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Abstract
We present some basic facts about topological dimension, the motiva-

tion, necessary de�nitions and their interrelations. Finally we discuss the
Hausdor� dimension and fractals.

1 Topological dimension
1.1 Motivation
Topological dimensions de�nes the basic di�erence between �related� topological
sets such as In and Im when n 6= m. The lack of that de�nition is especially
highlighted because of the easy explanation of the geometric dimension.

When trying to de�ne a dimension for a topological space, you might run into
several di�culties - Unlike a vector space, you can not state that the dimension
is the maximum of linear independent vector.

Therefore in order to get an intuitive de�nition for a topological dimension
we should look for di�erent properties that has the e�ects of the geometrical
dimension.

1.2 General
A topological dimension has values in −1, 0, 1, 2, 3, . . . , and is topological, i.e:
if X and Y are homeomorphic then they have the same "dimension". It will also
be nice, if Rn gets value n, for each n.
There are 3 commonly used de�nitions:

1. Small inductive dimension (ind)

2. Large inductive dimension (Ind)

3. Lebesgue covering dimension (dim)

All these de�nitions have the required properties, and we will see that they are
the same for separable metrizable spaces (ind = Ind = dim).

Remainder: metrizable space is a topological space that is homeomorphic
to a metric space.
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2 The inductive dimension
2.1 Intuition
Lets look at a cube. What is the (geometrical) dimension of the cube? 3, and
what is the (geometrical) dimension of its boundary [square]? 2.

Now let's look at the square. What is the dimension of its boundary? well
its boundaries are lines, so their dimension is 1.

And what about the boundary of the lines? Well their boundary is composed
of dots, there dimension is 0.

We get a pattern - the dimension of a spaces, is 1 + the dimension of its
boundary. As a boundary is well de�ned in topology, this notion can be easily
applied to topological spaces, to create a topological dimension.

3 The small inductive dimension
De�nition 3.1. The small inductive dimension of X is notated ind(X), and is
de�ned as follows:

1. We say that the dimension of a space X (ind(X)) is -1 i� X = ∅
2. ind(X) ≤n if for every point x ∈ X and for every open set U exists an

open V, x ∈ V such that V ⊆ U , and ind(∂V ) ≤ n− 1. Where ∂V is the
boundary of V .

3. ind(X) = n if (2) is true for n, but false for n− 1.

4. ind(X) = ∞if for every n, ind(X) ≤ n is false.

Remark 3.1. The ind dimension is indeed a topological dimension: X is home-
omorphic to Y implies that ind(X) = ind(Y ).

This can be shown easily (and inductively) as the de�nition relays only of
open\closed sets.
Remark 3.2. An equivalent condition to condition (2) is:

• The space has a base B, and every U ∈ B has ind(∂U) ≤ n− 1 [You can
construct this base using the sets U from condition (2)].

Theorem 3.1. As we would expect, if Y ⊆ X then ind(Y ) ≤ ind(X).

Proof. By induction, it is true for ind(X) = −1. if ind(X) = n, for every point
y ∈ X there is an nbd V , with an open set U ⊆ V , such that ind(∂V ) ≤ n− 1.
Note that VY = Y ∩ V is a nbd in Y , and UY is open in Y .

By induction, it is enough to show that ∂UY ⊆ ∂U , Because then ind(∂UY ) ≤
n − 1, and therefore ind(Y ) ≤ n = ind(X) (by de�nition). And indeed
Uy ⊆ U, ∂UY = UY \ UY ⊆ U \ U = ∂U

Example 3.1. Let's show that ind(R) is 1.
for each x ∈ R, lets select a nbd, V and a set U = (a, b) ⊆ V , ind(∂U) =

ind({a, b}) = 0. This implies that ind(R) ≤ 1.
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So, it is enough to prove that ind(R) is not 0. But that is easy! if ind(R) = 0,
that means that a set U exists, such that: ind(∂U) = −1 ⇔ ∂U = ∅ ⇔ U is
clopen! but if U is clopen, R is disconnected! Because R is connected, we get
that ind(R) > 0.
So �nally, ind(R) = 1 ¦.

The same proof can be done for the Sphere S1 and the interval I1.

Corollary 3.2. A zero-dimensional space is disconnected.

Corollary 3.3. if for every nbd V of x ∈ X exists a clopen set U ⊆ V then
ind(X) = 0

Example 3.2. What is the dimension of C the cantor set?
Lets look at C in R, C has no interior points (fact). That means, that for each
nbd U = (a, b) of x ∈ C, we can �nd two points c, d such that a ≤ c ≤ x ≤ d ≤ b,
and c, d /∈ C.

Lets look at C as a subspace, V = (c, d) is open, and closed ⇒ ind(C) = 0

Note that these results are not exactly what we expect. The cantor set has
the same 'size' as R: 2ℵ0 , so we should expect it to have the same dimension.
But then again, the cantor set has no interval in it. Its dimension should be
then, somewhere between 0 and 1. We shall later learn of a dimension de�nition
that suits our expectations.

It is worth to mention, that the cantor set is universal 0-dimensional space
of separable metrizable spaces. meaning that every other space separable metric
space X, ind(X) = 0, is homeomorphic to a sub-space of the cantor set.
Remember that a number is in the Cantor set ⇔ It has the form

∑
i∈N

xi

3i , xi ∈
{0, 2}.
for example: 2

3 + 0
9 + 2

27 + 0
81 + · · · .

We can display this number simply as a fraction of radix 3 0.2020.... This
set of fractions has one-to-one and onto mapping to the set of binary fractions
0.1010.... We simply replaced all the 2's with 1's. The latter set of fractions is
more familiar to topology, it is the space:Dℵ0 , D = {0, 1}, D with the discrete
topology.

Proposition 3.4. The Dℵ0 is homeomorphic to the Cantor set.

Now it is enough to show that every zero dimensional separable metrizable
space is homeomorphic to a sub-spaces of Dℵ0 .
Remark 3.3. Every zero dimensional spaces has a clopen base (by the alternative
de�nition).
If the space is also metrizable and separable, it has a countable clopen base
(because then every base has a countable base contained in it).

Theorem 3.5. The Cantor set is a universal space for all the zero-dimensional
metrizable separable space.

Proof. Let X be a separable metrizable space. It is enough to show that X is
homeomorphic to a sub-set of Dℵ0 .

Let B = {Bi} be its clopen countable base. We de�ne f to be: fi(x) ={
1 x ∈ Bi

0 otherwise
. De�ne f(x) = (f1(x), f2(x), . . .). f is the homeomorphism

that we wanted. ¦
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An interesting question we can ask about this dimension, is wether ind(Rn) =
n. The answer is yes,we will start by showing that ind(Rn) ≤ n.

Proposition 3.6. The dimension of Rn, Sn, In ≤ n.

We can show this by induction. we have already shown that the dimension
of R1, S1, I1is 1.
For every point x ∈ Rn, Sn, In, there is a nbd U with an open set V which is
homeomorphic to Sn−1, and by induction the proof is complete ¦

In order to show that ind(Rn) ≥ n, We shall have some de�nitions and
theorems. Let's start by de�ning a partition between sets:

De�nition 3.2. A Partition L on between A and B exists, if there are open
sets U,W , A ⊆ U,B ⊆ W , such that W ∩ U = ∅ and L = U c ∩W c.

Theorem 3.7. ind(X) ≤ n ⇔For every point x and every closed set B there
is a partition L, such that:ind(L) ≤ n− 1.

Proof. (⇒)
If x ∈ X and B is closed, Then there is a set V , such that V ∩ B = ∅. By
de�nition of ind, there is a U ⊆ V , x ∈ U , ind(∂U) ≤ n − 1 now, let W = U
and L = ∂U .

(⇐)
Let x ∈ X and V an nbd of x. The set B = V c is closed, and therefore there
are U,W such that x ∈ U , B ⊆ W . Note that by de�nition of B, U ⊆ V .

Now W c is closed, therefore U ⊆ W c, and obviously ∂U ⊆ U ⊆ W c, and by
de�nition ∂U = U \ U̇ = U \ U ⊆ U c.

Therefore ∂U ⊆ U c ∩W c = L ind(U) ≤ n− 1

Theorem 3.8. If X is a metric space and Z is a zero dimensional separable
subspace of X, then for all closed set A, B of X A ∩B = ∅, there is a partition
between them L, such that L ∩ Z = ∅
Theorem 3.9. X is a separable metrizable space, then ind(X) ≤ n ⇔ X is the
union of two sub spaces Y, Z such that ind(Y ) ≤ n− 1, ind(Z) ≤ 0.

From this we can easily see, that for a separable metrizable space X ind(X) ≤
n ⇔ X is the union of Z1, . . . , Zn+1, ind(Zi) ≤ 0.

A nice result of this theorem, gives us an estimate on the dimension of the
sum of two spaces.

Theorem 3.10. (The addition theorem) If X, Y , ind(X) ≤ n, ind(Y ) ≤ m
are separable metric spaces, then X∪Y can be represented with Zx,1, . . . Zx,n+1, ZY,1 . . . , ZY,m+1.
And therefore ind(X ∪ Y ) ≤ n + 1 + m + 1 − 1 = m + n − 1, meaning that
ind(X ∪ Y ) ≤ ind(X) + ind(Y )− 1.

Theorem 3.11. (The separation theorem) For every closed sets A, B of
a separable metric space X ind(X) ≤ n, There is a partition L, such that
ind(L) ≤ n− 1.

Proof. We can decompose X into two spaces Y, ind(Y ) ≤ n− 1; Z, ind(Z) = 0.
There is a partition L between A,B and L∩Z = ∅ ⇒ L ⊆ Y and ind(L) ≤ n−1
as a sub-space of Y.
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Lemma 3.12. M is a sub-space of metric X, A,B are closed and disjoint,
A ⊆ U , B ⊆ W are open in X and U ∩W = ∅.

For every partition L′of M ∩U,M ∩W there is a partition L of A,B , such
that M ∩ L ⊆ L′.

The last lemma says, that you can take a partition on M and extend it to a
partition on X. We can use it to prove the following:

Theorem 3.13. (The second separation theorem) X is a metric space, M
is a separable sub-space and ind(M) ≤ n. Then For every disjoint closed sets
A,B there is a partition L such that ind(L ∩M) ≤ n− 1.

Theorem 3.14. (Theorem on partitions) X is a separable metric space,
ind(X) ≤ n ⇔. Then For every sequence of (A1,, B1), . . . (An+1, Bn+1) of closed
disjoint sets, The partitions L1, . . . , Ln+1exists, such that they have an empty
intersection.

Proof. We shall only prove (⇒)
Let's look at A1, B1 by the separation theorem, we can �nd a L1,ind(L1) ≤
n − 1. Lets look at A2, B2 and let M = L1. We can �nd a partition L2, such
thatind(M ∩ L2) ≤ n− 2.

Lets look at Ai, Bi and let M = L1 ∩L2 ∩ · · · ∩Li−1, we can �nd a partition
Li, such thatind(M ∩ Li) = n− i.

When we get to toAn+1, Bn+1, we have ind(L1 ∩ L2 ∩ · · · ∩ Ln+1) ≤ −1 ⇔
L1 ∩ L2 ∩ · · · ∩ Ln+1 = ∅.

We are 2-3 theorems away from showing that ind(Rn) = n

Theorem 3.15. (Brouwer �xed point theorem) If S is a non-empty, com-
pact, closed and convex sub set of Rn, then f : S → S has a �xed point.

Why do we need this theorem? you shall soon �nd out!

Theorem 3.16. Let A1B1, . . . , An, Bn be the opposite faces of the In cube
(meaning: the i-th coordinate of Ai is 0 and in Bi is 1).
Now, if Li is a partition between Ai and Bi , then L1 ∩ · · · ∩ Ln 6= ∅.
Proof. As Li is a partition between Ai and Bi, by de�nition exists open sets
Ui, Wi; Ai ⊆ Ui, Bi ⊆ Wi. and Li = (Ui ∪Wi)c. The following function is well
de�ned:

fi =

{
1
2

d(x,Li)
d(Ai,x)+d(x,Li)

+ 1
2 x ∈ W c

i

− 1
2

d(x,Li)
d(Bi,x)+d(x,Li)

+ 1
2 x ∈ U c

i

fi is continuous. We also have: f−1( 1
2 ) = Li and fi(Ai) = {1} and fi(Bi) =

{0} (Note that the i-th coordinate of x ∈ Ai is 0, and of x ∈ Bi is 1). Lets
de�ne f(x) = (f1, . . . , fn).
if L1 ∩ · · · ∩ Ln = ∅ then ∀x f(x) 6= ( 1

2 , . . . , 1
2 ).

Let p : In \ {( 1
2 , . . . , 1

2 )} be the projection from a point in the cube to its
boundary (We stretch a line from the middle, to the point, until it reaches the
boundary).

De�ne g = p ◦ f . We have that g(Ai) ⊆ Bi and g(Bi) ⊆ Aiand that g(In)is
on one of the Bior Ai.That means that g(x) 6= x for every x. contradicting
Brouwer �xed point theorem.
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Can you see where this is heading?

We have already seen that In ≤ n is true. let's show that In ≤ n−1 is false.
If In ≤ n− 1 is true, then it has we can �nd n partitions of the faces that has
an empty intersection. (the faces of In are sequence of n disjoint closed sets, so
we apply the Theorem on partitions)

But by the previous theorem showed that any selection of partitions of the
faces will always have a non-empty intersection! and we get:

ind(In) = n

And due to the sub-space theorem:

ind(Rn) = n

This also shows us, that In ≈ Im ⇔ n = m.

4 The Large inductive dimension
One can see that for every separable metric space X with ind(X) = n, for every
closed subset F of every open subset U of X, there is an open V in between,
such that the ind(∂V ) ≤ n − 1, this suggest a modi�cation in the de�nition of
the small inductive dimension consisting in replacing the point x by a closed set
A.

De�nition 4.1. The large inductive dimension of normal space X is notated
Ind(X), and is de�ned as follows:

1. We say that the dimension of a space X (Ind(X)) is -1 i� X = ∅
2. Ind(X) ≤n if for every closed set C ⊆ X and for every open set U exists

an open V , C ⊆ V such that V ⊆ U , and Ind(∂V ) ≤ n− 1. Where ∂V is
the boundary of V .

3. Ind(X) = n if (2) is true for n, but false for n− 1.

4. Ind(X) = ∞if for every n, Ind(X) ≤ n is false.

Remainder: X is a normal space if, given any disjoint closed sets E and F,
there are a neighborhood U of E and a neighborhood V of F that are also
disjoint.

Proposition 4.1. A normal space X satis�es the inequality Ind(X) ≤ n i� for
every pair A, B of disjoint closed subset of X exists a partition L between A
and B such that Ind(X) ≤ n− 1

We have seen this before...

Theorem 4.2. For every separable space X we have ind(X) = Ind(X)
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Proof. For every normal space X we have ind(X) ≤ Ind(X) by de�nition.
To show that Ind(X) ≤ ind(X) we will use induction with respect to ind(X),

clearly one can suppose that ind(X) < ∞.
If ind(X) = −1⇒ind(X) ≤ Ind(X). Assume that the inequality is proven

for all separable metric space X of ind(X) < n and consider a separable metric
space X such that ind(X) = n.

Let A and B be a pair of disjoint closed subset of X, according to the
�rst separation theorem there exists a partition L between A and B such that
ind(L) ≤ n−1, by the inductive assumption for every k < n Ind(L) ≤ n−1 and
according to the previous proposition Ind(X) ≤ n and �nally we got Ind(X) ≤
ind(X) ⇒ Ind(X) = ind(X).
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5 The Lebesgue covering dimension
Lebesgue covering dimension or topological dimension of a topological space is
de�ned to be the minimum value of n, such that any open cover has a re�nement
in which no point is included in more than n+1 elements, if a space does not have
Lebesgue covering dimension m for any m, it is said to be in�nite dimensional.

In this context, a re�nement is a second open cover such that every set of
the second open cover is a subset of some set in the �rst open cover.

It is named after Henry Lebesgue, although it was independently arrived at
by a number of mathematicians.
Example 5.1. consider some arbitrary open cover of the unit circle. This open
cover will have a re�nement consisting of a collection of open arcs. The circle
has dimension 1, by this de�nition, because any such cover can be further re�ned
to the stage where a given point x of the circle is contained in at most 2 arcs.

That is, whatever collection of arcs we begin with some can be discarded,
such that in the remainder still covers the circle, but with simple overlaps.

Similarly, consider the unit disk in the two-dimensional plane. It is not hard
to visualize that any open cover can be re�ned so that any point of the disk is
contained in no more than three sets.

5.1 Properties
Property 5.1. Lebesgue covering dimension is a topological property

two homeomorphic spaces have the same dimension.
Property 5.2. Rn has dimension n

Theorem 5.1. For every closed subspace M of a normal space X we have
dimM ≤ dimX

Proof. The theorem is obvious if dimX = ∞, so that we can assume that
dimX = n < ∞.

Consider a �nite open cover U = Ui
k
i=1 of the space M. For i=1,2...,k let Wi

be an open subset of X such that Ui = M
⋂

Wi. The family X\M ⋃
Wi

k
i=1 is an

open cover of the space X and since dimX ≤ n it has a �nite open re�nement γ
which no point is included in more than n+1 elements of γ. one easily see that
the family γ\M is a �nite open cover of space M, re�nes U and has no point of M
is included in more than n+1 elements of γ\M , so that dimM ≤ n = dimX.

Theorem 5.2. For X metrizable space IndX = dimX.

Theorem 5.3. For X normal space dimX ≤ IndX

5.2 Some topological constructions
The de�nition of the Lebesgue covering dimension can be used to build some
topological sets, such as the Sierpinski carpet.

A construction can proceed as follows:
Consider, for example, a �nite open covering for the two-dimensional unit disk.
This covering can always be re�ned so that no point in the disk belongs to more
than three sets. Now, we will remove all of the points in the disk that belong
to three sets. Depending on the re�nement, this will leave possibly one or more
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holes in the disk. The remaining object is again two-dimensional, and again has
a �nite open cover.

The process of selecting a cover and re�ning, and then punching out holes
can be repeated, ad in�nitum. The resulting object is homeomorphic to the
Sierpinski carpet.

What is curious about this construction is that the carpet has a Lebesgue
covering dimension of one, and not two, although at any step of the creation
the shape had dimension of two. The proof of this is essentially by contradic-
tion: were there a covering which required membership to three sets, then the
a�ected area would have been punched out during the construction phase. Sim-
ilar constructions can be performed in higher dimensions; the three-dimensional
analogue is called the Menger sponge. Curiously, the Lebesgue covering dimen-
sion of the Menger sponge is again one.
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6 Fractals
The word "fractal" denotes a shape that is recursively constructed or self-similar,
that is, a shape that appears similar at all scales of magni�cation and is therefore
often referred to as "in�nitely complex". There is also a mathematics fractal
de�nition that we intrudes later.
Some examples that are:

1. Cantor set

2. Sierpinski carpet

Which we already see, more known examples are:

3. The Koch curve: one can imagine that it was created by starting with a
line segment, then recursively altering each line segment as follows:

(a) divide the line segment into three segments of equal length.
(b) draw an equilateral triangle that has the middle segment from step

1 as its base.
(c) remove the line segment that is the base of the triangle from step 2.

The Koch curve is in the limit approached as the above steps are followed
over and over again

4. The Mandelbrot set: this set can be de�ned as the set of parameters c for
which the critical point 0 of fc : C → C; z 7→ z2 + c does not tend to
∞, That is: fn

c (0) 6→ ∞ where fn
c is the n-fold composition of fc with

itself. This de�nition lends itself immediately to the production of com-
puter generated renderings.

Example to approximate fractals are easily found in nature. These ob-
jects display self-similar structure over an extended, but �nite, scale range.
Examples include clouds, snow �akes, mountains, river networks, and sys-
tems of blood vessels. Famous example in this class is

5. The coast line of Britain.

6.1 Fractals dimension
We can observe the Cantor set as a key example to understanding fractals
dimensions. The Cantor set has topological dimension of zero, but yet it has
the same cardinality as the real line - in that sense we'd expect its dimension to
be one. But the Cantor set has no interval in it - and in that sense we'd expect
its dimension to be zero.

The answer then, lies somewhere in the middle. The Cantor set should have
a dimension greater than zero, but smaller than one.
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7 Hausdor� dimension
7.1 Introduction
The topological dimensions that we saw gives us a notion of geometrical di-
mension for topological space. And as we expect the topological dimension of
Rn is indeed n. But there are some complex sets as we seen before that the
topological dimensions seems too naive for.

For this purpose, the Hausdor� dimension (fractal dimension) was invented.
The topological dimension were built on some topological notions, like the notion
that boundary of the space has a dimension smaller by 1. This dimension has
a di�erent notion that is not topological.

We will now look at Rn and observe another feature that involves it's geo-
metrical dimension, to get an intuition of the Hausdor� dimension.
Imagine a square in R2 with side length of 1. its area is also 1. let's see what
happens when we 'zoom-in':

×2 =
Comparing the two squares:
Zoom Side Area Factor: log(Area)

log(Side)

1 1 1 -
2 2 4 2
3 3 9 2
4 4 16 2

Imagine a cube in R3 with side length of 1. its volume is also 1. let's see
again what happens when we 'zoom-in'
Zoom Side Volume Factor: log(Area)

log(Side)

1 1 1 -
2 2 8 3
3 3 27 3
4 4 64 3

More generally, if we take the cube In, and we 'zoom in' the space k times,
the cube will grow by kn.

As we can see this is another e�ect of the geometrical dimension. The
Hausdor� dimension de�nition is based on this notion of the dimension, and
that's why it requires a metric (so we can measure the growth of the space).
This dimension gives nice results for fractals, as we will demonstrate, but �rst
lets formalize the de�nition.

7.2 Formal de�nition
Note that the Hausdor� dimension is de�ned only for metric spaces - it uses
concepts like length and volume, that require a metric.

Remainder: Let X be a metric set and C be a collection of sub-sets. The
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mesh of C is mesh(C) = sup{diam(B) : B ∈ C}.

The de�nition of the Hausdor� dimension is done using a measure on the
space, so we shall �rst de�ne the Hausdor� measure:

De�nition 7.1. Let A be a subset of X, we annotate Hd(A, ε) = inf{∑ diam(Bi)d :
C = {Bi},mesh(C) < ε} where C is a countable cover of A.

Remember that we are trying to use the geometrical notion to de�ne a
new dimension. The sum

∑
diam(Bi) can be thought of as the 'size' of a 1-d

segment in the space. The sum
∑

diam(Bi)d is the volume of the number of
d-dimensional cubes needed to cover the space.

Now, to be able to use Hd comfortably, we de�ne a measure:

De�nition 7.2. The Hausdor� p-measure Md is Md(A) = sup{Hd(A, ε)}
Note: a < b ⇔ Hd(A, a) ≥ Hd(A, b), so the following is also true:

Md(A) = limε→0Hd(A, ε)

. This measure 'tells' the 'volume' of A if it was in a d dimensional space.

De�nition 7.3. The Hausdor� dimension of A, is dimH(A) = sup{d : 0 <
Md(A) < ∞}.

This de�nition is quite natural - the dimension of A is the highest dimension
that A has a �nite 'volume'.

Note that if p ≤ d, then Mp(A) ≥ Md(A).

Theorem 7.1. If 0 < Md(A) < ∞ then dimH(A) = d.

Proof. We shall �rst show that if p < d then Mp(A) = ∞.
Md(A) > 0 ⇒ there is a 1 > δ > 0, t > 0 such that Hd(A, δ) = t, This is due to
the de�nition of Hd.

And by de�nition, for every ε < δ we have Hd(A, ε) ≤ t. Let's choose
a ε, so the following inequality holds: εd−p < t/N ; ε < δ, Where N is an
arbitrary number. Let C = {Bi},mesh(C) < ε. Now, (♥) Remember that
x < y ⇔ x−1 > y−1.∑

diam(Bi)p =
∑

diam(Bi)p−d·diam(Bi)d ≥ εp−d
∑

diam(Bi)d ≥ εp−dHd(A, ε) ≥
(N/t)t = N .

For every N , there is an ε,
∑

diam(Bi)p does not converge, for any cover C
with mesh(C) ≤ ε. This gives us that Mp(A) = limε→0Hd(A, ε) = ∞.

Now if d < p, then by the above proof, it implies that Md(A) = ∞, contra-
dicting the assumption.
Therefore, the proof is complete.

This makes sense - if we were to try to cover a square (2-d shape) with lines
(1-d shape) we would need in�nity of lines. As we said, the measure gives us
the 'volume' of the set. If d is the dimension, Then if we try to measure a set
A with a dimension p < d then its p dimensional volume will be ∞.

The last theorem gives us quite a lot help on determining the dimension of
a space. when we �nd one d that has a non-zero Hausdor� measure we found
the dimension.
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7.3 Examples and Computations
7.3.1 What is the Hausdor� dimension of a countable set?
Let A = a1, a2, ..., an be a �nite subset of a pseudometric space (X, d). Suppose
that d(aj , ai) > 0 for i 6= j. Then, we can see that M0 = n ⇒ dimH(A) = 0.

7.3.2 What is the Hausdor� dimension of an interval ?
Let X be the space of the real numbers with the usual pseudometric, and let
A = [a, b]. We will show that M1(A) = b−a which will leads us to dimH(A) = 1.

We �rst show that M1(A) ≥ b − a by showing that M1 ≥ b − a + η for
every η > 0. Let ε > 0, and let N be an integer such that h = (b−a)

N < ε
2 . For

i = 1, 2, 3..., N , let xi = a+ih. We de�ne an open cover C = {Ci : i = 1, 2..., N}
for A as follows (we may assume η < b− a):

C1 = [a, x1 + η
N )

Ci = (xi − η
(2N) , xi+1 + η)

(2N) )
CN = (xN−1 − η

N , b]
for each i we have diam(Ci) = h + η

N < ε
2 + ε

2 = ε. Thus m(C) < ε and∑
diam(Ci) = (h + η

N ) + (N − 2)(h + η
N ) + (h + η

N ) = Nh + η = b− a + η.
Therefore, M1(A) ≤ b− a + η for every η > 0, which implies that M1(A) ≤

b− a. Now we will show that M1(A) ≥ b− a.
Let C = {Cj : j ∈ Z+} be an open cover of A. Because A is compact

there is a Lebesgue number ε > 0 for C; that is, whenever x, y ∈ A such that
|x− y| < ε, than ∃Ci ∈ C that x, y ∈ Ci. Let N be a positive integer such that
h = (b−a)

N < ε, and de�ne xi = a+ih for i = 0, 1, 2..., N . Then for each i there is
a Cj(i) so that xi−1 and xi in Cj(i); this implies that xi−xi−1 = h ≤ diam(Cj(i).

Hence,
b− a =

∑N
i=1(xi − xi−1) <

∑
diam(Cj(i)).

were the summation is over distinct values j(i). Therefore
b − a ≤ ∑∞

i=1 diam(Cj) for every countable open cover C; consequently,
M1(A) ≥ b− a.

Thus M1(A) = b− a.

And in general the Hausdor� dimension of a n-dimension surface is n.

As we can see, The Hausdor� dimension of these sets is intuitive, and resem-
bles the geometrical dimension and the topological dimension. These examples
are important, because they give us the 'right' to call the Hausdor� dimension
a dimension (and not 'The Hausdor� strange function')

7.4 Fractals
Now that we grasped the Hausdor� dimension, it's time to see some uses of it
in the fractals �eld. The Hausdor� dimension used to formalize the de�nition
of fractals.

De�nition 7.4. The set A is a said to be a Fractal if its Hausdor� dimension
is di�erent from its topological dimension (dim). Some de�ne a fractral as a set
with non-integer Hausdor� dimension.
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7.4.1 Examples
If we �nd a nice enough fractal, we can calculate its Hausdor� dimension with
ease using the geometrical notion of the Hausdor� dimension.

The dimension of a fractal is intuitively, The factor between the zoom, and
the number of self resembling parts after the zoom log(Smaller self resmbling parts)

log(Zoom) .

Lets give an example with a common fractal The Cantor set.
Zoom Number of smaller self resembling parts Factor: log(Smaller self resmbling parts)

log(Zoom)

1 1 -
3 2 0.630929754
9 4 0.630929754
D = log(N)

log(r) ⇒ D = log(2)
log(3) = 0.63.

We got an object with Hausdor� dimension di�erent from his topology di-
mension.

We can also notice The Cantor set dimension is between a point (dimen-
sionality 0) and a line (dimensionality 1) just like we would expected.

Another well known and loved fractal example is The Koch curve
We can see that the length of the curve increases with each iteration, so it has
in�nite length. This is a good example of a bound shape of in�nite length. But
we still can obtain the Hausdor� dimensions from the formula D = log(N)

log(r) ⇒
D = log(4)

log(3) ⇒ D = 1.26
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