis (93), following Furstenberg’s classical work (63), investigates
the projective action of GL(n,R) on the projective space Pn−1. It follows from
his results that the corresponding enveloping semigroup is not first countable.
However, in a later work Akin (98) studies the action of G = GL(n,R) on the
sphere Sn−1 and shows that here the enveloping semigroup is first countable
(but not metrizable). It follows that the dynamical systems D1 = (G,Pn−1)
and D2 = (G,Sn−1) are tame but not HNS. Note that E(D1) is Fréchet, being
a continuous image of a first countable compact space, namely E(D2).
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10. More applications of fragmentability

10.1. When does weak imply strong ? A not necessarily compact G-system X is
called quasiminimal if int(cl (Gz)) 6= ∅ for every z ∈ X. 1-orbit systems and compact
minimal G-systems are quasiminimal.

Theorem 10.1. Let G ≤ Iso (V ) be a subgroup, X a bounded, (weak, norm)-fragmented
G-invariant subset of a Banach space V . Then for every, not necessarily closed, quasi-
minimal G-subspace (e.g., the orbits) Y of X the weak and norm topologies coincide.

Proof. �

This result together with a characterization of PCP (Theorem 12.12) yield:

Theorem 10.2. [46, 49] Let V be a Banach space with PCP (e.g., reflexive, RNP,
or the dual of Asplund). Then

(1) norm topology = weak topology on every orbit Gv for every G ≤ Iso (V ).
(2) The weak and the strong operator topologies coincide on Iso (V ).
(3) Every weakly continuous (co)homomorphism h : G→ Iso (V ) is strongly con-

tinuous.

10.2. Adjoint continuity property of Asplund spaces.

Theorem 10.3. Let V be an Asplund space. Then for every subgroup G ⊂ Iso (V )
the dual action V ×G→ V is norm continuous.

Proof. Similar to Theorem 10.2. Use the characterization of Asplund spaces in terms
of fragmentability. �

More generally, this is true for any continuous linear topological group action (not
necessarily by isometries).

Theorem 10.4. [49, Corollary 6.9] Let V be an Asplund Banach space and π :
V ×G→ V a linear jointly continuous action. Then the dual action π∗ : G×V ∗ → V ∗

is also jointly continuous.

The regular representation T → Iso (V ) of the circle group G := T on V := C(T)
is continuous but not adjoint continuous. Consider the Banach space V := l1 and the
topological subgroup G := S(N) (“permutations of coordinates”) of Iso (l1). Then we
have a natural continuous representation of the symmetric topological group S(N) on
l1 which is not adjoint continuous.

10.3. Helmer’s theorem. One more application is a quick proof of WAP(G) ⊂
UC(G) := LUC(G) ∩ RUC(G), Helmer’s theorem. In fact, we can show more.

Theorem 10.5. [49] WAP(G) ⊂ Asp(G) ⊂ UC(G) for every topological group G.

Proof. Let f ∈ Asp(G). The function f coincides with a matrix coefficient mv,ψ

for a suitable strongly continuous antihomomorphism h : G → Iso (V )s, where V is
Asplund. In particular, v is a norm continuous vector. By Theorem 10.4 the orbit
Gψ is light. Hence, ψ is a norm continuous vector. By Fact 5.3.2, f = mv,ψ is both
left and right uniformly continuous. �
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10.4. Ryll-Nardzewski’s fixed point Theorem.

Theorem 10.6. (Ryll-Nardzewski) Let V be a locally convex vector space equipped
with its uniform structure ξ. Let (Q, τ) be an affine compact S-system such that

(1) (Q, τ) is a weakly compact subset in V .
(2) S is ξ-distal on Q.

Then Q contains a fixed point.

Proof. (Sketch) We can suppose that Q = cl(coX), where X is a compact minimal
S-system. Weakly compact set X is ξ-fragmented (generalized Namioka’s Theorem).
Using the fragmentability one may lift the distality of X from the topology ξ to τ .
So, (S,X) is distal. Therefore, the proof can be reduced to the following theorem of
H. Furstenberg.

Theorem 10.7. (Furstenberg) Every distal compact dynamical system admits an
invariant probability measure.

�

11. Representations of topological groups II

Theorem 11.1.

(1) L4[0, 1] ∈ Refr;
(2) L4[0, 1] /∈ Hilbr.

[Chaatit 1996] The additive group of every separable stable (Krivine-Maurey [39]) Banach
space belongs to Refr.

=⇒ (1)
———————————————–

(direct) proof of (1):

Lemma 11.2. G is reflexively representable iff WAP (G) separates points and closed
subsets.

Lemma 11.3. φ : L2k → R v 7→ e−‖v‖ is wap.



35

(Grothendieck’s DLP ) A bounded function f ∈ C(G) is wap iff limn limm f(gnhm) =
limm limn f(gnhm) whenever all the limits exist.

Exercise 11.4. If G admits a left (or, right) invariant metric with DLP then G ∈ Refr.

• (L2k(µ), ‖‖) (k ∈ N) has the DLP.

‖un + vm‖2k = ‖un‖2k +
2k−1∑
i=1

Ci
2k

∫
u2k−i
n vimdt+ ‖vm‖2k

∫
u2k−i
n vimdt =< u2k−i

n , vim >

u2k−i
n ∈ L 2k

2k−i
vim ∈ L 2k

i
= L∗ 2k

2k−i
.

• Use DLP (Theorem 6.7) for B(V )×B(V ∗)→ [−1, 1] with reflexive V .

(2) L4[0, 1] /∈ Hilbr

Theorem 11.5 (Aharoni-Maurey-Mityagin 1985). For 2 < p < ∞, an infinite-
dimensional Lp(µ) space is not uniformly embedded into a Hilbert space.

Lemma ∀ metric subgroup G of Iso (H)s

∃ (G,L)
unif
↪→ H.

(a): ‖vn‖ = 1
2n

(b): {ṽn : Iso (H)→ H, g 7→ gvn}n∈N generates the left uniformity on Iso (H).

Iso (H)s
unif
↪→
∏
n

B 1
2n

unif
↪→ (

∑
n

(H)n)l2 ←→ H

=⇒ Lp[0, 1] /∈ Hilbr p > 2 =⇒ (2)

11.1. About H+[0, 1].

Theorem 11.6. The group G := H+[0, 1] is Rosenthal representable.

Proof. Consider the natural action of G on the closed interval X := [0, 1] and the
corresponding enveloping semigroup E = E(G,X). Every element of G is a (strictly)
increasing self-homeomorphism of [0, 1]. Hence every element p ∈ E is a nondecreas-
ing function [0, 1] → [0, 1]. So, Baire 1 function. This means that the G-system X
is tame. By Theorem 15.3 we have a faithful representation (h, α) of (G,X) on a
separable Rosenthal space V . Therefore we obtain a G-embedding α : X ↪→ (V ∗, w∗).
It follows, by the minimality properties of the compact open topology (Lemma 4.22),
that h is an embedding. Thus h ◦ inv : G→ Iso(V) is the required topological group
embedding. �
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Theorem 11.7. H+[0, 1] is Asplund-trivial (hence, also reflexively-trivial) .

Proof. Denote by j : G → GAsp and i : G → GUC the G-compactifications (i neces-
sarily is proper because UC(G) separates the points and closed subsets) induced by
the Banach G-algebras Asp(G) ⊂ UC(G) (Theorem 10.5). There exists a canonical
onto G-map π : GUC → GAsp such that the following diagram of compact G-systems
is commutative:

G

j !!D
DD

DD
DD

D
i // GUC

π
��

GAsp

We have to show that GAsp is trivial for G = H+[0, 1]. One of the main tools for
the proof is the following identification.

Lemma 11.8. [Uspenskij] The dynamical system GUC is isomorphic to the G-space
(G,Ω). Here Ω denotes the compact space of all curves in [0, 1]× [0, 1] which connect
the points (0, 0) and (1, 1) and “never go down”, equipped with the Hausdorff metric.
These are the relations ω ⊂ [0, 1] × [0, 1] where for each t ∈ [0, 1], ω(t) is either a
point or a vertical closed segment.

Moreover, the natural action of G = H+[0, 1] on Ω is (gω)(t) = g(ω(t)) (by compo-
sition of relations on [0, 1]).

We first note that every “zig-zag curve” (i.e. a curve z which consists of a finite
number of horizontal and vertical pieces) is an element of Ω. In particular the curves
γc with exactly one vertical segment defined as γc(t) = 0 for every t ∈ [0, c), γc(c) =
{c} × [0, 1] and γ(t) = 1 for every t ∈ (c, 1], are elements of Ω = GUC . Note that the
curve γ1 is a fixed point for the left G action. We let θ = π(γ1) be its image in GAsp.
Of course θ is a fixed point in GAsp. We will show that θ = j(e) and since the G-orbit
of j(e) is dense in GAsp this will show that GAsp is a singleton.

The idea is to show that zig-zag curves are ”Asp-proximal” in GUC . Meaning
that their images in GAsp coincide. Choosing a sequence zn of zig-zag curves which
converges in the Hausdorff metric to i(e) in GUC we will have π(zn) = π(γ1) = θ for
each n. This will imply that indeed j(e) = π(i(e)) = π(limn→∞ zn) = limn→∞ π(zn) =
θ.

First we show that π(γ1) = π(γc) for any 0 < c < 1. Assuming the contrary there
exists f ∈ C(GAsp) such that f(π(γ1)) 6= f(π(γc)). Dynamical system (G,GAsp) is
Asplund. So, there exists an Asplund representation (F, h, α) of F := fG on an
Asplund space V . So, there exists v ∈ V such that

f(x) =< v, α(x) > ∀ x ∈ GAsp.

Let p ∈ GUC be the curve defined by p(t) = t in the interval [0, c] and by p(t) = c
for every t ∈ [c, 1). Pick a sequence sn of elements in G such that sn converges to e
and snc < c. It is easy to choose a sequence gn in G such that gnsnc converges to 0
and gnc converges to 1. Then gnp → γc, gnsnp → γ1 (see the picture below). Since
V is Asplund the dual action G × V ∗ → V ∗ is norm continuous. (Theorem
10.3) In particular, ||snα(π(p))− α(π(p))|| → 0. This implies that

|f(π(gnsnp))− f(π(gnp))| =
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= | < v, α(π(gnsnp)) > − < v, α(π(gnp)) > | =
= | < vgn, snα(π(p))− α(π(p)) > | ≤
≤ ||vgn|| · ||snα(π(p))− α(π(p))|| → 0.

Hence, f(π(γ1)) = f(π(γc)).
We could say instead of these concrete computations that, as we know, every matrix

coefficient on Asplund space, being an Asplund function, is (right and) left uniformly
continuous. Here we have a MATRIX COEFFICIENT – ”tango” pairing two vectors
v ∈ V and απ(p) ∈ V ∗; i.e.,

m(v, α(π(p)) : G→ R, g 7→ f(gα(π(p)).

g s p

gp  p γc

 

γ

nn

1

n

Denote θ = π(γ1) = π(γc). Using similar arguments construct a sequence zn ∈ GUC

of zig-zag curves which converges to i(e) and such that π(zn) = θ for every n.
In view of the discussion above this construction completes the proof of the theorem.

�
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Remark 11.9. Note that the WAP-triviality of some other natural groups were estab-
lished very recently. For the homeomorphisms group of the pseudo-arc and Lelek’s
fan, see [3]. For the orientation preserving homeomorphisms of the circle H+(T) (in
fact, Asplund-triviality), see [29].

Remark 11.10. Some additional useful references: [64, 19, 18, 74, 4].

12. Appendix A: Fragmentability and Banach spaces

The concept of fragmentability originally comes from Banach space theory and has
several applications in Topology, and more recently also in Topological Dynamics.

Definition 12.1. Let (X, τ) be a topological space and (Y, µ) a uniform space.

(1) [36]X is (τ, µ)-fragmented by a (typically, not continuous) function f : X → Y
if for every nonempty subset A of X and every ε ∈ µ there exists an open
subset O of X such that O ∩ A is nonempty and the set f(O ∩ A) is ε-small
in Y . We also say in that case that the function f is fragmented . Notation:
f ∈ F(X, Y ), whenever the uniformity µ is understood. If Y = R then we
write simply F(X).

(2) [23] We say that a family of functions F = {f : (X, τ)→ (Y, µ)} is fragmented
if condition (1) holds simultaneously for all f ∈ F . That is, f(O∩A) is ε-small
for every f ∈ F .

(3) [29] We say that F is an eventually fragmented family if every infinite sub-
family C ⊂ F contains an infinite fragmented subfamily K ⊂ C.

In Definition 12.1.1 when Y = X, f = idX and µ is a metric uniform structure,
we get the usual definition of fragmentability (more precisely, (τ, µ)-fragmentability)
in the sense of Jayne and Rogers [37]. Implicitly it already appears in a paper of
Namioka and Phelps [56].

Remark 12.2. [23, 25]

(1) It is enough to check the condition of Definition 12.1 for closed subsets A ⊂ X
and for ε ∈ µ from a subbase γ of µ (that is, the finite intersections of the
elements of γ form a base of the uniform structure µ).

(2) When X and Y are Polish spaces, f : X → Y is fragmented iff f is a Baire
class 1 function.

(3) When X is compact and (Y, ρ) metrizable uniform space then f : X → Y
is fragmented iff f has a point of continuity property (i.e., for every closed
nonempty A ⊂ X the restriction f|A : A→ Y has a continuity point).

(4) When Y is compact with its unique compatible uniformity µ then p : X → Y
is fragmented if and only if f ◦ p : X → R has a point of continuity property
for every f ∈ C(Y ).

(5) A topological space (X, τ) is scattered iff X is (τ, µ)-fragmented, for every
uniform structure µ on the set X.

(6) Let (X, τ) be a separable metrizable space and (Y, ρ) a pseudometric space.
Suppose that f : X → Y is a fragmented onto map. Then Y is separable.

Lemma 12.3.
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(1) Suppose F is a compact space, X is Čech-complete, Y is a uniform space and
we are given a separately continuous map w : F ×X → Y . Then the naturally
associated family F̃ := {f̃ : X → Y }f∈F is fragmented, where f̃(x) = w(f, x).

(2) Suppose F is a compact metrizable space, X is hereditarily Baire and M is
separable and metrizable. Assume we are given a map w : F × X → M
such that every x̃ : F → M, f 7→ w(f, x) is continuous and y : X → M is
continuous at every ỹ ∈ Y for some dense subset Y of F . Then the family F̃
is fragmented.

(3) (version of Osgood’s theorem) Let fn : X → R be a pointwise convergent
sequence of continuous functions on a hereditarily Baire space X. Then F :=
{fn}n∈N is a fragmented family.

Proof. (1): There exists a collection of uniform maps {ϕi : Y → Mi}i∈I into metriz-
able uniform spaces Mi which generates the uniformity on Y . Now for every closed
subset A ⊂ X apply Namioka’s joint continuity theorem to the separately continuous
map ϕi ◦ w : F × A→Mi and take into account Remark 12.2.1.

(2): Since every x̃ : F →M is continuous, the natural map j : X → C(F,M), j(x) =
x̃ is well defined. Every closed nonempty subset A ⊂ X is Baire. By [30, Proposi-
tion 2.4], j|A : A → C(F,M) has a point of continuity, where C(F,M) carries the

sup-metric. Hence, F̃A = {f̃ �A: A→M}f∈F is equicontinuous at some point a ∈ A.

This implies that the family F̃ is fragmented.
(3) follows from (2) applied to the evaluation map w : F × X → R, where F :=
{f} ∪ {fn : n ∈ N} ⊂ RX with f := lim fn, the pointwise limit.

�

Remark 12.4. Let us briefly describe one of the ideas linking fragmentability and
dynamical systems. Suppose that X is a weak∗ compact dual ball of some Banach
space V . One of the major themes in Banach space theory is the study of the rela-
tionship between the norm and the weak∗ topologies on X ⊂ V ∗. When these two
coincide, we say that X is a Kadec subset of V ∗. If moreover X is a subsystem (under
some action by linear isometries) then X, as a dynamical system, is equicontinuous.
In general, as an attempt to measure “the level of equicontinuity”, we can ask how
close are the two natural topologies on X inherited from V ∗. A more concrete, but
sufficiently flexible, question is: for which dynamical system representations is the
natural mapping 1X : (X,weak∗) → (X,norm) fragmented ? The latter means that
every nonempty subset of X admits relatively weak∗ open nonempty subsets with ar-
bitrarily small diameters. Every point of continuity of 1X is a point of equicontinuity
of the dynamical system X.

12.1. Banach spaces defined by fragmentability. We recall the definitions of
three important classes of Banach spaces: Asplund, Rosenthal and PCP. Each of
them can be characterized in terms of fragmentability.

12.1.1. Asplund Banach spaces. Recall that a Banach space V is an Asplund space if
the dual of every separable linear subspace is separable.

In the following result the equivalence of (1), (2) and (3) is well known and (4) is
a reformulation of (3) in terms of fragmented families.
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Theorem 12.5. [56, 55] Let V be a Banach space. The following conditions are
equivalent:

(1) V is an Asplund space.
(2) V ∗ has the Radon-Nikodým property.
(3) Every bounded subset A of the dual V ∗ is (weak∗,norm)-fragmented.
(4) B is a fragmented family of real valued maps on the compactum B∗.

Reflexive spaces and spaces of the type c0(Γ) are Asplund. By [56] the Banach space
C(K) for compact K is Asplund iff K is a scattered compactum (see also Lemma
12.2.4). Namioka’s Joint Continuity Theorem implies that every weakly compact set
in a Banach space is norm fragmented, [55]. This explains why every reflexive space
is Asplund.

12.1.2. Banach spaces not containing l1.

Definition 12.6. Let fn : X → R be a uniformly bounded sequence of functions on
a set X. Following Rosenthal we say that this sequence is an l1-sequence on X if
there exists a real constant a > 0 such that for all n ∈ N and choices of real scalars
c1, . . . , cn we have

a ·
n∑
i=1

|ci| ≤ ||
n∑
i=1

cifi||.

This is the same as requiring that the closed linear span in l∞(X) of the sequence
fn be linearly homeomorphic to the Banach space l1. In fact, in this case the map

l1 → l∞(X), (cn)→
∑
n∈N

cnfn

is a linear homeomorphic embedding.

Definition 12.7. A sequence fn of real valued functions on a set X is said to be
independent if there exist real numbers a < b such that⋂

n∈P

f−1
n (−∞, a) ∩

⋂
m∈M

f−1
m (b,∞) 6= ∅

for all finite disjoint subsets P,M of N.

Definition 12.8. A Banach space V is said to be Rosenthal if it does not contain an
isomorphic copy of l1.

Every Asplund space is Rosenthal (because l∗1 is the nonseparable space l∞).

Definition 12.9. Let X be a topological space. We say that a subset F ⊂ C(X) is
a Rosenthal family (for X) if F is norm bounded and the pointwise closure cl p(F ) of
F in RX consists of fragmented maps, that is, cl p(F ) ⊂ F(X).

The following useful result synthesizes some known results.
It is based on results of Rosenthal [65], Talagrand [68, Theorem 14.1.7] and van

Dulst [11]. In [25, Prop. 4.6] we show why eventual fragmentability of F can be
included in the following list.

Theorem 12.10. Let X be a compact space and F ⊂ C(X) a bounded subset. The
following conditions are equivalent:
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(1) F does not contain an independent subsequence.
(2) F does not contain a subsequence equivalent to the unit basis of l1.
(3) Each sequence in F has a pointwise convergent subsequence in RX .
(4) F is a Rosenthal family for X.
(5) F is an eventually fragmented family.

Theorem 12.11. Let V be a Banach space. The following conditions are equivalent:

(1) V is a Rosenthal Banach space.
(2) (E. Saab and P. Saab [66]) Each x∗∗ ∈ V ∗∗ is a fragmented map when restricted

to the weak∗ compact ball B∗. Equivalently, B∗∗ ⊂ F(B∗).
(3) B is a Rosenthal family for the weak∗ compact unit ball B∗.
(4) B is an eventually fragmented family of maps on B∗.
(5) (Haydon [34, Theorem 3.3]) For every weak∗ compact subset Y ⊂ V ∗ the weak∗

and norm closures of the convex hull co(Y ) in V ∗ coincide: clw∗(co(Y )) =
clnorm(co(Y )).

Condition (2) is a reformulation (in terms of fragmented maps) of a criterion from
[66] which was originally stated in terms of the point of continuity property. The
equivalence of (1), (3) and (4) follows from Theorem 12.10.

12.1.3. Banach spaces with PCP. A Banach space V is said to have the point of
continuity property (PCP for short) if every bounded weakly closed subset C ⊂ V
admits a point of continuity of the identity map (C,weak) → (C, norm) (see for
example Edgar-Wheeler [13] and [37]). Every Banach space with RNP has PCP.
In particular, this is true for the duals of Asplund spaces and for reflexive spaces.
This concept was studied, among others, by Bourgain and Rosenthal. They show,
for instance, that there are separable Banach spaces with PCP which do not satisfy
RNP.

Theorem 12.12. (Jayne and Rogers [37]) Let V be a Banach space. The following
conditions are equivalent:

(1) V has PCP.
(2) Every bounded subset A ⊂ V is (weak, norm)-fragmented.

12.2. More properties of fragmented families. Here we demonstrate a general
principle: the fragmentability of a family of continuous maps on a compact space
is “countably-determined”. Formally the following theorem is new, though its proof
(the part (3) ⇒ (1)) is inspired by a result of Namioka [55, Theorem 3.4].

Theorem 12.13. Let F = {fi : X → Y }i∈I be a bounded family of continuous
maps from a compact (not necessarily metrizable) space (X, τ) into a pseudometric
space (Y, d). The following conditions are equivalent:

(1) F is a fragmented family of functions on X.
(2) Every countable subfamily K of F is fragmented.
(3) For every countable subfamily K of F the pseudometric space (X, ρK,d) is

separable, where

ρK,d(x1, x2) := sup
f∈K

d(f(x1), f(x2)).
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Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): Let K be a countable subfamily of F . Consider the natural map

π : X → Y K , π(x)(f) := f(x).

By (2), K is a fragmented family. Thus by Lemma 12.2.6 the map π is (τ, µK)-
fragmented, where µK is the uniformity of d-uniform convergence on Y K := {f : K →
(Y, d)}. Then the map π is also (τ, dK)-fragmented, where dK is the pseudometric on
Y K defined by

dK(z1, z2) := supf∈Kd(z1(f), z2(f)).

Since d is bounded, dK(z1, z2) is finite and dK is well-defined. Denote by (XK , τp)
the subspace π(X) ⊂ Y K in pointwise topology. Since K ⊂ C(X), the induced map
π0 : X → XK is a continuous map onto the compact space (XK , τp). Denote by
i : (XK , τp) → (Y K , dK) the inclusion map. So, π = i ◦ π0, where the map π is
(τ, dK)-fragmented. Then by Lemma 12.2.7 we obtain that i is (τp, dK)-fragmented.
It immediately follows that the identity map id : (XK , τp) → (XK , dK) is (τp, dK)-
fragmented.

Since K is countable, (XK , τp) ⊂ Y K is metrizable. Therefore, (XK , τp) is second
countable (being a metrizable compactum). Now, since dK is a pseudometric on Y K ,
and id : (XK , τp)→ (XK , dK) is (τp, dK)-fragmented, we can apply Lemma 12.2.5. It
directly implies that the set XK is a separable subset of (Y K , dK). This means that
(X, ρK,d) is separable.

(3) ⇒ (1) : Suppose that F is not fragmented. Thus, there exists a non-empty
closed subset A ⊂ X and an ε > 0 such that for each non-empty open subset O ⊂ X
with O ∩A 6= ∅ there is some f ∈ O such that f(O ∩A) is not ε-small in (Y, d). Let
V1 be an arbitrary non-empty relatively open subset in A. There are a, b ∈ V1 and
f1 ∈ F such that d(f1(a), f1(b)) > ε. Since f1 is continuous we can choose relatively
open subsets V2, V3 with cl (V2 ∪ V3) ⊂ V1 such that d(f(x), f(y)) > ε for every
(x, y) ∈ V2 × V3.

By induction we can construct a sequence {Vn}n∈N of non-empty relatively open
subsets in A and a sequence K := {fn}n∈N in F such that:

(i) cl (V2n ∪ V2n+1) ⊂ Vn for each n ∈ N;
(ii) d(fn(x), fn(y)) > ε for every (x, y) ∈ V2n × V2n+1.

We claim that (X, ρK,d) is not separable, where

ρK,d(x1, x2) := sup
f∈K

d(f(x1), f(x2)).

In fact, for each branch

α := V1 ⊃ Vn1 ⊃ Vn2 ⊃ · · ·

where for each i, ni+1 = 2ni or 2ni + 1, by compactness of X one may choose an
element

xα ∈
⋂
i∈N

cl (Vni).

If x = xα and y = xβ come from different branches, then there is an n ∈ N such
that x ∈ cl (V2n) and y ∈ cl (V2n+1) or (vice versa). In any case it follows from
(ii) and the continuity of fn that d(fn(x), fn(y)) ≥ ε, hence ρK,d(x, y) ≥ ε. Since
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there are uncountably many branches we conclude that A and hence also X are not
ρK,d-separable. �

Definition 12.14. [16, 49] Let X be a compact space and F ⊂ C(X) a norm bounded
family of continuous real valued functions on X. Then F is said to be an Asplund
family for X if for every countable subfamily K of F the pseudometric space (X, ρK,d)
is separable, where

ρK,d(x1, x2) := sup
f∈K
|f(x1)− f(x2)|.

Any Asplund family for a compact space X can be viewed, by [16, Lemma 1.5.3],
as a particular case of the more general concept of an Asplund set in the Banach
space C(X).

Corollary 12.15. Let X be a compact space and F ⊂ C(X) a norm bounded family
of continuous real valued functions on X. Then F is fragmented if and only if F is
an Asplund family for X.

Theorem 12.16. Let F = {fi : X → Y }i∈I be a family of continuous maps from a
compact (not necessarily metrizable) space (X, τ) into a pseudouniform space (Y, µ).
Then F is fragmented if and only if every countable subfamily A ⊂ F is fragmented.

Proof. The proof can be reduced to Theorem 12.13. Every pseudouniform space can
be uniformly approximated by pseudometric spaces. Using Lemma 12.2.1 we can
suppose that (Y, µ) is pseudometrizable; i.e. there exists a pseudometric d such that
unif(d) = µ. Moreover, replacing d by the uniformly equivalent metric d

1+d
we can

suppose that d ≤ 1. �

12.3. The natural affine extension map T : bB1(X)→ bB1(B∗).

Definition 12.17. Let X be a topological space.

(1) A function f : X → R is said to be Baire 1 if f−1(O) is an Fσ in X for every
open O ⊂ X. Notation: f ∈ B1(X).

(2) Denote by Bl
1(X) the set of all pointwise limits of sequences of continuous

functions on X.
(3) Bounded functions in B1(X) and Bl

1(X) are denoted by bB1(X) and bBl
1(X).

Always, Bl
1(X) ⊂ B1(X) (van Dulst p. 137 for every X) and B1(X) ⊂ F(X), for

every hereditarily Baire space [7, Lemma 1C(c)].
Below X be a compact space. It naturally is embedded into (C(X)∗, w∗). This

embedding induces a natural injective map

T : bBl
1(X)→ bBl

1(B∗),

where B∗, as before, is the weak∗ compact unit ball of C(X)∗. In the definition of T
below we will use Riesz representation theorem and Lebesgue’s Dominated Conver-
gence Theorem.

For compact X we have F(X) = B§r in terms of [7]. Each f ∈ F(X) is universally
measurable for every compact space X (see for example [7, Prop. 1F])). Therefore,
for every measure µ ∈ B∗ we can define

(Tf)(µ) :=

∫
fdµ.
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This map is well defined. Indeed, first note that when f ∈ C(X), T (f) = i(f),
where

i : C(X) ↪→ C(B∗), i(f)(µ) := 〈f, µ〉 =

∫
fdµ

is the canonical isometric inclusion of the corresponding Banach spaces and

〈 ·, ·〉 : C(X)× C(X)∗ → R
is the canonical bilinear mapping. Now if f ∈ bBl

1(X) then by definition f is a
pointwise limit of a sequence of continuous functions hn ∈ C(X). Since f : X → R
is a bounded function we can assume in addition that the sequence hn is uniformly
bounded. By Lebesgue’s Convergence Theorem it follows that T (f) is a pointwise
limit of the sequence T (hn) = i(hn), n ∈ N. Since every i(hn) ∈ C(B∗) we conclude
(by Definition 12.17) that T (f) ∈ Bl

1(B∗). The sequence i(hn) is uniformly bounded
in C(B∗) hence T (f) is a bounded function. This means that T (f) ∈ bBl

1(B∗).
The map T is injective because T (f)(δx) = f(x) for every point mass δx ∈ B∗

(x ∈ X).

Remark 12.18. Each T (f) for f ∈ bBl
1(X) can be treated as an element of the second

dual C(X)∗∗ of C(X). Moreover the pointwise topology of Bl
1(B∗) and the weak∗-

topology on C(X)∗∗ agree on T (bBl
1(X)).

Lemma 12.19. Let X be a compact space. For every uniformly bounded subset
A ⊂ bBl

1(X) the restriction T |A of the natural injective map

T : bBl
1(X)→ bBl

1(B∗) ∩ C(X)∗∗

on A is sequentially continuous. Furthermore, T (A) is also uniformly bounded.

Proof. Lebesgue’s Convergence Theorem implies that T is sequentially continuous.
The boundedness of T (A) is easy. �

Namioka [55] gave a kind of duality between uniform separability and pointwise
metrizability.

Theorem 12.20. (Namioka [55, Theorem 4.1]) Let F ⊂ RX be a bounded set of
maps. The following are equivalent:

(1) The pseudometric space (X, ρF ) is separable, where

ρF (x1, x2) := sup{|f(x1)− f(x2)| : f ∈ F}.
(2) The pointwise closure cl p(F) is a metrizable subspace of RX .

Proof. (1) ⇒ (2) F is an equicontinuous family on the pseudometric space (X, ρF ).
Then its pointwise closure cl p(F) is also equicontinuous. So, it follows that the topol-
ogy of pointwise convergence on X for cl p(F) is the same as the topology of pointwise
convergence on a countable ρF -dense subset of X. Hence, cl p(F) is metrizable.

(2)⇒ (1) Let K := cl p(F) be pointwise metrizable. Then C(K) is norm separable.
Denote by ϕ : X → C(K) the induced map defined by ϕ(x)(f) := f(x) for every
f ∈ C(K). Then ϕ(X) ⊂ C(K) is norm separable. In particular (since F ⊂ K) we
obtain that (X, ρF ) is separable. �

Lemma 12.21. (Namioka [55, Theorem 4.4]) Let F ⊂ C(K) be a bounded family of
continuous functions on a compact space K. The following are equivalent:
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(1) F is a fragmented family of functions on K.
(2) The pseudometric space (K, ρA) is separable for every countable A ⊂ F .
(3) The pointwise closure cl (A) is a metrizable subspace of RK for every countable

A ⊂ F .

Proof. Combine Theorem 12.21 and Corollary 12.15. �

Proposition 12.22. If F ⊂ C(X) is a countable bounded fragmented family on a
compact space X then

(1) cl p(F) is a metrizable subset of bBl
1(X).

(2) the restriction of T on cl p(F) induces a homeomorphism

cl p(F)→ cl p(T(F)) ⊂ bBl
1(B∗) ∩ C(X)∗∗.

Proof. (1) cl p(F ) is a uniformly bounded subset of RX because F is bounded. Since
F is fragmented we obtain that (X, ρF ) is separable. So, by Lemma 12.21, cl p(F ) is
metrizable in RX . Therefore, every φ ∈ cl p(F ) is a pointwise closure of a subsequence
in F . Hence, φ ∈ bBl

1(X).
(2) In view of Lemma 12.19 the restricted (injective!) map T : cl p(F )→ bBl

1(B∗) is
sequentially continuous. This restriction is even continuous because cl p(F ) is metriz-
able by (1). We conclude that the map T : cl p(F ) → bBl

1(B∗) is a continuous
injection, and therefore a homeomorphism, of cl p(F ) onto its image in bBl

1(B∗). �

Proposition 12.23. Let X be a compact space and F ⊂ C(X) be bounded family.
The following conditions are equivalent:

(1) F is a (eventually) fragmented family for X iff FB∗ is a (resp., eventually)
fragmented family for B∗.

(2) F is a Rosenthal family for X iff FB∗ is a Rosenthal family for B∗.

Proof. (1) Let A be a countable subfamily of F . Then since A is fragmented, Lemma
12.21 implies that cl (AX) ⊂ bBl

1(X) is metrizable. By Proposition 12.22.2 cl (AB∗)
is homeomorphic to cl (AX). Therefore, cl (AB∗) ⊂ bBl

1(B∗) is metrizable, too. Now
again by Lemma 12.21 we obtain that AB∗ is fragmented. It is true for every countable
subfamily of FB∗ . Thus, FB∗ is fragmented. This proves the ”fragmented case”. The
”eventually fragmented case” is verbatim the same.

(2) is a reformulation of the eventually fragmented case of (1). �

Of course if FB∗ is fragmented then FP (X) is fragmented, too.

Corollary 12.24. C(K) is Asplund iff the compact space K is scattered.

Proof. Let K is scattered. Then it is fragmented by any uniformity, in particular
with respect to the norm of C(K)∗. Then Proposition 12.23 guarantees that B∗ is
also fragmented by the norm. Therefore, C(K) is Asplund.

Second direction comes from the following Exercise. �

Exercise 12.25. Let K be a compact space which is norm-fragmented in C(K)∗. Show
that K is scattered.

Hint: the norm uniformity on X ⊂ C(K)∗ is discrete.

Theorem 12.26. Let F ⊂ V be a norm bounded subset and K ⊂ V ∗ be a weak-star
compact subset. Then F is a fragmented family on K iff F is a fragmented family on
Q := co(K).
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Proof. Consider the restriction operator

rK : V → C(K), rK(v)(x) =< v, x > ∀x ∈ K
FK := rK(F ) is a fragmented family on K. Then by Proposition 12.23, FQ is also
fragmented on P (K) ⊂ B∗. Now consider the adjoint r∗K : C(K)∗ → V ∗. Then
r∗K(P (K) = Q. �

Corollary 12.27. (Namioka [55, Thm 2.5]) Let K ⊂ V ∗ be a weak-star compact
subset which is norm fragmented. Then co(K) is also norm fragmented.

Proof. Take F := BV . �

Lemma 12.28. (Fabian’s Lemma [16, Lemma 1.5.3]) Let K be a compact space, let
F ⊂ BC(K) be a nonempty set, and consider on C(K)∗ the pseudometric ρF defined
as

ρF (λ, µ) = sup
f∈F

< λ− µ, f > λ, µ ∈ C(K)∗.

Assume that (K, ρF ) (as a subset of C(K)∗) is separable. Then (C(K)∗, ρF ) is also
separable.

Proof. By Theorem 12.20, clp(F ) ⊂ bBl
1(X) is metrizable. Since T : clp(F ) ⊂

bBl
1(X) → bBl(B∗) is sequentially continuous we obtain that this map is a home-

omorphic embedding. Hence, T (clp(F )) ⊂ bBl(B∗) is also metrizable. Again by
Theorem 12.20 we obtain that (B∗, ρF ) is separable. This implies that (C(K)∗, ρF )
is also separable. �

Lemma 12.29. Let F be a fragmented family of real valued functions on (X,µ).
Then co(F ) is also fragmented.

Proof. If fi(D) is ε-small for every i = 1, · · · , n and
∑n

i=1 ci = 1, ci > 0 then∑n
i=1 cifi(D) is ε-small. �

13. Appendix B: HNS and tame systems

13.1. Some classes of right topological semigroups and dynamical systems.
To the basic classes of right topological semigroups listed in 3.3 above, we add the
following two which have naturally arisen in the study of tame and HNS dynamical
systems.

Definition 13.1. [23, 25] A compact admissible right topological semigroup P is said
to be:

(1) [25] tame if the left translation λa : P → P is a fragmented map for every
a ∈ P .

(2) HNS-semigroup if {λa : P → P}a∈P is a fragmented family of maps.

These classes are closed under factors. We have the inclusions:

{compact semitopological semigroups} ⊂ {HNS-semigroups} ⊂ {Tame semigroups}

Lemma 13.2.

(1) Every compact semitopological semigroup P is a HNS-semigroup.
(2) Every HNS-semigroup is tame.
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(3) If P is a metrizable compact right topological admissible semigroup then P is
a HNS-semigroup.

Proof. (1) Apply Lemma 12.3.1 to P × P → P .
(2) is trivial.
(3) Apply Lemma 12.3.2 to P × P → P . �

If P is Fréchet, as a topological space, then P is a tame semigroup by Corollary
14.6 below.

13.2. HNS-semigroups, dynamical systems and Asplund Banach spaces.

Definition 13.3. We say that a compact S-system X is hereditarily non-sensitive
(HNS, in short) if one of the following equivalent conditions are satisfied:

(1) For every closed nonempty subset A ⊂ X and for every entourage ε from the
unique compatible uniformity on X there exists an open subset O of X such
that A ∩O is nonempty and s(A ∩O) is ε-small for every s ∈ S.

(2) The family of translations S̃ := {s̃ : X → X}s∈S is a fragmented family of
maps.

(3) E(S,X) is a fragmented family of maps from X into itself.

The equivalence of (1) and (2) is evident from the definitions. Clearly, (3) im-
plies (2). As to the implication (2) ⇒ (3), observe that the pointwise closure of a
fragmented family is again a fragmented family, [25, Lemma 2.8].

Note that if S = G is a group then in Definition 13.3.1 one may consider only
closed subsets A which are G-invariant (see the proof of [23, Lemma 9.4]).

Lemma 13.4.

(1) For every S the class of HNS compact S-systems is closed under subsystems,
arbitrary products and factors.

(2) For every HNS compact S-system X the corresponding enveloping semigroup
E(X) is HNS both as an S-system and as a semigroup.

(3) Let P be a HNS-semigroup. Assume that j : S → P be a continuous homo-
morphism from a semitopological semigroup S into P such that j(S) ⊂ Λ(P ).
Then the S-system P is HNS.

(4) {HNS-semigroups}={enveloping semigroups of HNS systems}.

Theorem 13.5. Let V be a Banach space. The following are equivalent:

(1) V is an Asplund Banach space.
(2) (Θop, B∗) is a HNS system.
(3) E is a HNS-semigroup.

Proof. (1)⇒ (2): Use Definition 13.3.2 and the following well known characterization
of Asplund spaces: V is Asplund iff B∗ is (w∗, norm)-fragmented (Fact 12.5).

(2) ⇒ (1) By Fact 12.5 we have to show that B is a fragmented family for B∗.
Choose a vector v ∈ SV . Since Θop is a fragmented family of self-maps on B∗ and as
v : B∗ → R is uniformly continuous we get that the system vΘop = Θv of maps from
B∗ to R is also fragmented. Now recall that Θv = B by Lemma 3.12.1.

(2) ⇒ (3): Follows from Lemma 13.4.2 and the fact that E is the enveloping
semigroup E(Θop, B∗).
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(3) ⇒ (2): Λ(E) = Θop (Lemma 3.12.5) and E is a HNS-semigroup. So, (S,E)
is HNS by Lemma 13.4.3 with S = Θop. Take ψ ∈ B∗ with ||ψ|| = 1. The map
q : E→ B∗, p 7→ pψ defines a continuous homomorphism of Θop-systems. By Lemma
3.12.4, we have Eψ = B∗. So q is onto. Now observe that the HNS property is
preserved by factors of S-systems (Lemma 13.4.1). �

Our next two theorems are based on ideas from Glasner-Megrelishvili-Uspenskij
[30].

Theorem 13.6. Let V be a Banach space. The following are equivalent:

(1) V is a separable Asplund space.
(2) E is homeomorphic to the Hilbert cube [−1, 1]N (for infinite-dimensional V ).
(3) E is metrizable.

Proof. (1) ⇒ (2) Since E is a compact affine subset in the Fréchet space RN we can
use Keller’s Theorem [8, p. 100].

(2) ⇒ (3) Is trivial.
(3) ⇒ (1) E is a HNS-semigroup by Lemma 13.2.3. Now Theorem 13.5 implies

that V is Asplund. It is also separable; indeed, by Lemma 3.12.4, B∗ is a continuous
image of E, so that B∗ is also w∗-metrizable, which in turn yields the separability of
V . �

Theorem 13.7. Let X be a compact S-system. Consider the following assertions:

(a) E(X) is metrizable.
(b) (S,X) is HNS.

Then:

(1) (a) ⇒ (b).
(2) If X, in addition, is metrizable then (a) ⇔ (b).

Proof. (1) By Definition 13.3 we have to show that E(X) is a fragmented family of
maps from X into itself. The unique compatible uniformity on the compactum X
is the weakest uniformity on X generated by C(X). Using Remark 12.2.1 one may
reduce the proof to the verification of the following claim: Ef := {f ◦ p : p ∈ E(X)}
is a fragmented family for every f ∈ C(X). In order to prove this claim apply Lemma
12.3.2 to the induced mapping E(X)×X → R, (p, x) 7→ f(px) (using our assumption
that E(X) is metrizable).

(2) If X is a metrizable HNS S-system then by Theorem 15.3 below, (S,X) is rep-
resentable on a separable Asplund space V . We can assume that X is S-embedded
into B∗. The enveloping semigroup E(S,B∗) is embedded into E The latter is metriz-
able by virtue of Theorem 13.6. Hence E(S,X) is also metrizable, being a continuous
image of E(S,B∗). �

Theorem 13.8. For a compact metric S-space X the following conditions are equiv-
alent:

(1) the dynamical system (S,X) is RN (that is, Asplund representable);
(2) (S,X) is HNS;
(3) the enveloping semigroup E(S,X) is metrizable.

Theorem 13.9. Every scattered (e.g., countable) compact S-space X is HNS

Proof. Recall that C(X) is Asplund if (and only if) the compactumX is scattered. �
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14. Appendix C: Tame systems and dynamical BFT dichotomy

Definition 14.1. A compact separately continuous S-system X is said to be tame if
the translation λa : X → X, x 7→ ax is a fragmented map for every element a ∈ E(X)
of the enveloping semigroup.

Lemma 14.2. Every WAP system is HNS and every HNS is tame.

Proof. If (S,X) is WAP then E(X) ×X → X is separately continuous. By Lemma
12.3.1 we obtain that E is a fragmented family of maps from X to X. In particular,
its subfamily {s̃ : X → X}s∈S of all translations is fragmented. Hence, (S,X) is
HNS.

Directly from the definitions we conclude that every HNS is tame. �

Another proof of Lemma 14.2 comes also from Banach representations theory for
dynamical systems because every reflexive space is Asplund and every Asplund is
Rosenthal.

By [29], a compact metrizable S-system X is tame iff S is eventually fragmented on
X, that is, for every infinite (countable) subset C ⊂ G there exists an infinite subset
K ⊂ C such that K is a fragmented family of maps X → X.

Lemma 14.3.

(1) For every S the class of tame S-systems is closed under closed subsystems,
arbitrary products and factors.

(2) For every tame compact S-system X the corresponding enveloping semigroup
E(X) is tame both as an S-system and as a semigroup.

(3) Let P be a tame right topological compact semigroup and let ν : S → P be
a continuous homomorphism from a semitopological semigroup S into P such
that ν(S) ⊂ Λ(P ). Then the S-system P is tame.

(4) {tame semigroups}={enveloping semigroups of tame systems}.

Theorem 14.4. Let V be a Banach space. The following are equivalent:

(1) V is a Rosenthal Banach space.
(2) (Θop, B∗) is a tame system.
(3) p : B∗ → B∗ is a fragmented map for each p ∈ E.
(4) E is a tame semigroup.

Proof. (2) ⇔ (3): Follows from the definition of tame flows because E = E(Θop, B∗).
(2) ⇒ (4): Since E = E(Θop, B∗), Lemma 14.3.2 applies.
(4) ⇒ (2): By our assumption, E is a tame semigroup. Then by Lemma 14.3.3 the

system (Θop,E) is tame. Its factor (Lemma 3.12.4) (Θop, B∗) is tame, too.
(2)⇒ (1): By a characterization of Rosenthal spaces [25, Prop. 4.12] (see also Fact

12.11) it suffices to show that B∗∗ ⊂ F(B∗). Since (Θop, B∗) is tame, p : B∗ → B∗ is
fragmented for every p ∈ E(Θop, B∗) = E. Pick an arbitrary v ∈ BV with ‖v‖ = 1.
Then vE is exactly B∗∗ by Lemma 3.12.2. So every φ ∈ B∗∗ is a composition v ◦ p,
where p is a fragmented map. Since v : B∗ → R is weak∗ continuous we conclude
that φ : B∗ → B∗ is fragmented.

(1) ⇒ (3): We have to show that E ⊂ F(B∗, B∗) for every Rosenthal space V . Let
p ∈ E. Then p ∈ Θ(V ∗). That is, p is a linear map p : V ∗ → V ∗ with norm ≤ 1.
Then, for every vector f ∈ V , the composition f ◦ p : V ∗ → R is a linear bounded
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functional on V ∗. That is, f ◦ p ∈ V ∗∗ belongs to the second dual. Again, by the
above mentioned characterization of Rosenthal spaces, the corresponding restriction
f ◦ p|B∗ : B∗ → R is a fragmented function for every f ∈ V . Since V separates points
of B∗ we can apply [25, Lemma 2.3.3]. It follows that p : B∗ → B∗ is fragmented for
every p ∈ E. �

14.1. A dynamical BFT dichotomy. Recall that a topological space K is a Rosen-
thal compactum [33] if it is homeomorphic to a pointwise compact subset of the space
B1(X) of functions of the first Baire class on a Polish space X. All metric compact
spaces are Rosenthal. An example of a separable non-metrizable Rosenthal com-
pactum is the Helly compact of all nondecreasing selfmaps of [0, 1] in the pointwise
topology. Recall that a topological space K is Fréchet (or, Fréchet-Urysohn) if for
every A ⊂ K and every x ∈ cl(A) there exists a sequence of elements of A which
converges to x. Every Rosenthal compact space K is Fréchet by a result of Bourgain-
Fremlin-Talagrand [7, Theorem 3F], generalizing a result of Rosenthal.

Theorem 14.5. If the enveloping semigroup E(X) is a Fréchet (e.g., Rosenthal)
space, as a topological space, then (S,X) is a tame system (and E(X) is a tame
semigroup).

Proof. Let p ∈ E(X). We have to show that p : X → X is fragmented. By properties
of fragmented maps [25, Lemma 2.3.3] it is enough to show that f ◦ p : X → R is
fragmented for every f ∈ C(X). By the Fréchet property of E(X) we may choose
a sequence sn in S such that the sequence j(sn) converges to p in E(X). Hence the
sequence of continuous functions f ◦ sn = f ◦ j(sn) converges pointwise to f ◦ p
in RX . Apply Lemma 12.3.2 to the evaluation map F × X → R, where F :=
{f ◦ p} ∪ {f ◦ j(sn)}n∈N ⊂ RX carries the pointwise topology. We conclude that F
is a fragmented family. In particular, f ◦ p is a fragmented map. (E(X) is a tame
semigroup by Lemma 14.3.2.) �

Corollary 14.6. Let P be a compact right topological admissible semigroup. If P is
Fréchet (e.g., when it is Rosenthal), as a topological space, then P is a tame semi-
group.

Proof. Applying Theorem 14.5 to the system (S, P ), with S := Λ(P ) we obtain that
E(S, P ) = P is a tame semigroup. �

The following theorem is due to Bourgain-Fremlin-Talagrand [7, Theorem 3F],
generalizing a result of Rosenthal. The second assertion (BFT dichotomy) is presented
as in the book of Todorc̆ević [70] (see Proposition 1 of Section 13).

Theorem 14.7. (1) Every Rosenthal compact space K is Frechet.
(2) (BFT dichotomy) Let X be a Polish space and let {fn}n∈N be a sequence of

continuous real valued functions on X which is bounded. Then, either the
sequence {fn}n∈N contains a pointwise convergent subsequence, or it contains
a subsequence whose closure in RX is homeomorphic to βN, the Stone-Čech
compactification of N.

The following result was proved in [23, Theorem 3.2] using the Bourgain-Fremlin-
Talagrand (BFT) dichotomy in the setting of continuous group actions. The same
arguments work also for separately continuous semigroup actions. For the sake of
completeness we include a simplified proof.
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Fact 14.8 (A dynamical BFT dichotomy). [23, Theorem 3.2] Let X be a compact
metric dynamical S-system and let E = E(X) be its enveloping semigroup. We have
the following alternative. Either

(1) E is a separable Rosenthal compact, hence card E ≤ 2ℵ0; or
(2) the compact space E contains a homeomorphic copy of βN, hence card E =

22ℵ0 .

The first possibility holds iff X is a tame S-system.

Proof. For every f ∈ C(X) define Ef := {f ◦ p : p ∈ E}. Then Ef is a pointwise
compact subset of RX , being a continuous image of E under the map qf : E →
Ef , p 7→ f ◦p. Since X is metrizable by the separability of E there exists a sequence
{sm}∞m=1 in S such that {j(sm)}∞m=1 is dense in E(X). In particular, the sequence of
real valued functions {f ◦ sm}∞m=1 is pointwise dense in Ef .

Choose a sequence {fn}n∈N in C(X) which separates the points of X. For every
pair s, t of distinct elements of E there exist a point x0 ∈ X and a function fn0 such
that fn0(sx0) 6= fn0(tx0). It follows that the continuous diagonal map

Φ : E →
∏
n∈N

Efn , p 7→ (f1 ◦ p, f2 ◦ p, . . . )

separates the points of E and hence is a topological embedding. Now if for each n the
space Efn is a Rosenthal compactum then so is E ∼= Φ(E) ⊂

∏∞
n=1 E

fn , because the
class of Rosenthal compacta is closed under countable products and closed subspaces.
On the other hand if at least one Efn = clp({fn ◦ sm}∞m=1) is not Rosenthal then, by
BFT-dichotomy it contains a homeomorphic copy of βN and it is easy to see that so
does its preimage E. In fact if βN ∼= Z ⊂ Efn then any closed subset Y of E which
projects onto Z and is minimal with respect to these properties is also homeomorphic
to βN.

Now we show the last assertion. If X is tame then every p ∈ E(X) is a fragmented
self-map of X. Hence every f ◦ p ∈ Ef is fragmented. By Remark 12.2.2 this is
equivalent to saying that every f ◦ p is Baire 1. So Ef ⊂ B1(X) is a Rosenthal
compactum. Therefore, E ∼= Φ(E) ⊂

∏
n∈NE

fn is also Rosenthal. Conversely, if E is
a Rosenthal compactum then (S,X) is tame by Theorem 14.5. �

Theorem 14.9 (BFT dichotomy for Banach spaces). Let V be a separable Banach
space and let E = E(V ) be its (separable) enveloping semigroup. We have the following
alternative. Either

(1) E is a Rosenthal compactum, hence card E ≤ 2ℵ0; or
(2) the compact space E contains a homeomorphic copy of βN, hence card E =

22ℵ0 .

The first possibility holds iff V is a Rosenthal Banach space.

Proof. Recall that E = E(Θop, B∗). By Theorem 14.4, V is Rosenthal iff (Θop, B∗) is
tame. Since V is separable, B∗ is metrizable. So we can apply Fact 14.8. �

The correspondence between E(V ) and the dynamical system (Θop, B∗) suggest to
try some new classes of Banach spaces which correspond to known classes of dynamical
systems. As well as to try find new classes of dynamical systems.
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14.2. Some topological corollaries. Answering a question of Talagrand [68, Problem14-
2-41], R. Pol [58] gave an example of a separable compact Rosenthal space K which
cannot be embedded in B1(X) for any compact metrizable X. In [25] we say that a
compact space K is strongly Rosenthal if it is homeomorphic to a subspace of B1(X)
for a compact metrizable X; and that it is admissible if there exists a metrizable
compact space X and a bounded subset Z ⊂ C(X) with K ⊂ cl p(Z), such that
the pointwise closure cl p(Z) of Z in RX consists of Baire 1 functions. Clearly every
admissible compactum is strongly Rosenthal.

Theorem 14.10. [25] Let X be a compact metrizable S-system. Then (S,X) is tame
iff the compactum K := E(X) is Rosenthal iff E(X) is admissible.

Thus, Pol’s separable compactum mentioned above cannot be of the form E(X).
We do not know if every separable strongly Rosenthal space is admissible. If the
answer to this question is in the negative, then this will yield another topological
obstruction on being an enveloping semigroup.

Finally, as a consequence of the representation theorem 15.3.1 below we obtain
the following result: A compact space K is an admissible Rosenthal compactum iff it
is homeomorphic to a weak∗ closed bounded subset in the second dual of a separable
Rosenthal Banach space V .

Essentially the same result (using different terminology and setting) was obtained
earlier by Marciszewski (see Marciszewski [43, Section 6.2] and also Marciszewski-Pol
[44, Theorem 8.2]).

14.3. Some classes of functions.

Definition 14.11. Let f ∈ C(X) on a (not necessarily, compact) S-system X.

(1) We say that f comes from the S-compactification q : X → Y (where the
action of S on Y is at least separately continuous) if there exists a continuous
function f ′ : Y → R such that f = f ′ ◦ q.

(2) We say that f ∈ C(X) is RMC (right multiplicatively continuous) if f comes
from some S-compactification q : X → Y . For every compact S-system X we
have RMC(X) = C(X).

(3) If we consider only jointly continuous S-actions on Y then the functions f :
X → R which come from such G-compactifications q : X → Y are right
uniformly continuous. Notation: f ∈ RUC(X).

(4) f is said to be: a) WAP ; b) Asplund ; c) tame if f comes from an S-
compactification q : X → Y such that (S, Y ) is: WAP, HNS or tame re-
spectively. For the corresponding classes of functions we use the notation:
WAP(X),Asp(X),Tame(X), respectively. Each of these is a norm closed S-
invariant subalgebra of the S-algebra RMC(X) ⊂ C(X) and

WAP(X) ⊂ Asp(X) ⊂ Tame(X).

For more details see [27, 28].
(5) Note that as a particular case of (3) we have defined the algebras WAP(S),

Asp(S), Tame(S) corresponding to the left action of S on X := S.

Definition 14.12. [23, 27] We say that a compact dynamical S-system X is cyclic if
there exists f ∈ C(X) such that (S,X) is topologically S-isomorphic to the Gelfand
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space Xf of the S-invariant unital subalgebra Af ⊂ C(X) (generated by the orbit
fS).

Remark 14.13. Let X be a (not necessarily compact) S-system and f ∈ RMC(X).
Then, as was shown in [27], there exist: a cyclic S-system Xf , a continuous S-

compactification πf : X → Xf , and a continuous function f̃ : Xf → R such that

f = f̃ ◦ πf ; that is, f comes from the S-compactification πf : X → Xf . The

collection of functions f̃S separates points of Xf . Finally, f ∈ RUC(X) iff the action
of S on Xf is jointly continuous.

The cyclic S-systems Xf provide “building blocks” for compact S-systems. That
is, every compact S-space can be embedded into the S-product of S-spaces Xf , where
f ∈ C(X).

Proposition 14.14. Let X be a compact S-space and f ∈ C(X).

(1) f ∈ WAP (X) iff fS has DLP on X.
(2) f ∈ Asp(X) iff fS is a fragmented family.
(3) f ∈ Tame(X) iff fS is eventually fragmented iff fS does not contain an l1-

sequence.

15. Appendix D: Representations of HNS and tame systems

Next we deal with the representability of families of real-valued functions on com-
pact systems. This topic is closely related to the “smallness” of the family F in terms
of its pointwise closure in the spirit of Theorem 12.10.

Definition 15.1. Let K ⊂ Ban be a subclass of Banach spaces.

(1) Let X be a compact S-system and (h, α) a representation of (S,X) on a
Banach space V . Let F ⊂ C(X) be a bounded S-invariant family of con-
tinuous functions on X and ν : F → V a bounded mapping. We say that
(ν, h, α) is an F -representation of the triple (F, S,X) if ν is an S-mapping
(i.e., ν(fs) = ν(f)s for every (f, s) ∈ F × S) and

f(x) = 〈ν(f), α(x)〉 ∀ f ∈ F, ∀ x ∈ X.
In other words, the following diagram commutes

(15.1) F ×X
ν
��

α
��

// R
idR
��

V × V ∗ // R

(2) We say that a family F ⊂ C(X) is K-representable if there exists a Banach
space V ∈ K and a representation (ν, h, α) of the triple (F, S,X). A function
f ∈ C(X) is said to be K-representable if the orbit fS is K-representable.

Note that we do not assume in (1) or (2) that α is injective. However, when
the family F separates points on X it follows that the map α is necessarily
an injection.

(3) In particular, we obtain the definitions of reflexively, Asplund and Rosenthal
representable families of functions on dynamical systems.
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Clearly, every bounded S-invariant F ⊂ C(X) on an S-system X is Banach repre-
sentable via the canonical representation on V = C(X).

15.1. Representation theorems. Let S be a semitopological semigroup and X a
compact S-system with a separately continuous action.

Theorem 15.2. (Small families of functions)
Let F ⊂ C(X) be a norm bounded S-invariant subset of C(X).

(1) (F, S,X) admits a Rosenthal representation iff F is an eventually fragmented
family iff cl p(F) ⊂ F(X).

(2) (F, S,X) admits an Asplund representation iff F is a fragmented family iff the
envelope cl p(F) of F is a fragmented family.

(3) (F, S,X) admits a reflexive representation iff cl p(F) ⊂ C(X) iff F has DLP
on X.

Proof. (3) Already was proved in Section 6.3.
(1) and (2): The “only if part” is a consequence of the characterizations of Asplund

and Rosenthal spaces in terms of fragmented and eventually fragmented families,
Theorems 12.5.4 and 12.11.4. �

Theorem 15.3.

(1) (S,X) is a tame (continuous) system if and only if (S,X) is weakly (respec-
tively, strongly) Rosenthal-approximable.

(2) (S,X) is a HNS (continuous) system if and only if (S,X) is weakly (respec-
tively, strongly) Asplund-approximable.

If X is metrizable then in (1) and (2) “approximable” can be replaced by “repre-
sentable”. Moreover, the corresponding Banach space can be assumed to be separable.

Proof. “only if” part: For (1) use the fact that (Θop, B∗) is a tame system (Theorem
14.4) for every Rosenthal V and for (2), the fact that (Θop, B∗) is HNS (Theorem
13.5) for Asplund V .

“if” part: (1) For every f ∈ C(X) = Tame(X) the orbit fS is a Rosenthal family
for X (Proposition 14.14). Applying Theorem 15.4 below we conclude that every
f ∈ C(X) = Tame(X) on a compact G-space X comes from a Rosenthal represen-
tation. Since continuous functions separate points of X, this implies that Rosenthal
representations of (S,X) separate points of X. So, for (1) it is enough to prove the
following result which gives a proof of Theorem 15.2.1. The proof of (2) is similar.

Theorem 15.4. Let F ⊂ C(X) be a Rosenthal family (Asplund family) for X such
that F is S-invariant; that is, fS ⊂ F ∀f ∈ F . Then there exist: a Rosenthal
(respectively, Asplund) Banach space V , an injective mapping ν : F → BV and a
representation

h : S → Θ(V ), α : X → V ∗

of (S,X) on V such that h is weakly continuous, α is a weak∗ continuous map and

f(x) = 〈ν(f), α(x)〉 ∀ f ∈ F ∀ x ∈ X.

Thus the following diagram commutes
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(15.2) F ×X
ν
��

α
��

// R
idR
��

V × V ∗ // R

If X is metrizable then in addition we can suppose that V is separable.
If the action S×X → X is continuous we may assume that h is strongly continuous.

Proof. Step 1: The construction of V .

For brevity of notation let A := C(X) denote the Banach space C(X), B will
denote its unit ball, and B∗ will denote the weak∗ compact unit ball of the dual space
A∗ = C(X)∗. Let W be the symmetrized convex hull of F ; that is, W := co (F ∪−F ).
Consider the sequence of sets

(15.3) Mn := 2nW + 2−nB.

ThenW is convex and symmetric. We apply the construction of Davis-Figiel-Johnson-
Pelczyński [10] as follows. Let ‖ ‖n be the Minkowski functional of the set Mn, that
is,

‖v‖n = inf {λ > 0
∣∣ v ∈ λMn}.

Then ‖ ‖n is a norm on A equivalent to the given norm of A. For v ∈ A, set

N(v) :=

(
∞∑
n=1

‖v‖2
n

)1/2

and let V := {v ∈ A
∣∣ N(v) <∞}.

Denote by j : V ↪→ A the inclusion map. Then (V,N) is a Banach space, j : V → A

is a continuous linear injection and

(15.4) W ⊂ j(BV ) = BV ⊂
⋂
n∈N

Mn =
⋂
n∈N

(2nW + 2−nB)

Indeed, if v ∈ W then 2nv ∈ Mn, hence ‖v‖n ≤ 2−n and N(v)2 ≤
∑

n∈N 2−2n < 1.
This proves W ⊂ j(BV ). In order to prove the second inclusion recall that the norms
‖·‖n on A are equivalent to each other. It follows that if v ∈ BV then ‖v‖n < 1 for all
n ∈ N. That is, for every n ∈ N, v ∈ λnMn for some 0 < λn < 1. By the construction
Mn is a convex subset containing the origin. This implies that λnMn ⊂ Mn. Hence
j(v) = v ∈Mn for every n ∈ N.

Step 2: The construction of the representation (h, α) of (S,X) on V .

The given action S ×X → X induces a natural linear norm preserving continuous
right action C(X) × S → C(X) on the Banach space A = C(X). It follows by the
construction that W and B are S-invariant subsets in A. This implies that V is an S-
invariant subset of A and the restricted natural linear action V ×S → V, (v, g) 7→ vg
satisfies N(vs) ≤ N(v). Therefore, the co-homomorphism h : S → Θ(V ), h(s)(v) :=
vs is well defined.
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Let j∗ : A∗ → V ∗ be the adjoint map of j : V → A. Define α : X → V ∗ as follows.
For every x ∈ X ⊂ C(X)∗ set α(x) = j∗(x). Then (h, α) is a representation of (S,X)
on the Banach space V .

By the construction, F ⊂ W ⊂ BV . Define ν : F ↪→ BV as the natural inclusion.
Then

(15.5) f(x) = 〈ν(f), α(x)〉 ∀ f ∈ F ∀ x ∈ X.

Step 3: V is a Rosenthal space.

Proof. (In [25, Theorem 6.3] we have a different proof.) If F is an eventually frag-
mented family for X then W := co (F ∪−F ) is an eventually fragmented family for X
and even for B∗ (Proposition 12.23). By the construction of DFJP ([16, Lemma 1.2.2])
we get j : V → A such that clnormj

∗(A∗) = V ∗. Denote by M := ∩{2nW + 1
2n
B}.

Then j(BV ) ⊂ M . Since R is a metrizable uniform space by diagonal arguments
we obtain that M is eventually fragmented on X. Therefore M is eventually frag-
mented also on B∗ (again Proposition 12.23). In order to show that V is Rosenthal
it is equivalent to show that BV is eventually fragmented on BV ∗ (Fact 12.11). It is
equivalent to show that for every infinite subset C0 of BV there exists a (countable)
infinite subset C ⊂ C0 which is fragmented on BV ∗ , or equivalently, that (BV ∗ , ρC)
is separable. Equivalently, that (V ∗, ρC) is separable. Since j(C0) ⊂ M is an infinite
subset (recall that j is injective) we obtain that there exists an infinite subset j(C)
which is a fragmented family on BA∗ . Equivalently, (BA∗ , ρj(C)) is separable. Equiv-
alently, (A∗, ρj(C)) is separable (Theorem 12.13). By the definition of the adjoint
operator (< j(c), v∗ >=< c, j∗(v∗) >) we obtain that (j∗(A∗), ρC) is separable. Then
its closure is also separable. That is, clρC (j∗(A∗)) is also ρC-separable. Since C is a
bounded subset, clearly, clρC (j∗(A∗)) ⊃ clnorm(j∗(A∗)) = V ∗. Therefore, (V,∗ , ρC) is
separable, as desired.

Step 4: Weak continuity of h : S → Θ(V ).

By our construction j∗ : C(X)∗ → V ∗, being the adjoint of the bounded linear
operator j : V → C(X), is a norm and weak∗ continuous linear operator. By [16,
Lemma 1.2.2] we obtain that j∗(C(X)∗) is norm dense in V ∗. Since V is Rosenthal,
Haydon’s theorem (Fact 12.11.4) gives Q := clw∗(co(Y )) = clnorm(co(Y )), where
Y := j∗(X). Now observe that j∗(P (X)) = Q. Since S × X → X is separately

continuous, every orbit map x̃ : S → X is continuous, and each orbit map j̃∗(x) :

S → j∗(X) is weak∗ continuous. Then also j̃∗(z) : S → V ∗ is weak∗ continuous for
each z ∈ clnorm(co(j∗(X))) = Q. Since sp(Q) is norm dense in V ∗ (and ||h(s)|| ≤ 1

for each s ∈ S) it easily follows that ˜j∗(z) : S → V ∗ is weak∗ continuous for every
z ∈ V ∗. This is equivalent to the weak continuity of h.

If the action S×X → X is continuous we may assume that h is strongly continuous.
Indeed, by the definition of the norm N , we can show that the action of S on V is
norm continuous (use the fact that, for each n ∈ N, the norm ‖·‖n on A is equivalent
to the given norm on A). �
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If the compact space X is metrizable then C(X) is separable and it is also easy to
see that (V,N) is separable. �

This proves Theorem 15.4 and hence also Theorem 15.3.1.

For the “Asplund case” (when F is fragmented on X) use

Step 3’: V is an Asplund space.

The main idea is that the corresponding results of [49, Section 7] and [23, Sec-
tion 9] can be adopted here, thus obtaining a modification of Theorem 15.4 which
replaces a Rosenthal space by an Asplund space, and a “Rosenthal family F” for X
by an “Asplund set”. The latter means that for every countable subset A ⊂ F the
pseudometric ρA on X defined by

ρA(x, y) := sup
f∈A
|f(x)− f(y)|, x, y ∈ X

is separable. By [16, Lemma 1.5.3] this is equivalent to saying that (C(X)∗, ρA) is
separable. Now co(F ∪−F ) is an Asplund set for B∗ by [16, Lemma 1.4.3]. The rest
is similar to the proof of [49, Theorem 7.7]. Checking the weak continuity of h one
can apply a similar idea (using again Haydon’s theorem as in (1)).

Finally note that if X is metrizable then in (1) and (2) “approximable” can be
replaced by “representable” using an l2-sum of a sequence of separable Banach spaces.

�

Note that, in Definition 15.1, when the family F separates points on X it follows
that the map α is necessarily an injection. In view of this remark, Theorem 15.2
implies Theorem 15.3 and also the following useful result.

Theorem 15.5. A compact S-system X is RN (WRN, Eberlein) iff there exists a
norm bounded S-invariant fragmented (resp.: eventually fragmented, DLP) family
F ⊂ C(X) which separates points of X.

Similar to Theorem 7.4 one may show

Theorem 15.6. Let G be a topological group and f ∈ RUC(G). The following are
equivalent:

(1) f ∈ Asp(G) iff f is a matrix coefficient of a strongly continuous Asplund
co-representation of G.

(2) f ∈ Tame(G) iff f is a matrix coefficient of a strongly continuous Rosenthal
co-representation of G.

15.2. The purely topological case. Note that the definitions and results of Section
15 (for instance, Theorem 15.2) make sense in the purely topological setting, for trivial
S = {e} actions, yielding characterizations of “small families” of functions, and of
RN, WRN and Eberlein compact spaces.

The “only if” parts of these results, in the cases of Eberlein and RN compact spaces
(with trivial actions), are consequences of known characterizations of reflexive and
Asplund spaces. The Eberlein case yields a well-known result: a compact space X is
Eberlein iff there exists a pointwise compact subset Y ⊂ C(X) which separates the
points of X. The RN case is very close to some results of Namioka [55] (up to some
reformulations). The case of WRN spaces seems to be new.
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Recall that (answering to a question posed by Lindenstrauss) by a classical result
of Benjamini-Rudin-Wage, continuous surjective maps preserve the class of Eberlein
compact spaces. The same is true for uniformly Eberlein (that is, Hilbert repre-
sentable) compacta. Recently, Aviles and Koszmider [1] proved that this is not the
case for the class RN of Asplund representable compacta, answering a long standing
open problem posed by Namioka [55]. The following question seems to be interesting.

Question 15.7. Is it true that the class of WRN (e.g., Rosenthal representable)
compact spaces is closed under continuous onto maps ?

Remark 15.8.

(1) An example of a compact space which is not WRN is βN. This was done by
Todorc̆ević (private communication).

(2) Two arrows space is WRN but not RN. More precisely, as we recently estab-
lished, every compact linearly ordered space is WRN. On the other hand, two
arrows space is not RN as it was established by Namioka [55, Example 5.9].

(3) One may show that a compact space K is WRN iff the Banach space C(K)
is Rosenthal generated (meaning that there exists a Rosenthal space V and a
linear dense (injective) operator V → C(K)). It is a WRN analog of Stegall’s
result for RN compacts.
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