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1. Symbolic Dynamics

Definition 1.1. The sequence space on two symbols is the set

Σ = {(s0, s1, s2, ...) : sj = 0 or 1}
Proposition 1.2. The distance d on Σ is defined by d(s, t) = Σ |si−ti|

2i .

Proof. Let s = (s0, s1, s2, ...), t = (t0, t1, t2, ...) and u = (u0, u1, u2, ...). Clearly, d(s, t) ≥ 0
and d(s, t) = 0 if and only if s = t. Since |si − ti| = |ti − si|, it follows that d(s, t) = d(t, s).
Finally, for any three real numbers si, ti, ui we have the usual triangle inequality

|si − ti|+ |ti − ui| = |si − ui|
from which we deduce that

d(s, t) + d(t, u) ≥ d(s, u).
This completes the proof. ¤
Theorem 1.3. Let s, t ∈ Σ and suppose si = ti for i=0,1,2,..n. Then d(s, t) ≤ 1

2n .
Conversely, if d(s, t) < 1

2n , then si = ti for i ≤ n.

Proof. If si = ti for i ≤ n, then

d(s, t) = Σ∞i=n+1

|si − ti|
2i

≤ Σ∞i=n+1

1
2i

=
1
2n

On the other hand, if si 6= ti for some i ≤ n, then we must have d(s, t) ≥ 1
2i ≥ 1

2n .
Consequently if d(s, t) < 1

2n , then si = ti for i = 0, 1, 2, ..n. ¤
Definition 1.4. The shift map σ : Σ → Σ is defined by σ(s0, s1, s2, ...) = (s1, s2, s3, ...).

Our first observation about this map is that the subset of Σ that consist of all periodic
points in Σ is a dense subset. To see why this is true, we must show that, given any point
s = (s0, s1, s2, ...) in Σ, we can find a periodic point arbitrarily close to s. So let ε > 0.

Let’s choose an integer number n so that 1
2n < ε. We may now write down an explicit

periodic point within 1
2n units of s. Let tn = (s0, s1, ..., sn, s0, s1, ..., sn). The first n + 1

entries of s and tn are the same. By Theorem 1.3 this means that

d(s, tn) ≤ 1
2n

< ε.

Clearly tn is a periodic point of period n + 1 for σ : Σ → Σ. Since ε and s were arbitrary,
we have succeeded in finding a periodic point arbitrarily close to any point of Σ. Note that
the sequence (of sequences) {tn} converges to s in Σ as n →∞.

A second and even more interesting property of σ is that there is a point whose orbit
is dense in Σ. That is we can find an orbit which comes arbitrarily close to any point of
Σ. Clearly, this kind of orbit is far from periodic or eventually periodic. As above, we can
write down such an orbit explicitly for σ. Consider the point

ŝ = (0100011011000001......).
In other words, ŝ is the sequence which consists of all possible blocks of 0’s and 1’s of

length, followed by all such blocks of length 2, then length 3, and so forth. The point ŝ
has an orbit that forms a dense subset of Σ. To see this, we again choose an arbitrary
s = (s0, s1, s2, ...) ∈ Σ and an ε > 0. Again choose n so that 1

2n < ε. Now we show that
the orbit of ŝ comes within 1

2n units of s. Far to the right in the expression for ŝ, there is a
block of length n+1 that consists of the digits s0s1...sn. Suppose the entry s0 is at the k-th
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place in the sequence. Now apply the shift map k times to ŝ. Then the first n+1 entries of
σk(ŝ) are precisely s0s1...sn. So by Theorem 1.3 we get

d(σk(ŝ), s) ≤ 1
2n

< ε.

There is a dynamical notion that is intimately related to the property of having a dense
orbit. This is the concept of sensitivity.

Definition 1.5. A metric dynamical system ((X, d), F ) depends sensitively on initial con-
ditions, if there is a β > 0 such that for any x ∈ X and any ε > 0 there is k ∈ N and y ∈ X
with d(x, y) < ε such that

d(F k(x), F k(y) ≥ β

To see that shift map depends sensitivity on initial conditions, we choose β = 1. For
any s ∈ Σ and ε > 0 one can again pick n ∈ N so that 1

2n < ε. Suppose t ∈ Σ satisfies
d(s, t) < 1

2n but t 6= s. Then we know that ti = si for i = 0, 1, 2, 3, ..n. However, since t 6= s

there is k > n such that sk 6= tk. So |sk − tk| = 1. Now consider the sequence σk(s) and
σk(t). The initial entries of each of these sequences are different, so we have

d(σk(s), σk(t)) ≥ |sk − tk|
20

+ Σ
0
2i

= 1.

This proves sensitivity for the shift.

2. Chaos by R.L.Devaney

Definition 2.1. A dynamical system F : X → X is chaotic if
P1 Periodic points for F are dense.
P2 F is transitive.
P3 F depends sensitivity on initial conditions.

Theorem 2.2. The shift map σ : Σ → Σ is a chaotic dynamical system.

Theorem 2.3. The doubling map f is chaotic on the unit circle.

Proof. Let S1 be the unit circle {(x, y) : x2 + y2 = 1}. In the complex analysis

S1 = {eiθ : θ ∈ R}.
1).Let eiθ ∈ S1 and U is an open neighborhood of eiθ. Let A be an open arc in U

containing eiθ, too. Note that f (n)(A) is an arc 2n-th longer as A. There exists n ∈ N such
that f (n)(a) is a cover of S1. Denote this iteration by N . There are two points x, y with

d(f (N)(x), d(f (N)(y)) = 1.

2). Let U, V are open sets in S1. If we precede as above, then for n large enough we got
that f (n)(U) covers S1 and therefore intersects V.
3). For points of the form eiθ with period n, the following equation holds ei2nθ. This means
that there periodic points are unit roots with order 2n − 1. The set of all there points is
dense in S1. ¤
Theorem 2.4. Let’s suppose that g ◦ T = T ◦ f , and T is continuous and subjective map.
If f is transitive or periodic on X, then g is also transitive or periodic on Y .

Theorem 2.5. The function g(x) = x2 − 2 chaotic order the interval [−2, 2]
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Proof. Let T : S1 −→ [−2, 2] be defined as T (eiθ) = 2cosθ. It’s clear to see that T is
continuous and subjective and

g ◦ T (eiθ) = T ◦ f(eiθ) = 2cos2θ.

f is chaotic on S1, then by theorem 2.5, the function g is chaotic too. ¤

The following theorem which relates to chaos definition was published in 1992.

Theorem 2.6. Let (X, d) be a metric space that is include an infinite set of points. If the
mapping f : X −→ Y is continuous and transitive and if a set of periodic points is dense
in X, then f is sensitive dependent on initial conditions.

Proof. Let choose two periodic points q1, q2 such that O(q1) ∩O(q2) = ∅. Let

δ0 = d(O(q1), O(q2)).

We’ll show that the sensitive dependent on the initial conditions holds when δ = δ0
8 . Notice

that δ0 > 0, and for every x ∈ X, other d(x,O(q1)) > δ0
2 or d(x,O(q2)) > δ0

2 .

Let x ∈ X and U be an open set that includes x. Let Bδ(x) be an open sphere with radius
δ and center x. Let p be a periodic point in W = U ∩ Bδ(x) with period n. From this we
conclude that one of the points q1, q2 (denoted by q) has an orbit, for which d(x,O(q)) > 4δ.
Let’s define

V = ∩n
i=0f

(−i)(Bδ(f (i)(q))).
The set V is non empty, because q ∈ V and V is open. From the transitivity of f exists a
point y ∈ W and integer number k such that f (k)(y) ∈ V .

Let j be an integer part of k
n + 1. Consequently, k

n + 1 = j + r, when r is the rest,
0 ≤ r < 1. Clearly, nj − k = n− rn. It follows that 0 ≤ nj − k ≤ n.

By construction,

f (nj)(y) = f (nj−k)(f (k)) ∈ f (nj−k)(V ) ⊂ Bδ(f (nj−k)(q)).

Let
a = f (nj)(y),

b = f (nj−k)(q).
Note that d(a, b) < δ. Let us use the triangle inequality for points p, a, b and x, p, b:

d(p, b) ≤ d(p, a) + d(a, b),

d(x, b) ≤ d(x, p) + d(p, b).
When

d(x, b) ≤ d(x, p) + d(p, a) + d(a, b),
or

d(p, a) ≥ d(x, b)− d(x, p)− d(a, b).
By construction

d(x, b) = d(x, f (nj−k)(q)) ≥ d(x,O(q)) ≥ 4δ.

Since p ∈ Bδ(x), then d(x, p) < δ. From this it follows that

d(a, b) > 4δ − δ − δ,

or
d(f (nj)(p), f (nj)(y)) > 2δ.
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Applying the triangle inequality to the following points f (nj)(x), f (nj)(p), f (nj)(y), we get
that:

d(f (nj)(x), f (nj)(p)) > δ or d(f (nj)(x), f (nj)(y)) > δ.

¤

3. Topological transitivity, minimality

Given a dynamical system (X, S) we let sx denote the image of x ∈ X under the home-
omorphism corresponding to the element s ∈ S. Let OSx be the orbit of x; i.e. the set
{sx : s ∈ S}.

OSx will denote the orbit closure of x. If (X,S)is a system and Y a closed S-invariant
subset, then we say that (Y, S), the restricted action, a subsystem of (X, S).

Definition 3.1. The dynamical system (X, S) is called topologically transitive or just
transitive, if for every pair of non-empty open sets U, V in X there exists s ∈ S with
sU

⋂
V 6= ∅.

Definition 3.2. The dynamical system (X,S) us called point transitive, if there exists
point x0 ∈ X with OSx = X. Such x0 is called a transitive point.

Example 3.3. If X = S1 and S = {f (n) : n ∈ N, f(z) = z2}, then this dynamical system is
transitive.

Definition 3.4. We dynamical system (X, S) is called minimal, if OSx = X for every
x ∈ X.

Definition 3.5. A point x in dynamical system (X, S) is called minimal(or almost pe-
riodic), if the subsystem OSx is minimal.

Definition 3.6. If set of minimal points is dense in X, we say that (X,S) satisfies the
Bronstein condition. If, in addition, the system (X, S) is transitive, we say that it is an
M-system.

Definition 3.7. A point x ∈ X is a periodic point, if OSx is finite set. If (X,S) is a
transitive system and set of periodic point is dense in X, then we say that it is an P -
system.

For a system (X,S) and subsets A,X ⊂ X, we use the following natation N(A,B) =
{s ∈ S : sA

⋂
B 6= ∅}. In particular, for A = {x} we write N(x, B) = {s ∈ S : sx ∈ B}.

Definition 3.8. A subset P ⊂ S is (left) syndetic, if there exists a finite set F ⊂ S such
that FP = S.

Theorem 3.9. The following are equivalent:
1 (X, S) is minimal.
2 (X, S) is a transitive and for every x ∈ X and neighborhood U of x, the set

N(x,U) = {s ∈ S : sx ∈ B} is syndetic in S.

Proof. (a) =⇒ (b): If (X, S) is a minimal system then for every non-empty set U in X there
exists a finite subset F = {s1, s2, ..., sk} in S with ∪siU = X. Then ∪jN(x, siU) := S. But
N(x, sjU) = sjN(x,U), then N(x,U) us syndetic.
(a) ⇐= (b): For every x ∈ X and every neighborhood U a set ∪sjU is covered X. Then for
all open set V exists si ∈ S such that siU ∩ V 6= ∅. Because X is a metric space we get
that (X, S) is a minimal system. ¤
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4. Equicontinuity and almost equicontinuity

Definition 4.1. The system (X, S) is equicontinuous if the semigroup S acts equicontinu-
ously on X; for every ε > 0 there exists δ > 0 such that d(x1, x2) < δ implies d(sx1, sx2) < ε,
for every s ∈ S.

Example 4.2. Every isometric system is equicontinuous. It’s clear to see that we must take
ε = δ.

Definition 4.3. Let (X,S) be a dynamical system. A point x0 ∈ X is called an equicon-
tinuity point if for every ε > 0 there exists a neighborhood U of x0 such that for every
y ∈ U and every s ∈ S, d(sx0, sy) ≤ ε.

Proposition 4.4. A system (X,S) is equicontinuous iff every x ∈ X is an equicontinuity
point.

Proof. ⇒: It’s clearly.
⇐: Given ε > 0, let = := {Ux : x ∈ X} be a collection of neighborhoods as in the definition
of equicontinuity points. Any Lebesgue number δ for the open cover = will serve for the
equicontinuity condition. ¤
Definition 4.5. The dynamical system (X,S) is called almost equicontinuous (or is an
AE-system) if the subset EQ(X) of equicontinuity points is a dense subset of X.

Proposition 4.6. A minimal almost equicontinuous system is equicontinuous.

Proof. Let x0 be a transitive point and x ∈ EQ(X). We shall show that also x0 ∈ EQ(X).
Given ε > 0 there exists δ > 0 such that for all x,, x,, ∈ Bδ(x), d(x,, x,,) < ε for all s ∈ S.
Since x0 is a transitive point, there exists s, ∈ S and η > 0 such that s,Bη(x0) ⊂ Bδ(x).
Thus for every z ∈ Bη(x0) and every s ∈ S we have d(ss,z, ss,x0) < ε foe all s ∈ S; i.e.
x0 ∈ EQ(X) and we conclude that the set of transitive points is contained in EQ(X). Then
a minimal almost equicontinuous system is equicontinuous. ¤

5. Sensitive dynamical system

Definition 5.1. We shell say that a system (X, S) is sensitive if it satisfies the following
condition(sensitive dependence on initial condition): there exists an ε > 0 such that for all
x ∈ X and all δ > 0 there are some y ∈ Bδ(x) and s ∈ S with d(sx, sy) > ε. We say that
(X, S) is non-sensitive otherwise.

Proposition 5.2. A transitive dynamical system is almost equicontinuous iff it is non-
sensitive.

Proof. Clearly an almost equicontinuous system is non-sensitive. Conversely, being non-
sensitive means that for every ε > 0 there exists xε ∈ X and δε > 0 such that for all y ∈
Bδε(xε) and every s ∈ S, d(sxε, sy) < ε. For m ∈ N set V1/m = Bδ1/m

(x1/m), Um = SV1/m

and let R = ∩m∈NUm. Suppose x ∈ R and ε > 0. Choose m so that 2/m < ε, then x ∈ Um

implies the exists s0 ∈ S and x0 ∈ V1/m such that s0x0 = x. Put V = s0V1/m. We now see
that for all y ∈ V and every s ∈ S

d(sx, sy) = d(ss0x0, ss0y0) < 2/m < ε, y0 ∈ V1/m.

Thus the dense Gδ set R consists of equicontinuity points. ¤

In this proposition we have seen that minimality and almost equicontinuity imply equicon-
tinuity. We easily get a stronger result.
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Theorem 5.3. An almost equicontinuous M -system (X,S) is minimal and equicontinuous.
Thus an M -system (hence also P -system) which is not minimal equicontinuous is sensitive.

Proof. Every transitive point is a equicontinuity point. Let x0 ∈ X be an equicontinuity
and transitive point . Given ε > 0 there exists a 0 < δ < ε such that x ∈ Bδ(x0) implies
d(sx0, sx) < ε for every s ∈ S. Let x, ∈ Bδ(x0) be a minimal point. It that follows that
T = {s ∈ S : d(sx0, sx) ≤ ε} is a syndetic subset of S. Collecting these estimations we get,
for every s ∈ S,

d(sx0, x0) ≤ d(sx0, sx
,) + d(sx,, x0) ≤ 2ε.

Thus for each ε > 0 the set N(x0, Bε(x0) is a syndetic, whence x0 is a minimal. It follows
that X is a minimal, hance also equicontinuous by Proposition 4.6. Now, by proposition
5.2 we have that dynamical system which not minimal or equicontinuous is sensitive. ¤
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