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Abstract

There are five Platonic solids-regular polyhedra: the tetrahedron,
octahedron, cube, dodecahedron, and icosahedron. Each defines a
finite group of rotations that leave the solid set wise fixed. In this
work we shall show those groups.

1 Preliminaries

Definition 1.1. Let G be a group. A G-space is a set S and a map τ :
G× S −→ S, so that

τ(e, s) = s

and
τ(g, τ(h, s)) = τ(gh, s)

for all g, h ∈ G and s ∈ S. We normally write τg(s) ≡ τ(g, s) so τg : S −→ S
and τgτh = τgh.

Notice that τgτg−1 = τg−1τg = id so each τ is a bijection of S. Thus
g → τg is a group homomorphism of G into the bijection of S and every such
homomorphism defines a G-space. τ is also called an action of G on S.

Definition 1.2. Let S be a G-space with action τ . Let s ∈ S. Then
{τx(s)|x ∈ G} is called the orbit. If Oτ

s = S, we say that the action is
transitive.

Proposition 1.3. Any G-space is a disjoint union of its orbits.

Example 1.4. The orbits under the action τx(y) = xyx−1, that is, {xyx−1|x ∈
G, y fixed}, are called conjugacy classes.

Definition 1.5. Let S be a G-space and let s ∈ S. The isotropy subgroup
Is of s is {x ∈ G | τx(s) = s}.
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Theorem 1.6. (Fundamental theorem of G-spaces). Let (S, τ) be a transitive
G-space. Let Is be the isotropy group of some s ∈ S. Then (S, τ) is isomorphic
to G/Is. In particular,

#(S) = #(G)/#(Is).

Proof. Fix s. Given s′ ∈ S, define Qs′ ⊂ G as

Qs′ = {x ∈ G | τx(s) = s′}.
Fix x ∈ Qs′ . Then y ∈ Qs′ if and only if x−1y ∈ Is, that is, if and only if
y ∈ xIs. Thus, Qs′ = xIs and the Qs′ are precisely elements of G/Is. Let

φ(s′) = Qs′ ∈ G/Is.

Then
φ(τx(s

′)) = xQs′ = xφ(s′),

so φ is the required isomorphism. ¤

Definition 1.7. An orthogonal matrix is n×n matrix A so that 〈Av, Aw〉 =
〈v, w〉 for all v, w ∈ ∈Rn where 〈v, w〉 =

∑n
i=1 viwi. It is easy to see that ma-

trix products of such orthogonal matrices are orthogonal and AAt = AtA = I,
so the set, O(n), of n × n orthogonal matrices is a group called the or-
thogonal group. If A is orthogonal, one can show that det(A)2 = 1 (since
det(A) = det(At) and AAt = I) so det(A) = ±1. Thus O(n) has a normal
subgroup of index 2, SO(n) = {A ∈ O(n)|det(A) = 1}.

2 Finite subgroups of SO(3)

Our goal in this section is to find all finite subgroups of SO(3), the group of
three-dimensional rotations.

Proposition 2.1. Let A ∈ SO(3), A 6= I. Then there is a one-dimensional
subspace XA = {v | Av = v} left invariant by A. In an orthogonal basis basis
e1, e2, e3 with e1 ∈ XA, A has the matrix representation

A =




1 0 0
0 cosθ sinθ
0 −sinθ cosθ




θ is determined by A.
Proof. Let P (x) ≡ det(xI − A). Then P (0) = det(−A) = −det(A) = −1

since A ∈ SO(3). Since limx→∞ = +∞, P (x) has a zero in (0,∞) and so A
has a positive eigenvalue which must be 1. Let XA = {v | Av = v}. We have
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just shown that dim(XA) > 0. If dim(XA) = 2, then X⊥
A is left invariant by

A, so contains φ with Aφ = −φ and det(A) = −1. It follows that dim(XA)
is 1 or 3 if A ∈ SO(3). A 6= I means the dimension is not 3.

Thus a 3D-rotation A 6= 1 has an axis which it leaves fixed and a rotation
angle θ about that axis. Now let G ⊂ SO(3) be a fixed, finite subgroup.
Let α ∈ R3, α 6= 0, be an axis of rotation for some x ∈ G, x 6= e, that
is, xα = α. Let G(α) = {x ∈ G | xα = α}. G(α) is a subgroup of G. Let
θ be the minimal positive angle of rotation of x’s in G(α). We claim that
θ = 2π/n for some n for, if not, there is multiple of θ in (2π, 2π + θ) and
so a smaller angle than θ. Thus each G(α) = {x | xα = α; x is an angle
0, 2π, 2(2π/n), ..., (n− 1)(2π/n)} ∼= Zn. α is called an n-fold point.

Let S = {α ∈ S2 | xα = α, some x ∈ G, x 6= e} be the set of points on
the sphere §2 = {β ∈ R3 | |β| = 1} which are on axis of rotation for some
nontrivial x ∈ G. We claim that S is a G-space; explicitly, if y ∈ G and
α ∈ S, then yα ∈ S. For if xα = α, then (yxy−1)yα = yα. Let S consist of
k-orbits O1, ..., Ok. the yxy−1 argument shows that if α is an n-fold axis, so
is yα; that is, the orbits have integers n1, ..., nj associated with them so that
Oj is a set of points lying on nj-fold axes. We have the following counting
result:

Proposition 2.2.
k∑

i=1

(1− 1

ni

) = 2− 2

o(G)
.

proof. Consider the set of pairs, P = {(α, x) | α ∈ S, x ∈ G, x 6= e, xα =
α}. For each x, there are exactly two points on the intersection of its axis of
rotation and S2, that is, #(P ) = 2(o(G)− 1).

on the other hand, for each α ∈ Oj, there are clearly nj − 1 x′s in G with
x 6= e and xα = α, so

#(p) =
k∑

i=1

#(Oi)(ni − 1).

But Oi is an orbit and the isotopy group for α ∈ Oi is exactly Zni
, so by the

fundamental counting principle (Theorem 1.6), #(Oi) = o(G)
ni

. Thus

#(P ) =
k∑

i=1

o(G)

ni

(ni − 1).

Equating the two formulas finish the proof. ¤
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We seek solutions with ni ≥ 2, o(G) ≥ 2, and ni ≤ o(G).

• Since o(G) ≥ 2, 2 − 2
o(G)

lies in [1, 2) and each (1 − 1
ni

) lies [1
2
, 1). It

follows that k = 2 or k = 3 (for if k = 1, the sum is strictly below 1
and if k ≥ 4, the sum is at least 2).

• Consider the case k = 2. Then

1

n1

+
1

n2

=
2

o(G)
,

so ni ≤ o(G). implies that n1 = n2 = o(G)

• From now on, we take k = 3 and remember so n1 ≤ n2 ≤ n3. If n1 ≥ 3,
then each 1− 1

ni
≥ 2

3
so the sum is ≥ 2, which isn’t possible; so n1 = 2.

If n2 ≥ 4, then the sum is at least 1
2

+ 3
4

+ 3
4

= 2, again impossible; so
n2 = 2 or 3.

• Consider the case n1 = n2 = 2. Then 1
2

+ 1
2

+ 1 − 1
n3

= 2 − 2
o(G)

so

n3 = o(G)
2

. Thus, a general solution is o(G) = 2n, n1 = n2 = 2, n3 = n.

• If n1 = 2, n2 = 3, then n3 < 6 for 1
2
+ 2

3
+ 5

6
= 2. Each of the possibilities

n3 = 3, 4, 5 yields integral o(G).

So, we have
k n1 n2 n3 o(G) Name
2 n n - n Cn

3 2 2 n 2n D2n

3 2 3 3 12 T ∼= A4

3 2 3 4 24 C ∼= S4

3 2 3 5 60 I ∼= A5

The first group is isomorphic to Zn.
There are two orbits, each with only one point. So #(S) = 2. There is a
single axis of rotation which is by angle 2π/n. The group is isomorphic to
Zn, the cyclic group.

The second group is isomorphic to D2n = 〈a, b | an = e, b2 = e, ba = a−1b〉.
There is an orbit of n-fold points and with 2n/n = 2 points. There are
two orbits of 2-fold points, each with 2n/2 points. Since each axis has two
points, there is one n-fold axis and n 2-fold axes. The 2-fold rotations must
interchange the two ends of the n-fold axis so the n-fold axis is orthogonal
to the 2-fold axes. This group is isomorphic to Zn ⊗ Z2.

The remaining cases correspond to the symmetries of the five Platonic
solids.
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3 The Platonic groups

There are five Platonic solids-regular polyhedra: tetrahedron, octahedron,
cube, dodecahedron, and icosahedron. Each defines a finite group of rota-
tions: namely, if one places the origin at their centroid, the group consists of
all rotations that leave the solid set wise fixed.

• Consider first the tetrahedron: the familiar triangular pyramid with
four equilateral triangles for faces. It has four vertices and six edges. It
is evident that the axis that runs from each vertex to the centroid of the
opposite face is a 3-fold axis of symmetry; so the symmetry group T has
four 3-fold axes. The edges come in opposite pairs and the axis between
the midpoints of those edges is a 2-fold axis of symmetry. In fact, the
product of two 3-fold rotations about distinct axes is one of those 2-
fold rotations! Thus, T has 4× 2 = 8 3-fold rotations, 3× 1 = 3 2-fold
rotations, and the identity for a 12-element group. It leads precisely to
the G-space we called T.

• The cube has three 4-fold axes, four 3-fold axes, and six 2-fold axes. It
yield a G-space with n1 = 2, n2 = 3, n3 = 4, and o(G) = 3 × 3 + 4 ×
2 + 6 + 1 = 24. It leads precisely to the G space we called C.

• The icosahedron has ten 3-fold axes, six 5-fold axes, and fifteen 2-fold
axes. Thus it yields a G-space with n1 = 2, n2 = 3, n3 = 5, and
o(G) = 10× 2 + 6× 4 + 15 + 1 = 60. It leads precisely to the G space
we called I.

• The cube: take a cube and consider the six centers of its square faces.
Join two such centers when the corresponding faces meet in an edge.
Thus, each center is joined to four others. The twelve lines from eight
triangles and we see an octahedron ambedded in the cube as a ”dual
solid.” This shows that the symmetries of the cube and the octahedron
are the same.

• The dodecahedron and icosahedron are dual and have the same sym-
metry group.

Thus, we need only prove uniqueness. Start with the case T, that is, a
G-space of points on the sphere with the T orbit structure. We want to prove
that the group is just the symmetries of some tetrahedron. By construction,
there are eight 3-fold points (in two orbits) and so four 3-fold axes. Consider
one orbit of such 3-fold points (a, b, c, d) and the axis through a. A priori, its
other end could be any of b, c, d (or it could be in the other orbit). If it were
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b, we’d have a problem since the 3-fold rotation would have to yield an order
three permutation of (c, d). Thus, the other hand of the axis is in the other
orbit, and b, c, d are cyclically permuted by the rotation about the axis. It
follows that b, c, d lie on an equilateral triangle orthogonal to the a axis. But
we can do the same analysis for any vertex, so a, b, c, d lie at the vertices of
a tetrahedron, G is its symmetry group. This proves uniqueness in case T.

Next look at case C. There are eight 3-fold points. The 4-fold axes are
disjoint from these point, so consider one of them. any orbit of a 4-fold axis
starting with a point not on the axis forms the vertices of a square orthogonal
to the axis. Thus, the eight 3-fold points lie in two squares orthogonal to the
first 4-fold axis.

These squares do not lie on the equator relative to this first 4-fold axis
because if they did, there couldn’t be any other 4-fold axis. Thus, these 3-fold
axes must have ends. one in each square. Consider one of those 3-fold axes,
X. The remaining six 3-fold points must be the vertices of two equilateral
triangles orthogonal to that axis (by the argument we used for 4-fold axes).
All three points can’t lie in the same square (because the three points lie on
an equivalent triangle!), so two lie in one square and one on the other. Since
all points are equidistant from the end points of X, they must be neighbors,
and so form a 90o angle at X.

By the 3-fold symmetry, the other connections are at 90o; that is, one of
the second square lies on a line perpendicular to the first square, through a
vertex at a distance equal to the square length. Using the 4-fold symmetry,
we see that the eight 3-fold points are the vertices of a cube and the group
is C.

Finally, consider the G − space we called I. It has twelve 5-fold points.
Consider a pair (a, b) at opposite ends of a 5-fold axis. the remaining ten
points must form two regular pentagons (P1, P2) orthogonal to ab. They can’t
lie on the equator or else there couldn’t be additional 5-fold axes. Thus, any
other 5-fold axis c, d must have c and d in different pentagons, implying that
two pentagons have a common side, D. Suppose c ∈ P1.

As with (a, b), the (c, d) axis is orthogonal to two pentagons made out of
the remaining points. Consider the pentagon P3 closest to c. It must have
two points from P1 closest to c, either a or b, and two points from P2. It
follows that the distance from c to the vertices in P3 is also D and that the
two nearest points in P2 to c have distance D. If you join together all pairs
a distance P apart, you get twenty triangles, five each coming together at a
and b, five with a single vertex in P1 and two in P2, and five with two vertices
in P1 and one in P2. Thus, they form a regular icosahedron.

We have there for proven:
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Theorem 3.1. Every finite subgroup of SO(3) is conjugate to one of

1. Cn, the symmetry of a single n-fold axis.

2. D2n, the symmetry of a single n-fold axis and n 2-fold axes orthogonal
ti it.

3. The symmetries of a tetrahedron, a cube, or an icosahedron (denoted
T ,C,I).

We want to give geometric explanations of the isomorphism:

1. T ∼= A4

2. C ∼= S4

3. I ∼= A5

Example 3.2. (T ∼= A4). A tetrahedron has four vertices. Every symmetry
defines a permutation of those vertices and the permutation clearly deter-
mines the symmetry. This has two kinds of non identity elements: the 3-fold
rotations which correspond to a 3-cycle which lie in A4, and the 2-fold axes
which have two 2-cycles and so also lie in A4. Every element of A4 is one or
the other, so we have the isomorphy.

Example 3.3. (C ∼= S4). A cube has eight vertices, six faces, and twelve
edges. There are, less obviously, four objects to permute. In fact the cube
has four body diagonals. Each element of C defines a permutation of these
four diagonals. It is not a priori evident that this map of C to S4 is either
one-one or onto. We’ll show it onto so that, since o(C) = 24 = o(S4), it is
one-one also.

Consider any pair of body diagonals. They define a plane which contains
two opposite edges. The 2-fold axis through the center of these edges permutes
the two given body diagonals. The other two body diagonals are orthogonal
to the 2-fold axis and so are left set wise invariant by the 2-fold rotation.
Hence, any 2-cycle lies in the image of the map C → S4. Since the 2-cycle
generated S4, the image is everything.

Example 3.4. (I ∼= A5). Among the twenty faces, twelve vertices, and
thirty edges, we will find a set of five objects as follows. There are fifteen
2-fold axes. They fall naturally into five sets. In each set, the three axes are
mutually orthogonal like the standard x, y, z frame. Equivalently, there are
sets of six edges (which cover each vertex). This defines a map of I into S5,
which is one-one and onto A5.

7


