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THE EQUIVARIANT UNIVERSALITY AND
COUNIVERSALITY OF THE CANTOR CUBE

MICHAEL G. MEGRELISHVILI AND TZVI SCARR

ABSTRACT. Let (G, X, a) be a G-space, where G is a non-Archimedean
(having a local base at the identity consisting of open subgroups) and sec-
ond countable topological group, and X is a zero-dimensional compact
metrizable space. Let (H({0,1}%°),{0,1}® 1) be the natural (evalu-
ation) action of the full group of autohomeomorphisms of the Cantor
cube. Then
(1) there exists a topological group embedding ¢ : G — H ({0, 1}%0);
(2) there exists an embedding 1 : X < {0,1}Y°, equivariant with
respect to o, such that ¢(X) is an equivariant retract of {0, 1}%°
with respect to ¢ and .

1. INTRODUCTION

The Cantor cube C = {0,1}™ is a universal space in the class of zero-
dimensional, separable, metrizable spaces, that is, every such space can
be topologically embedded into C. In particular, every compact, zero-
dimensional, metrizable space is homeomorphic to a closed subset of C.
Sierpinski [15] showed that every non-empty closed subset of C is a retract
of C. This gives us the following well-known fact.

Fact 1.1. Every non-empty, compact, zero-dimensional, metrizable space is
homeomorphic to a retract of C.

Our Main Theorem, formulated in the abstract above, is an equivariant
generalization of Fact 1.1 for non-Archimedean acting groups. A topological
group is non-Archimedean if it has a local base at the identity consisting of
open subgroups. The class of non-Archimedean groups includes:

e the prodiscrete (in particular, the profinite) groups;
e the groups arising in non-Archimedean functional analysis [14] (for
example, the additive groups of the fields of p-adic numbers);
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e the group Is(X,d) of all isometries of an ultrametric space (X, d),
with the topology of pointwise convergence;

e the locally compact, totally disconnected groups [3];

e the symmetric group Ss on a countably infinite set, with the topol-
ogy of pointwise convergence;

e the full group H(X) of autohomeomorphisms of X, with the compact-
open topology, where X is a compact Hausdorff zero-dimensional
space (see Lemma 3.2 below).

In fact, a topological group G is non-Archimedean iff G is a topological sub-
group of H(X) for some appropriate compact Hausdorff zero-dimensional
space X. This complete characterization of the non-Archimedean groups is
a part of Theorem 3.3 below. It is easy to show that the class of all non-
Archimedean groups is a variety in the sense of [12]. That is, this class is
closed under the formation of topological subgroups, products and quotient
groups.

Note that the transformation groups having zero-dimensional (in partic-
ular, ultrametric) phase spaces have many applications in descriptive set
theory [1, 6, 7].

2. PRELIMINARIES AND CONVENTIONS

All topological spaces in this paper are assumed to be Hausdorff. The
neutral element of a group G is denoted by eg. The weight w(X) of a
topological space X is defined to be 7(X) - Ny, where 7(X) denotes the
minimal cardinality of a base for X.

For information on uniform spaces, we refer the reader to [4]. If y is a uni-
formity for X, then the collection of elements of  which are finite coverings
of X forms a base for a uniformity for X which we denote by fi ;. If (X, p1) is
a uniform space, the uniform completion ()/5 Hrin) of (X, fifin) is & compact
uniform space known as the Samuel compactification of (X, ). A partition
of a set X is a covering of X consisting of pairwise disjoint subsets of X.
Following [14], we say that a uniform space (X, p) is non-Archimedean if it
has a base consisting of partitions of X. Equivalently, y is generated by a
system {d;} of ultrapseudometrics, that is, pseudometrics, each of which sat-
isfies the strong triangle inequality d;(x, z) < max{d;(z,y), d;(y, z)}. Clearly,
a non-Archimedean uniform space is zero-dimensional in the uniform topol-
ogy. A topological group is non-Archimedean iff its right uniformity is
non-Archimedean.

The following result is well known (see, for example, [4] and [5]).



THE EQUIVARIANR UNIVERSALITY 3

Lemma 2.1. Let (X, p) be a non-Archimedean uniform space. Then both

(X, pgin) and the uniform completion (X,70) of (X, ) are non-Archimedean
uniform spaces.

A topological transformation group, or G-space, is a triple (G, X, ), where
G is a topological group (called the acting group), X is a topological space
(called the phase space), and a : G x X — X is a continuous action. For
each g € G, the g-transition map is the function o9 : X — X, o(z) = gz.

Definition 2.2. Let (G, X1, 1) be a Gi-space, and let (Gg, Xo, as) be a
G-space. Suppose that ¢ : Gy — G5 is a topological group embedding.

(1) A continuous function ¥ : X; — Xy is equivariant with respect to
@ (or, simply, equivariant, if ¢ is clear from the context) if, for all
g€ Giandz e Xy, ¢¥(gr) = p(g9)¢(z).

(2) Let ¢ : X; — X3 be an equivariant embedding with respect to (.
We say that ¢(X) is an equivariant retract of X, (with respect to
¢ and ) if there is a continuous retraction r : Xy — 1(X;) which
is equivariant with respect to ¢ : p(G1) — Gj.

Let (G, X, a) be a G-space. If (G,Y,7) is a compact Hausdorff G-space
and ¥ : X — Y is equivariant, then Y is called a G-compactification of
X. If, in addition, v is a topological embedding, then Y is a proper G-
compactification of X. A G-space (G, X,a) is G-Tychonoff if it has a
proper G-compactification. Not every Tychonoff G-space is G-Tychonoff
[8]. De Vries [19] proved that if G is locally compact, then every Tychonoff
G-space is G-Tychonoff. For every G-space X there exists a (possibly im-
proper) mazimal G-compactification S X [18]. For more information on
G-compactifications, as well as for a general method of constructing Ty-
chonoff G-spaces which are not G-Tychonoff, see [11].

Let G be a topological group. Recall [2] that the collection of cover-
ings {Uzx|x € G}, where U is a neighborhood of eg, forms a base for the
right uniformity pugr for G. In 1957, Teleman [16] proved that for arbitrary
Hausdorff G, the Samuel compactification G of G with respect to its right
uniformity is a proper G-compactification of the G-space (G, G, ay), where
ap is the usual left action of G on itself. In fact, G is isomorphic to G
and is called the greatest ambit (see, for example, [20]). SeG is the maximal
proper G-compactification of (G, G, ar).

To the best of our knowledge, very little is known about the dimension
of B X. Some special results can be found in [8, 9]. The dimension of the
greatest ambit SoG may be greater than the topological dimension of G
(simply take a cyclic dense subgroup G of the circle group; then dim G = 0
and dim fgG = 1). However, in the case of the Euclidean group G = R",
we have dim G = dim G. This follows from Theorem 5.12 in [4]. By a
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result of Pestov [13], one has dim G = 0 iff G is non-Archimedean. An
alternative proof of this will be given in Theorem 3.3.

3. PROOF OF THE MAIN RESULTS

Fact 3.1. (]9]) Every G-Tychonoff G-space X has a proper G-compactification
Y such that w(Y) < w(X) - w(G) and dim'Y < dim B X.

Lemma 3.2. If X is a compact Hausdorff zero-dimensional space, then
H(X) is a non-Archimedean group.

Proof. For each two-element compact clopen partition { K, Ky} of X, define
B(K1, Ks) = {p € H(X) : o(K1) = K1, 9(K2) = K>}

Let B = {B(K1, K3) : {Kj, Ky} is a compact clopen partition of X }. Then

B is a local base at ey (x) consisting of clopen subgroups, and, hence, H(X)

is non-Archimedean. U
The following theorem provides a useful characterization of non-Archimedean

groups. (As noted before, the equivalence of (i) and (iz) was established by

Pestov [13].)

Theorem 3.3. The following assertions are equivalent:

(1) G is a non-Archimedean topological group;
(i) dim BeG = 0;
(1i1) G is a topological subgroup of H(X) for some compact Hausdorff
zero-dimensional space X such that w(X) = w(G).

Proof. (i) = (i) Suppose G is non-Archimedean. Then the right uni-
formity pg for G is a non-Archimedean uniformity. By Lemma 2.1, the pre-
compact uniformity (ug) fin, for G is also a non-Archimedean uniformity. Let

(G,7i) be the uniform completion of (G, (1r) sin). Then, again by Lemma

2.1, j1 is a non-Archimedean uniformity, and, hence, G is zero-dimensional.
But (G, 1) is exactly SaG.

(17) = (wi) By Fact 3.1, there exists a zero-dimensional proper G-
compactification (G, X, a}) of (G,G,ar) such that w(X) = w(G). Let
¥ : G — X be the corresponding equivariant embedding.

We will show that the map ¢ : G — H(X) defined by ¢(g9) = (a})? is
a topological group embedding. Observe that ¢ is one-to-one because aj
extends the action a,. To prove the continuity of ¢, suppose af € O = {f €
H(X): f(K) C U}, where K C X is compact and U C X is open. Using
the compactness of K and the continuity of o, we can find a neighborhood
V of g such that ¢(V) C O. Hence, ¢ is continuous.

It remains to show that if O C G is open, then ¢(O) is open in p(G).
Let O C G be open. Then ¢(0) is open in ¥(G). Let W C X be open such
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that ¥(0) = W NY(G). Define B = {f € H(X) : f(¢(eg)) € W}. Then
B is open in H(X) and ¢(O) = BN ¢(G). Hence, p(0O) is open in ¢(G).

(1i1) = (1) Follows directly by Lemma 3.2. O

Fact 3.4. (Brouwer) The Cantor cube {0,1} is the unique (up to homeo-
morphism) non-empty, compact, metrizable, zero-dimensional, perfect space.

OJ
Now we are ready to prove our main result.

Theorem 3.5. Let G be a non-Archimedean and second countable group,
and let X be a compact, metrizable, zero-dimensional G-space. Then

(1) there exists a topological group embedding p : G — H(C);
(2) there exists an embedding 1) : X — C, equivariant with respect to ¢,
such that ¥(X) is an equivariant retract of C with respect to ¢ and

.

Proof. By Theorem 3.3, there exists a compact, second countable (and
thus metrizable) zero-dimensional space Y such that H(Y) contains G as
a topological subgroup. We may as well assume that all homeomorphisms
of Y corresponding to elements of G transform a certain base point yo € YV
onto itself (if not, replace Y with a disjoint union Y U {yo} and redefine
those homeomorphisms in an obvious way).

Let us identify the action of G on X with a homomorphism w : G —
H(X), and let D be a copy of the Cantor set. By Brouwer’s theorem, the
space C = X X Y x D is homeomorphic to the Cantor set, and, clearly, the
map ¢ : G — H(C),

g— (w(g),9,idp) € H(X) x H(Y) x H(D) C H(C),

is a continuous homomorphism, thus turning C into a G-space. This ho-
momorphism is also an embedding, for its composition with the projection
onto H(Y) is the identity mapping, so it is one-to-one and the inverse is
continuous.

We define ¢ : X — C by = +— (x,yo,dp), where dy € D is any base point,
and the retraction r : C — ¥(X) by r(z,y,d) = (z,yo,dp). Then ¢ and r
are equivariant, and the proof is complete. 0

Theorem 3.6. H(C) is universal in the class of all non-Archimedean, sec-
ond countable groups, that is, every such group is topologically isomorphic
to a subgroup of H(C).

Final Remarks.

(1) By Theorem 1.5.1 of [1], the group S« is also universal in this class.
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(2) The group H(I*) is universal in the class of all second countable
topological groups, where [ is the closed interval [0,1] (see [17]).
Moreover, by [10], the topological transformation group (H (I*0), I™0)
is universal in the class of all compact, metrizable G-spaces with sec-
ond countable acting group G.

(3) The action on C which we defined in the proof of Theorem 3.5 in-
trinsically depends on the original action of G on X, as the following
example shows.

Example 3.7. Let o : Soo Xx C — C be the natural “permutation of coordi-
nates” action

(g, (7n)) = (Ty(m))-

Consider H as an S,.-subspace of C.

Claim. H is not an equivariant retract of C with respect to ¢ = idg__ and
Y =idg.

Proof. The Cantor cube C is an So.-ambit under the action «, that is, it
contains a point whose orbit is dense in C. In fact, all points which contain
infinitely many 0’s and infinitely many 1’s have dense orbits. Hence, every
image of C under an equivariant map is also an Sy.-ambit. However, H is
not an S,.-ambit.
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