Fundamenta Mathematicae (to appear)

THE EQUIVARIANT UNIVERSALITY AND COUNIVERSALITY OF THE CANTOR CUBE

MICHAEL G. MEGRELISHVILI AND TZVI SCARR

ABSTRACT. Let $\langle G, X, \alpha \rangle$ be a *G*-space, where *G* is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and *X* is a zero-dimensional compact metrizable space. Let $\langle H(\{0,1\}^{\aleph_0}), \{0,1\}^{\aleph_0}, \tau \rangle$ be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then

- (1) there exists a topological group embedding $\varphi: G \hookrightarrow H(\{0,1\}^{\aleph_0});$
- (2) there exists an embedding $\psi : X \hookrightarrow \{0,1\}^{\aleph_0}$, equivariant with respect to φ , such that $\psi(X)$ is an equivariant retract of $\{0,1\}^{\aleph_0}$ with respect to φ and ψ .

1. INTRODUCTION

The Cantor cube $\mathcal{C} = \{0,1\}^{\aleph_0}$ is a universal space in the class of zerodimensional, separable, metrizable spaces, that is, every such space can be topologically embedded into \mathcal{C} . In particular, every *compact*, zerodimensional, metrizable space is homeomorphic to a *closed* subset of \mathcal{C} . Sierpiński [15] showed that every non-empty closed subset of \mathcal{C} is a retract of \mathcal{C} . This gives us the following well-known fact.

Fact 1.1. Every non-empty, compact, zero-dimensional, metrizable space is homeomorphic to a retract of C.

Our Main Theorem, formulated in the abstract above, is an equivariant generalization of Fact 1.1 for *non-Archimedean* acting groups. A topological group is *non-Archimedean* if it has a local base at the identity consisting of open subgroups. The class of non-Archimedean groups includes:

- the prodiscrete (in particular, the profinite) groups;
- the groups arising in *non-Archimedean functional analysis* [14] (for example, the additive groups of the fields of *p*-adic numbers);

²⁰⁰⁰ Mathematical Subject Classification. 54H15, 22A99. Some of this work is part of the second author's Ph.D. dissertation at Bar-Ilan University, ISRAEL under the supervision of Professor Hillel Furstenberg.

 $Keywords: \ Cantor \ cube, \ G\text{-compactification}, \ universal \ space, \ non-Archimedean \ group.$

M. MEGRELISHVILI AND T. SCARR

- the group Is(X, d) of all isometries of an ultrametric space (X, d), with the topology of pointwise convergence;
- the locally compact, totally disconnected groups [3];
- the symmetric group S_{∞} on a countably infinite set, with the topology of pointwise convergence;
- the full group H(X) of autohomeomorphisms of X, with the compactopen topology, where X is a compact Hausdorff zero-dimensional space (see Lemma 3.2 below).

In fact, a topological group G is non-Archimedean iff G is a topological subgroup of H(X) for some appropriate compact Hausdorff zero-dimensional space X. This complete characterization of the non-Archimedean groups is a part of Theorem 3.3 below. It is easy to show that the class of all non-Archimedean groups is a *variety* in the sense of [12]. That is, this class is closed under the formation of topological subgroups, products and quotient groups.

Note that the transformation groups having zero-dimensional (in particular, ultrametric) phase spaces have many applications in descriptive set theory [1, 6, 7].

2. Preliminaries and Conventions

All topological spaces in this paper are assumed to be Hausdorff. The neutral element of a group G is denoted by e_G . The weight w(X) of a topological space X is defined to be $\tau(X) \cdot \aleph_0$, where $\tau(X)$ denotes the minimal cardinality of a base for X.

For information on uniform spaces, we refer the reader to [4]. If μ is a uniformity for X, then the collection of elements of μ which are finite coverings of X forms a base for a uniformity for X which we denote by μ_{fin} . If (X, μ) is a uniform space, the uniform completion $(\widehat{X}, \widehat{\mu}_{fin})$ of (X, μ_{fin}) is a compact uniform space known as the Samuel compactification of (X, μ) . A partition of a set X is a covering of X consisting of pairwise disjoint subsets of X. Following [14], we say that a uniform space (X, μ) is non-Archimedean if it has a base consisting of partitions of X. Equivalently, μ is generated by a system $\{d_i\}$ of ultrapseudometrics, that is, pseudometrics, each of which satisfies the strong triangle inequality $d_i(x, z) \leq max\{d_i(x, y), d_i(y, z)\}$. Clearly, a non-Archimedean uniform space is zero-dimensional in the uniform topology. A topological group is non-Archimedean iff its right uniformity is non-Archimedean.

The following result is well known (see, for example, [4] and [5]).

 $\mathbf{2}$

Lemma 2.1. Let (X, μ) be a non-Archimedean uniform space. Then both (X, μ_{fin}) and the uniform completion $(\widehat{X}, \widehat{\mu})$ of (X, μ) are non-Archimedean uniform spaces.

A topological transformation group, or *G*-space, is a triple $\langle G, X, \alpha \rangle$, where *G* is a topological group (called the *acting group*), *X* is a topological space (called the *phase space*), and $\alpha : G \times X \to X$ is a continuous action. For each $g \in G$, the *g*-transition map is the function $\alpha^g : X \to X$, $\alpha^g(x) = gx$.

Definition 2.2. Let $\langle G_1, X_1, \alpha_1 \rangle$ be a G_1 -space, and let $\langle G_2, X_2, \alpha_2 \rangle$ be a G_2 -space. Suppose that $\varphi : G_1 \hookrightarrow G_2$ is a topological group embedding.

- (1) A continuous function $\psi : X_1 \to X_2$ is equivariant with respect to φ (or, simply, equivariant, if φ is clear from the context) if, for all $g \in G_1$ and $x \in X_1$, $\psi(gx) = \varphi(g)\psi(x)$.
- (2) Let $\psi : X_1 \to X_2$ be an equivariant embedding with respect to φ . We say that $\psi(X_1)$ is an *equivariant retract* of X_2 (with respect to φ and ψ) if there is a continuous retraction $r : X_2 \to \psi(X_1)$ which is equivariant with respect to $\varphi^{-1} : \varphi(G_1) \to G_1$.

Let $\langle G, X, \alpha \rangle$ be a *G*-space. If $\langle G, Y, \gamma \rangle$ is a compact Hausdorff *G*-space and $\psi : X \to Y$ is equivariant, then *Y* is called a *G*-compactification of *X*. If, in addition, ψ is a topological embedding, then *Y* is a proper *G*compactification of *X*. A *G*-space $\langle G, X, \alpha \rangle$ is *G*-*Tychonoff* if it has a proper *G*-compactification. Not every Tychonoff *G*-space is *G*-Tychonoff [8]. De Vries [19] proved that if *G* is locally compact, then every Tychonoff *G*-space is *G*-Tychonoff. For every *G*-space *X* there exists a (possibly improper) maximal *G*-compactification $\beta_G X$ [18]. For more information on *G*-compactifications, as well as for a general method of constructing Tychonoff *G*-spaces which are not *G*-Tychonoff, see [11].

Let G be a topological group. Recall [2] that the collection of coverings $\{Ux | x \in G\}$, where U is a neighborhood of e_G , forms a base for the right uniformity μ_R for G. In 1957, Teleman [16] proved that for arbitrary Hausdorff G, the Samuel compactification \widehat{G} of G with respect to its right uniformity is a proper G-compactification of the G-space $\langle G, G, \alpha_L \rangle$, where α_L is the usual left action of G on itself. In fact, \widehat{G} is isomorphic to $\beta_G G$ and is called the greatest ambit (see, for example, [20]). $\beta_G G$ is the maximal proper G-compactification of $\langle G, G, \alpha_L \rangle$.

To the best of our knowledge, very little is known about the dimension of $\beta_G X$. Some special results can be found in [8, 9]. The dimension of the greatest ambit $\beta_G G$ may be greater than the topological dimension of G(simply take a cyclic dense subgroup G of the circle group; then $\dim G = 0$ and $\dim \beta_G G = 1$). However, in the case of the Euclidean group $G = \mathbb{R}^n$, we have $\dim \beta_G G = \dim G$. This follows from Theorem 5.12 in [4]. By a result of Pestov [13], one has $\dim \beta_G G = 0$ iff G is non-Archimedean. An alternative proof of this will be given in Theorem 3.3.

3. Proof of the Main Results

Fact 3.1. ([9]) Every G-Tychonoff G-space X has a proper G-compactification Y such that $w(Y) \le w(X) \cdot w(G)$ and dim $Y \le \dim \beta_G X$.

Lemma 3.2. If X is a compact Hausdorff zero-dimensional space, then H(X) is a non-Archimedean group.

Proof. For each two-element compact clopen partition $\{K_1, K_2\}$ of X, define

 $B(K_1, K_2) = \{ \varphi \in H(X) : \varphi(K_1) = K_1, \varphi(K_2) = K_2 \}.$

Let $\mathcal{B} = \{B(K_1, K_2) : \{K_1, K_2\}$ is a compact clopen partition of $X\}$. Then \mathcal{B} is a local base at $e_{H(X)}$ consisting of clopen subgroups, and, hence, H(X) is non-Archimedean.

The following theorem provides a useful characterization of non-Archimedean groups. (As noted before, the equivalence of (i) and (ii) was established by Pestov [13].)

Theorem 3.3. The following assertions are equivalent:

- (i) G is a non-Archimedean topological group;
- (*ii*) dim $\beta_G G = 0$;
- (iii) G is a topological subgroup of H(X) for some compact Hausdorff zero-dimensional space X such that w(X) = w(G).

Proof. $(i) \Rightarrow (ii)$ Suppose G is non-Archimedean. Then the right uniformity μ_R for G is a non-Archimedean uniformity. By Lemma 2.1, the precompact uniformity $(\mu_R)_{fin}$ for G is also a non-Archimedean uniformity. Let $(\widehat{G}, \widehat{\mu})$ be the uniform completion of $(G, (\mu_R)_{fin})$. Then, again by Lemma 2.1, $\widehat{\mu}$ is a non-Archimedean uniformity, and, hence, \widehat{G} is zero-dimensional. But $(\widehat{G}, \widehat{\mu})$ is exactly $\beta_G G$.

 $(ii) \Rightarrow (iii)$ By Fact 3.1, there exists a zero-dimensional proper *G*-compactification $\langle G, X, \alpha_L^* \rangle$ of $\langle G, G, \alpha_L \rangle$ such that w(X) = w(G). Let $\psi: G \to X$ be the corresponding equivariant embedding.

We will show that the map $\varphi : G \to H(X)$ defined by $\varphi(g) = (\alpha_L^*)^g$ is a topological group embedding. Observe that φ is one-to-one because α_L^* extends the action α_L . To prove the continuity of φ , suppose $\alpha^g \in O = \{f \in H(X) : f(K) \subseteq U\}$, where $K \subseteq X$ is compact and $U \subseteq X$ is open. Using the compactness of K and the continuity of α_L^* , we can find a neighborhood V of g such that $\varphi(V) \subseteq O$. Hence, φ is continuous.

It remains to show that if $O \subseteq G$ is open, then $\varphi(O)$ is open in $\varphi(G)$. Let $O \subseteq G$ be open. Then $\psi(O)$ is open in $\psi(G)$. Let $W \subseteq X$ be open such that $\psi(O) = W \cap \psi(G)$. Define $B = \{f \in H(X) : f(\psi(e_G)) \in W\}$. Then *B* is open in H(X) and $\varphi(O) = B \cap \varphi(G)$. Hence, $\varphi(O)$ is open in $\varphi(G)$.

 $(iii) \Rightarrow (i)$ Follows directly by Lemma 3.2.

Fact 3.4. (Brouwer) The Cantor cube $\{0,1\}^{\aleph_0}$ is the unique (up to homeomorphism) non-empty, compact, metrizable, zero-dimensional, perfect space.

Now we are ready to prove our main result.

Theorem 3.5. Let G be a non-Archimedean and second countable group, and let X be a compact, metrizable, zero-dimensional G-space. Then

- (1) there exists a topological group embedding $\varphi : G \hookrightarrow H(\mathcal{C})$;
- (2) there exists an embedding $\psi : X \hookrightarrow C$, equivariant with respect to φ , such that $\psi(X)$ is an equivariant retract of C with respect to φ and ψ .

Proof. By Theorem 3.3, there exists a compact, second countable (and thus metrizable) zero-dimensional space Y such that H(Y) contains G as a topological subgroup. We may as well assume that all homeomorphisms of Y corresponding to elements of G transform a certain base point $y_0 \in Y$ onto itself (if not, replace Y with a disjoint union $Y \cup \{y_0\}$ and redefine those homeomorphisms in an obvious way).

Let us identify the action of G on X with a homomorphism $w : G \to H(X)$, and let \mathcal{D} be a copy of the Cantor set. By Brouwer's theorem, the space $\mathcal{C} = X \times Y \times \mathcal{D}$ is homeomorphic to the Cantor set, and, clearly, the map $\varphi : G \to H(\mathcal{C})$,

$$g \mapsto (w(g), g, \mathrm{id}_D) \in H(X) \times H(Y) \times H(\mathcal{D}) \subseteq H(\mathcal{C}),$$

is a continuous homomorphism, thus turning C into a G-space. This homomorphism is also an embedding, for its composition with the projection onto H(Y) is the identity mapping, so it is one-to-one and the inverse is continuous.

We define $\psi: X \to \mathcal{C}$ by $x \mapsto (x, y_0, d_0)$, where $d_0 \in \mathcal{D}$ is any base point, and the retraction $r: \mathcal{C} \to \psi(X)$ by $r(x, y, d) = (x, y_0, d_0)$. Then ψ and rare equivariant, and the proof is complete. \Box

Theorem 3.6. $H(\mathcal{C})$ is universal in the class of all non-Archimedean, second countable groups, that is, every such group is topologically isomorphic to a subgroup of $H(\mathcal{C})$.

Final Remarks.

(1) By Theorem 1.5.1 of [1], the group S_{∞} is also universal in this class.

M. MEGRELISHVILI AND T. SCARR

- (2) The group $H(I^{\aleph_0})$ is universal in the class of all second countable topological groups, where I is the closed interval [0, 1] (see [17]). Moreover, by [10], the topological transformation group $\langle H(I^{\aleph_0}), I^{\aleph_0} \rangle$ is universal in the class of all compact, metrizable G-spaces with second countable acting group G.
- (3) The action on \mathcal{C} which we defined in the proof of Theorem 3.5 intrinsically depends on the original action of G on X, as the following example shows.

Example 3.7. Let $\alpha : S_{\infty} \times \mathcal{C} \to \mathcal{C}$ be the natural "permutation of coordinates" action

$$\alpha(g, (x_n)) = (x_{g(n)}).$$

Let $\overline{0}$ and $\overline{1}$ denote the two constant sequences of \mathcal{C} . Let $H = \{\overline{0}, \overline{1}\} \subseteq \mathcal{C}$. Consider H as an S_{∞} -subspace of \mathcal{C} .

Claim. *H* is *not* an equivariant retract of C with respect to $\varphi = id_{S_{\infty}}$ and $\psi = id_{H}$.

Proof. The Cantor cube \mathcal{C} is an S_{∞} -ambit under the action α , that is, it contains a point whose orbit is dense in \mathcal{C} . In fact, all points which contain infinitely many 0's and infinitely many 1's have dense orbits. Hence, every image of \mathcal{C} under an equivariant map is also an S_{∞} -ambit. However, H is not an S_{∞} -ambit.

Acknowledgments. The authors would like to thank the referees for many constructive suggestions and for a very substantial shortening of the proof of the Main Theorem.

References

- H. Becker and A. Kechris, *The Descriptive Set Theory of Polish Group Actions*, Cambridge University Press, Cambridge, 1996.
- [2] R. Engelking, General Topology, PWN, Warsaw, 1977.
- [3] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Volume One, Springer-Verlag, 1963.
- [4] J. Isbell, Uniform Spaces, American Mathematical Society, Providence, 1964.
- [5] J. Isbell, Zero-dimensional Spaces, Tohoku Mat. J. (2) 7(1955), 1-8.
- [6] A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
- [7] A. Kechris, *Descriptive Dynamics*, to appear in Descriptive Set Theory and Dynamical Systems, London Math. Soc. Lecture Note Series, Cambridge University Press, 2000.
- [8] M. Megrelishvili, A Tychonoff G-space which has no compact G-extensions and Glinearizations, Russ. Math. Surv. 43 (1988), 145-146.
- [9] M. Megrelishvili, Compactification and Factorization in the Category of G-spaces in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J. Adámek and S.MacLane, editors, World Scientific, Singapore (1989), 220-237.

 $\mathbf{6}$

- [10] M. Megrelishvili, Free Topological G-groups, New Zealand J. of Math. 25(1996), 59-72.
- [11] M. Megrelishvili and T. Scarr, Constructing Tychonoff G-spaces which are not G-Tychonoff, Top. Appl. 86(1998), 69-81.
- [12] S.A. Morris, Varieties of topological groups (a survey), Colloq. Math., vol. XLVI (1982), 147-165.
- [13] V.G. Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc. 350:761(1998), 4149-4175.
- [14] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Pure and Applied Mathematics, Marcel Dekker, 1978.
- [15] W. Sierpiński, Sur les projections des ensembles complémentaires aux ensembles (A), Fund. Math. 11(1928), 117-122.
- [16] S. Teleman, Sur la représentation linéaire des groupes topologiques, Ann. Sci. Ecole Norm. Sup. 74(1957), 319-339.
- [17] V.V. Uspenskij, A universal topological group with countable base, Funct. Anal. Appl. 20(1986), 160-161.
- [18] J. de Vries, Topological Transformation Groups I, Mathematical Centre Tracts 65, Mathematisch Centrum, Amsterdam, 1975.
- [19] J. de Vries, On the existence of G-compactifications, Bull. Acad. Polon. Sci. Ser. Math. 26(1978), 275-280.
- [20] J. de Vries, *Elements of Topological Dynamics*, Kluwer Academic Publishers, Dordrect-Boston-London, 1993.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, 52900 RAMAT-GAN, IS-RAEL

E-mail address: megereli@macs.biu.ac.il *URL*: http://www.cs.biu.ac.il/~megereli

DEPARTMENT OF APPLIED MATHEMATICS, JERUSALEM COLLEGE OF TECHNOLOGY, 21 HAVAAD HALEUMI ST., JERUSALEM, ISRAEL 91160

E-mail address: scarr@avoda.jct.ac.il