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THE EQUIVARIANT UNIVERSALITY AND

COUNIVERSALITY OF THE CANTOR CUBE

MICHAEL G. MEGRELISHVILI AND TZVI SCARR

Abstract. Let 〈G,X, α〉 be a G-space, where G is a non-Archimedean
(having a local base at the identity consisting of open subgroups) and sec-
ond countable topological group, and X is a zero-dimensional compact
metrizable space. Let 〈H({0, 1}ℵ0), {0, 1}ℵ0 , τ〉 be the natural (evalu-
ation) action of the full group of autohomeomorphisms of the Cantor
cube. Then
(1) there exists a topological group embedding ϕ : G →֒ H({0, 1}ℵ0);
(2) there exists an embedding ψ : X →֒ {0, 1}ℵ0 , equivariant with

respect to ϕ, such that ψ(X) is an equivariant retract of {0, 1}ℵ0

with respect to ϕ and ψ.

1. Introduction

The Cantor cube C = {0, 1}ℵ0 is a universal space in the class of zero-
dimensional, separable, metrizable spaces, that is, every such space can
be topologically embedded into C. In particular, every compact, zero-
dimensional, metrizable space is homeomorphic to a closed subset of C.
Sierpiński [15] showed that every non-empty closed subset of C is a retract
of C. This gives us the following well-known fact.

Fact 1.1. Every non-empty, compact, zero-dimensional, metrizable space is
homeomorphic to a retract of C.

Our Main Theorem, formulated in the abstract above, is an equivariant
generalization of Fact 1.1 for non-Archimedean acting groups. A topological
group is non-Archimedean if it has a local base at the identity consisting of
open subgroups. The class of non-Archimedean groups includes:

• the prodiscrete (in particular, the profinite) groups;
• the groups arising in non-Archimedean functional analysis [14] (for

example, the additive groups of the fields of p-adic numbers);
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• the group Is(X, d) of all isometries of an ultrametric space (X, d),
with the topology of pointwise convergence;

• the locally compact, totally disconnected groups [3];
• the symmetric group S∞ on a countably infinite set, with the topol-

ogy of pointwise convergence;
• the full groupH(X) of autohomeomorphisms ofX, with the compact-

open topology, where X is a compact Hausdorff zero-dimensional
space (see Lemma 3.2 below).

In fact, a topological group G is non-Archimedean iff G is a topological sub-
group of H(X) for some appropriate compact Hausdorff zero-dimensional
space X. This complete characterization of the non-Archimedean groups is
a part of Theorem 3.3 below. It is easy to show that the class of all non-
Archimedean groups is a variety in the sense of [12]. That is, this class is
closed under the formation of topological subgroups, products and quotient
groups.

Note that the transformation groups having zero-dimensional (in partic-
ular, ultrametric) phase spaces have many applications in descriptive set
theory [1, 6, 7].

2. Preliminaries and Conventions

All topological spaces in this paper are assumed to be Hausdorff. The
neutral element of a group G is denoted by eG. The weight w(X) of a
topological space X is defined to be τ(X) · ℵ0, where τ(X) denotes the
minimal cardinality of a base for X.

For information on uniform spaces, we refer the reader to [4]. If µ is a uni-
formity for X, then the collection of elements of µ which are finite coverings
ofX forms a base for a uniformity forX which we denote by µfin. If (X,µ) is

a uniform space, the uniform completion (X̂, µ̂fin) of (X,µfin) is a compact
uniform space known as the Samuel compactification of (X,µ). A partition
of a set X is a covering of X consisting of pairwise disjoint subsets of X.
Following [14], we say that a uniform space (X,µ) is non-Archimedean if it
has a base consisting of partitions of X. Equivalently, µ is generated by a
system {di} of ultrapseudometrics, that is, pseudometrics, each of which sat-
isfies the strong triangle inequality di(x, z) ≤ max{di(x, y), di(y, z)}. Clearly,
a non-Archimedean uniform space is zero-dimensional in the uniform topol-
ogy. A topological group is non-Archimedean iff its right uniformity is
non-Archimedean.

The following result is well known (see, for example, [4] and [5]).
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Lemma 2.1. Let (X,µ) be a non-Archimedean uniform space. Then both

(X,µfin) and the uniform completion (X̂, µ̂) of (X,µ) are non-Archimedean
uniform spaces.

A topological transformation group, orG-space, is a triple 〈G,X, α〉, where
G is a topological group (called the acting group), X is a topological space
(called the phase space), and α : G × X → X is a continuous action. For
each g ∈ G, the g-transition map is the function αg : X → X, αg(x) = gx.

Definition 2.2. Let 〈G1, X1, α1〉 be a G1-space, and let 〈G2, X2, α2〉 be a
G2-space. Suppose that ϕ : G1 →֒ G2 is a topological group embedding.

(1) A continuous function ψ : X1 → X2 is equivariant with respect to
ϕ (or, simply, equivariant, if ϕ is clear from the context) if, for all
g ∈ G1 and x ∈ X1, ψ(gx) = ϕ(g)ψ(x).

(2) Let ψ : X1 → X2 be an equivariant embedding with respect to ϕ.
We say that ψ(X1) is an equivariant retract of X2 (with respect to
ϕ and ψ) if there is a continuous retraction r : X2 → ψ(X1) which
is equivariant with respect to ϕ−1 : ϕ(G1) → G1.

Let 〈G,X, α〉 be a G-space. If 〈G, Y, γ〉 is a compact Hausdorff G-space
and ψ : X → Y is equivariant, then Y is called a G-compactification of
X. If, in addition, ψ is a topological embedding, then Y is a proper G-
compactification of X. A G-space 〈G,X, α〉 is G-Tychonoff if it has a
proper G-compactification. Not every Tychonoff G-space is G-Tychonoff
[8]. De Vries [19] proved that if G is locally compact, then every Tychonoff
G-space is G-Tychonoff. For every G-space X there exists a (possibly im-
proper) maximal G-compactification βGX [18]. For more information on
G-compactifications, as well as for a general method of constructing Ty-
chonoff G-spaces which are not G-Tychonoff, see [11].
Let G be a topological group. Recall [2] that the collection of cover-

ings {Ux|x ∈ G}, where U is a neighborhood of eG, forms a base for the
right uniformity µR for G. In 1957, Teleman [16] proved that for arbitrary

Hausdorff G, the Samuel compactification Ĝ of G with respect to its right
uniformity is a proper G-compactification of the G-space 〈G,G, αL〉, where

αL is the usual left action of G on itself. In fact, Ĝ is isomorphic to βGG
and is called the greatest ambit (see, for example, [20]). βGG is the maximal
proper G-compactification of 〈G,G, αL〉.

To the best of our knowledge, very little is known about the dimension
of βGX. Some special results can be found in [8, 9]. The dimension of the
greatest ambit βGG may be greater than the topological dimension of G
(simply take a cyclic dense subgroup G of the circle group; then dim G = 0
and dim βGG = 1). However, in the case of the Euclidean group G = R

n,
we have dim βGG = dim G. This follows from Theorem 5.12 in [4]. By a
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result of Pestov [13], one has dim βGG = 0 iff G is non-Archimedean. An
alternative proof of this will be given in Theorem 3.3.

3. Proof of the Main Results

Fact 3.1. ([9]) Every G-Tychonoff G-space X has a proper G-compactification
Y such that w(Y ) ≤ w(X) · w(G) and dim Y ≤ dim βGX.

Lemma 3.2. If X is a compact Hausdorff zero-dimensional space, then
H(X) is a non-Archimedean group.

Proof. For each two-element compact clopen partition {K1, K2} ofX, define

B(K1, K2) = {ϕ ∈ H(X) : ϕ(K1) = K1, ϕ(K2) = K2}.

Let B = {B(K1, K2) : {K1, K2} is a compact clopen partition of X}. Then
B is a local base at eH(X) consisting of clopen subgroups, and, hence, H(X)
is non-Archimedean. �

The following theorem provides a useful characterization of non-Archimedean
groups. (As noted before, the equivalence of (i) and (ii) was established by
Pestov [13].)

Theorem 3.3. The following assertions are equivalent:

(i) G is a non-Archimedean topological group;
(ii) dim βGG = 0;
(iii) G is a topological subgroup of H(X) for some compact Hausdorff

zero-dimensional space X such that w(X) = w(G).

Proof. (i) ⇒ (ii) Suppose G is non-Archimedean. Then the right uni-
formity µR for G is a non-Archimedean uniformity. By Lemma 2.1, the pre-
compact uniformity (µR)fin for G is also a non-Archimedean uniformity. Let

(Ĝ, µ̂) be the uniform completion of (G, (µR)fin). Then, again by Lemma

2.1, µ̂ is a non-Archimedean uniformity, and, hence, Ĝ is zero-dimensional.

But (Ĝ, µ̂) is exactly βGG.

(ii) ⇒ (iii) By Fact 3.1, there exists a zero-dimensional proper G-
compactification 〈G,X, α∗

L〉 of 〈G,G, αL〉 such that w(X) = w(G). Let
ψ : G→ X be the corresponding equivariant embedding.

We will show that the map ϕ : G → H(X) defined by ϕ(g) = (α∗

L)
g is

a topological group embedding. Observe that ϕ is one-to-one because α∗

L

extends the action αL. To prove the continuity of ϕ, suppose αg ∈ O = {f ∈
H(X) : f(K) ⊆ U}, where K ⊆ X is compact and U ⊆ X is open. Using
the compactness of K and the continuity of α∗

L, we can find a neighborhood
V of g such that ϕ(V ) ⊆ O. Hence, ϕ is continuous.
It remains to show that if O ⊆ G is open, then ϕ(O) is open in ϕ(G).

Let O ⊆ G be open. Then ψ(O) is open in ψ(G). Let W ⊆ X be open such
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that ψ(O) = W ∩ ψ(G). Define B = {f ∈ H(X) : f(ψ(eG)) ∈ W}. Then
B is open in H(X) and ϕ(O) = B ∩ ϕ(G). Hence, ϕ(O) is open in ϕ(G).

(iii) ⇒ (i) Follows directly by Lemma 3.2. �

Fact 3.4. (Brouwer) The Cantor cube {0, 1}ℵ0 is the unique (up to homeo-
morphism) non-empty, compact, metrizable, zero-dimensional, perfect space.
�

Now we are ready to prove our main result.

Theorem 3.5. Let G be a non-Archimedean and second countable group,
and let X be a compact, metrizable, zero-dimensional G-space. Then

(1) there exists a topological group embedding ϕ : G →֒ H(C);
(2) there exists an embedding ψ : X →֒ C, equivariant with respect to ϕ,

such that ψ(X) is an equivariant retract of C with respect to ϕ and
ψ.

Proof. By Theorem 3.3, there exists a compact, second countable (and
thus metrizable) zero-dimensional space Y such that H(Y ) contains G as
a topological subgroup. We may as well assume that all homeomorphisms
of Y corresponding to elements of G transform a certain base point y0 ∈ Y

onto itself (if not, replace Y with a disjoint union Y ∪ {y0} and redefine
those homeomorphisms in an obvious way).

Let us identify the action of G on X with a homomorphism w : G →
H(X), and let D be a copy of the Cantor set. By Brouwer’s theorem, the
space C = X × Y ×D is homeomorphic to the Cantor set, and, clearly, the
map ϕ : G→ H(C),

g 7→ (w(g), g, idD) ∈ H(X)×H(Y )×H(D) ⊆ H(C),

is a continuous homomorphism, thus turning C into a G-space. This ho-
momorphism is also an embedding, for its composition with the projection
onto H(Y ) is the identity mapping, so it is one-to-one and the inverse is
continuous.

We define ψ : X → C by x 7→ (x, y0, d0), where d0 ∈ D is any base point,
and the retraction r : C → ψ(X) by r(x, y, d) = (x, y0, d0). Then ψ and r
are equivariant, and the proof is complete. �

Theorem 3.6. H(C) is universal in the class of all non-Archimedean, sec-
ond countable groups, that is, every such group is topologically isomorphic
to a subgroup of H(C).

Final Remarks.

(1) By Theorem 1.5.1 of [1], the group S∞ is also universal in this class.
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(2) The group H(Iℵ0) is universal in the class of all second countable
topological groups, where I is the closed interval [0, 1] (see [17]).
Moreover, by [10], the topological transformation group 〈H(Iℵ0), Iℵ0〉
is universal in the class of all compact, metrizable G-spaces with sec-
ond countable acting group G.

(3) The action on C which we defined in the proof of Theorem 3.5 in-
trinsically depends on the original action of G on X, as the following
example shows.

Example 3.7. Let α : S∞ × C → C be the natural “permutation of coordi-
nates” action

α(g, (xn)) = (xg(n)).

Let 0 and 1 denote the two constant sequences of C. Let H = {0, 1} ⊆ C.
Consider H as an S∞-subspace of C.

Claim. H is not an equivariant retract of C with respect to ϕ = idS∞
and

ψ = idH .
Proof. The Cantor cube C is an S∞-ambit under the action α, that is, it
contains a point whose orbit is dense in C. In fact, all points which contain
infinitely many 0’s and infinitely many 1’s have dense orbits. Hence, every
image of C under an equivariant map is also an S∞-ambit. However, H is
not an S∞-ambit.

Acknowledgments. The authors would like to thank the referees for many
constructive suggestions and for a very substantial shortening of the proof
of the Main Theorem.

References

[1] H. Becker and A. Kechris, The Descriptive Set Theory of Polish Group Actions,
Cambridge University Press, Cambridge, 1996.

[2] R. Engelking, General Topology, PWN, Warsaw, 1977.
[3] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Volume One, Springer-

Verlag, 1963.
[4] J. Isbell, Uniform Spaces, American Mathematical Society, Providence, 1964.
[5] J. Isbell, Zero-dimensional Spaces, Tohoku Mat. J. (2) 7(1955), 1-8.
[6] A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
[7] A. Kechris, Descriptive Dynamics, to appear in Descriptive Set Theory and Dynam-

ical Systems, London Math. Soc. Lecture Note Series, Cambridge University Press,
2000.

[8] M. Megrelishvili, A Tychonoff G-space which has no compact G-extensions and G-
linearizations, Russ. Math. Surv. 43 (1988), 145-146.

[9] M. Megrelishvili, Compactification and Factorization in the Category of G-spaces in
Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J.
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