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Abstract. In this lecture, the second approach of Van Der Waerden’s theorem
will be presented. It is based on Birkhoff’s theorem which will also be proved. The
essence of Van Der Waerden’s theorem is that if the set of natural numbers N is
partitioned in some way into finitely many classes in any way whatever, then one
of these classes necessarily contains arbitrarily long arithmetic progressions.

1. Introduction

This result was originally conjectured by Baudet and proved by Van der Waerden
in 1927 [1, 2]. The theorem gained a wider audience when it was included in Khint-
chine’s famous book Three pearls in number theory [4]. The dynamical proof is due
to Furstenberg and Weiss [3] (from 1978).

2. Preliminaries

We’ll start with introducing several definitions and theorems, which will be used
later.

Definition 2.1. A homeomorphism T : X → X is minimal if for every x ∈ X the
orbit {T nx : n ∈ Z} is dense in X.

Now we introduce the theorem which gives equivalent definitions.

Theorem 2.2. (without proof) Let T : X → X be a homeomorphism of a compact
metric space. The following properties are equivalent:

(i) T is minimal.
(ii) If TE = E is a closed T -invariant set, then either E = ∅ or E = X.
(iii) If U 6= ∅ is an open set then X =

⋃
n∈Z T nU .

Using property (ii) we get the following result that every compact dynamical system
contains a minimal subsystem.

Theorem 2.3. Let T : X → X be a homeomorphism of a compact metric space X.
There exists a non-empty closed set Y ⊂ X with TY = Y and T : Y → Y is minimal.

Proof. This follows from an application of Zorn’s Lemma. Let E denote the family of
all closed T -invariant subsets of X with the partial ordering by inclusion, i.t Z1 ≤ Z2

iff Z1 ⊂ Z2.
Every totally ordered subset {Zα} has a least element Z =

⋂
α Zα (which is non-

empty by compactness of X). Thus by Zorn’s Lemma there exists a minimal element
1
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Y ⊂ X (i.e. Y ∈ E and Y ′ ∈ E with Y ′ ≤ Y implies that Y ′ = Y ). By property (ii)
of Theorem 2.2 this can be reinterpreted as saying that T : Y → Y is minimal. ¤

As a corollary we get the following simple but elegant result.

Corollary 2.4. (Birkhoff recurrence theorem). Let T : X → X be a homeomorphism
of a compact metric space X. We can find x ∈ X such that T nix → x for a sub-
sequence of the integers ni → +∞.

Proof. By Theorem 2.3 we can choose a T -invariant subset Y ⊂ X such that T : Y →
Y is minimal. For any x ∈ Y ⊂ X we have the required property. ¤

Now we can present the following interesting example:

Example 2.5. Consider the case X = R/Z and T : X → X defined by Tx = x + α
(mod 1), where α is an irrational number.

Let ε > 0; then we can find n > 0 (by Birkhoff’s theorem) such that |αn (mod
1)| ≤ ε (since we know that we can find x ∈ X, such that T nx = x + αn (mod 1)
→ x ), i.e. there exists p ∈ N such that −ε ≤ αn − p ≤ ε. Rewriting this, we have
that for any irrational α, ∃p, n ∈ N such that |α − p

n
| ≤ ε

n
. This means that we can

find a rational number which differs from irrational α for no more then ε/n. This is
an important result in Numbers Theory, and what’s important, that there is no fixed
starting point, we can start from any point we choose.

Let T1, ..., TN : X → X be commuting homeomorphisms on a compact metric
space X, i.e. TiTj = TjTi for 1 ≤ i, j ≤ N . We can consider all closed simultaneously
invariant sets A ⊂ X, i.e. TiA = A, i = 1, ..., N . By a similar argument to that
before, we can consider the partial order by inclusion on all such closed sets and by
applying Zorn’s Lemma (just as in the proof of Theorem 2.3) we can deduce that
there exists a closed set X0 ⊂ X such that

(i) TiX0 = X0, i = 1, ..., N .
(ii) whenever A ⊂ X0 with A closed and TiA = A for i = 1, ..., N then necessarily

A = X0.
Now we can prove the following useful lemma:

Lemma 2.6. For each open set U ⊂ X0 we can choose a finite number M and nij ∈ Z

with 1 ≤ i ≤ N , 1 ≤ j ≤ M with X0 =
⋃M

j=1(T
n1j

1 ◦ ... ◦ T
nNj

N )U .

Proof. Clearly X0 =
⋃

n1∈Z ...
⋃

nN∈Z(T n1
1 ◦ ... ◦ T nN

N )U (since otherwise the difference
X0 − (

⋃
n1∈Z ...

⋃
nN∈Z(T n1

1 ◦ ... ◦ T nN
N )U) is a closed non-empty set invariant under

T1, ..., TN , contradicting property (ii) above). Now by compactness we can choose a
finite subcover. This completes the proof. ¤

3. Van der Waerden Theorem

Now, we’ll formulate Van Der Waerden theorem.

Theorem 3.1. Consider a finite partition Z = B1

⋃
...

⋃
Bk. At least one element

Br in the partition will contain arithmetic progressions of arbitrary length (i.e ∃1 ≤
r ≤ k, ∀N > 0, ∃a, b ∈ Z(b 6= 0) such that a + jb ∈ Br for j = 0,...,N - 1).
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Since an arithmetic progression of length N contains arithmetic progressions of all
shorter lengths, this is equivalent to: ∃Ni → +∞, ∃ai, bi ∈ Z such that ai + jbi ∈ Br

for j = 0, ..., Ni − 1.

We give below some simple examples.

Example 3.2. If the sets B2, ..., Bk in the partition are finite then it is easy to see that
B1 is the element with arithmetic progressions of arbitrary length.

Example 3.3. If Z = B1

⋃
B2 where B1 = {odd numbers} and B2 = {even numbers}

then both contain arithmetic progressions of arbitrary length.

Example 3.4. If B1 = prime numbers and B2 = {non-prime numbers} then B2 contains
arithmetic progressions of arbitrary length. However, the problem as to whether B1

contains arithmetic progressions of arbitrary length wasn’t resolved until recently,
and, indeed, such progression can be found.

The key to proving Van der Waerden’s theorem is the following generalization of
Birkhoff’s theorem.

Theorem 3.5. Let T1, ..., TN : X → X be homeomorphisms of a compact metric
space such that TiTj = TjTi for 1 ≤ i, j ≤ N . There exists x ∈ X and nj → +∞ such
that d(T

nj

i x, x) → 0 for each i = 1, ..., N .

We shall first prove Theorem 3.1 assuming Theorem 3.5 and then return to the
proof of Theorem 3.5.

Proof. Proof of Theorem 3.1. We want to begin by associating to the partition
Z = B1

⋃
...

⋃
Bk a suitable homeomorphism T : X → X (and then we set Tj =

T j, j = 1, ..., N).
Let Ω =

∏
n∈Z{1, ..., k} and then we can associate to the partition Z = B1

⋃
...

⋃
Bk

a sequence z = (zn)n∈Z ∈ Ω by zn = i if and only if n ∈ Bi.
Let σ : Ω → Ω be the shift operator (i.e. (σx)n = xn+1, n ∈ Z). Consider the

orbit {σnz : n ∈ Z} and its closure X = cl(
⋃

n∈Z σnz) in Ω. Finally, we define
Ti := T i = σ ◦ ... ◦ σ (T composed with itself i times).

By Theorem 3.5 (with ε = 1
4
) we can find x ∈ X and b ≥ 1 with

d(T b
1x, x) <

1

4
, d(T b

2x, x) <
1

4
, ..., d(T b

Nx, x) <
1

4
.

Since X = cl(
⋃

n∈Z σnz) we can choose a ∈ Z such that

d(x, T az) <
1

4
, d(T b

1x, T aT b
1z) <

1

4
, ..., d(T b

Nx, T aT b
Nz) <

1

4
.

Thus, for each i = 1, ..., N we have that

d(T aT b
i x, T az) ≤ d(T aT b

i x, T b
i x) + d(T b

i x, x) + d(x, T az) <
1

4
+

1

4
+

1

4
=

3

4
.

Since d(x, y) = (1
2
)N(x,y) (where N(x, y) = min{|N | ≥ 0 : xN 6= yN , or x−N 6=

y−N}) we see that (T aT b
i x)0 = xa+ib = za ∈ {1, ..., k} for i = 1, ..., N (we started from
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point 0 to get to za). This means that a + ib ∈ Bza for i = 1, ..., N , and completes
the proof of Theorem 3.1.

¤

4. Birkhoff Theorem

All that remains is to prove Theorem 3.5. This is a fairly detailed proof and to
help clarify matters we shall divide it into sublemmas.

Proof of Theorem 3.5 We shall use a proof by induction.

Case N = 1. For N = 1 the multiple Birkhoff recurrence theorem reduces to the
usual Birkhoff recurrence theorem (Corollary 2.4).

Inductive step. Assume that the result is known for N − 1 commuting homeo-
morphisms. We need to show that it holds for N commuting homeomorphisms.

Simplifying fact. We can assume that X is the minimal closed set invariant
under each of T1, ..., TN . If this is not the case we can restrict to such a set (using
Zorn’s lemma).

In order to establish the Birkhoff multiple recurrence theorem for these N com-
muting homeomorphisms, the following simple alternative formulation of this result
is useful.

Alternative formulation. Let XN = X × ... × X be the N -fold cartesian
product of X and let DN = {(x, ..., x) ∈ XN} be the diagonal of the space. Let
S : XN → XN be given by S(x1, ..., xN) = (T1x1, ..., TNxN). Then the following are
equivalent:

(i)N the Birkhoff multiple recurrence holds for T1, ..., TN ;
(ii)N ∃z = (z, ..., z) ∈ DN such that dXN

(Sniz, z) → 0 as ni → +∞ (where
dXN

(z, w) = sup1≤i≤Nd(zi, xi)).

We can apply the inductive hypothesis to the (N−1) commuting homeomorphisms
T1T

−1
N , ..., TN−1T

−1
N and using the equivalence of (i)N−1 and (ii)N−1 above we have

that for the map R := T1T
−1
N × ...× TN−1T

−1
N : XN−1 → XN−1 defined by

R : (x1, ..., xN−1) 7→ (T1T
−1
N x1, ..., TN−1T

−1
N xN−1)

there exists z = (z, ..., z) ∈ DN−1 ⊂ XN−1 with dXN−1
(Rniz, z) → 0 as ni →

+∞. In particular, dXN
(Sniz′, z) → 0 as ni → +∞ where z = (z, ..., z), z′ =

(T−ni
N z, ..., T−ni

N z) ∈ DN .

Thus we have proved the following result.

Lemma 4.1. ∀ε > 0,∃z, z′ ∈ DN ,∃n ≥ 1 such that dXN
(Snz, z′) < ε.
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Unfortunately, this is not quite in the form of (ii)N we need for the inductive step.
(For example, we would like to take z = z′). To get a stronger result, we break the
argument up into steps represented by the following lemmas.

Lemma 4.2. ∀ε > 0,∀x ∈ DN , ∃y ∈ DN and ∃n ≥ 1 such that d(Sny, x) < ε.

(This changes one of the quantifiers ∃ to ∀).
Lemma 4.3. ∀ε > 0,∃z ∈ DN and ∃n ≥ 1 such that d(Snz, z) < ε.

(This is almost the Theorem 3.5, except that z might still depend on the choice of
ε > 0).

We will now complete the proof of the Theorem 3.5 assuming Lemma 4.3 (we shall
then return to the proofs ”Lemma 4.1 ⇒ Lemma 4.2” and ”Lemma 4.2 ⇒ Lemma
4.3” in the next section).

Consider the function F : DN → R+ = [0, +∞) defined by F (x) = infn≥1d(Snx, x).
It is easy to see that to complete the proof of Theorem 3.5 we need only to show there
exists a point x0 ∈ DN with F (x0) = 0. To show this fact, the following properties
of F are needed.

Lemma 4.4. The following properties of F should be proved:
(i) F : DN → R+ is upper semi-continuous (i.e. ∀x ∈ DN , ∀ε > 0,∃δ > 0 such

that d(x, y) < δ ⇒ F (y) ≤ F (x) + ε).
(ii) ∃x0 ∈ DN such that F : DN → R+ is continuous at x0.

Proof. (i) This result can be easily obtained from the definition of F .
(ii) For ε > 0 we can define Aε = {x ∈ DN : ∀η > 0,∃y such that d(y, x) < η and

F (y) ≤ F (x)− ε} (i.e ∃ point y arbitrarily close to x with F (y) ≤ F (x)− ε). Notice
that

(a) Aε is closed,
(b) Aε has empty interior.

(to see part (b) observe that if int(Aε) 6= ∅ we could choose a sequence of pairs
x, x1 ∈ int(Aε) with F (x1) ≤ F (x)− ε, x1, x2 ∈ int(Aε) with F (x2) ≤ F (x1)− ε, etc.
Together these inequalities give F (xn) ≤ F (x) − nε < 0 for n arbitrarily large. But
this contradicts F ≥ 0).

The set of points at which F is continuous is

{x ∈ DN : x /∈ Aε, ε > 0} =
∞⋂

n=1

(DN − A 1
n
).

Since this is a countable intersection of open dense sets, it is still dense (by Baire’s
theorem). Thus there exists at least one point of continuity for F : DN → R+ (in
fact, infinitely many). This completes the proof of Lemma 4.4.

¤
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Let x0 be such a point of continuity.
Assume for a contradiction that F (x0) > 0. We can the choose δ > 0 and an open

neighborhood U 3 x0 such that F (x) > δ > 0 for x ∈ U . However, we also know that
for the diagonal actions Ti : (x1, ..., xN) 7→ (Tix1, ..., TixN)

DN ⊂
M⋃

j=1

(T
n1j

N ◦ ... ◦ T
nNj

N )−1U

(since by the simplifying assumption X is the minimal closed set invariant under
T1, ..., TN and so we may apply Lemma 2.6).

By (uniform) continuity of the family {T n1j

1 ◦ ... ◦ T
nNj

N }M
j=1 there exists η > 0 such

that

d(x, y) < η ⇒ d(T
n1j

1 ◦ ... ◦ T
nNj

N x, T
n1j

1 ◦ ... ◦ T
nNj

N y) < δ (4.1)

(for 1 ≤ j ≤ M). Observe that for y ∈ (T
n1j

1 ◦ ... ◦ T
nNj

N )−1U (j = 1, ..., M)
we have that F (y) ≥ η. If this were not the case then there would exist n ≥ 1
with d(y, Sny) < η, from the definition of F . This item implies that d(T

n1j

1 ◦ ... ◦
T

nNj

N y, T
n1j

1 ◦ ... ◦ T
nNj

N Sny) < δ by (4.1). Choosing x := T
n1j

1 ◦ ... ◦ T
nNj

N y ∈ U gives
F (x) = infn≥1d(x, Snx) < δ which contradicts our hypothesis.

Finally we see that by (4.1) we have F (y) ≥ η for all y ∈ DN . However, this
contradicts Lemma 4.3 and we conclude that F (x0) = 0.

The proof of Theorem 3.5 is finished (given the proofs of Lemma 4.2 and Lemma
4.3).

5. The proofs of Lemma 4.2 and Lemma 4.3

We now supply the missing proofs of Lemma 4.2 and Lemma 4.3.

Proof. Proof of Lemma 4.2 (assuming Lemma 4.1). Consider the N commuting

maps T̂1, T̂2, ..., T̂N : DN → DN defined by





T̂1 = T1 × ...× T1 : DN → DN ,

T̂2 = T2 × ...× T2 : DN → DN ,
...

T̂N = TN × ...× TN : DN → DN .

We want to apply Lemma 2.6 to these commuting maps with the choice of open
set U = {w ∈ DN : dDN

(x,w) < ε
2
}. This allows us to conclude that there exist

n1j, ..., nNj (j = 1, ..., M) such that
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DN =
M⋃

j=1

T̂−n1j ...T̂−nNjU.

Thus for any z ∈ DN we have some 1 ≤ j ≤ M such that

dDN
(T̂ n1j ...T̂ nNjz, x) < ε/2. (5.1)

Next we can use (uniform) continuity of T̂ n1j ◦ ... ◦ T̂ nNj to say that there exists
δ > 0 such that whenever dDN

(z, z′) < δ for z, z′ ∈ DN then we have that

dDN
(T̂ n1j ◦ ... ◦ T̂ nNjz, T̂ n1j ◦ ... ◦ T̂ nNjz′) <

ε

4
. (5.2)

By Lemma 4.1 ∃z, z′ ∈ DN and ∃n ≥ 1 such that dDN
(Snz, z′) < δ. Therefore by

inequality (5.2) we have that

dDN
(Sn(T̂ n1j ◦ ... ◦ T̂ nNjz), T̂ n1j ◦ ... ◦ T̂ nNjz′) <

ε

4
. (5.3)

Writing y = T̂ n1j ◦ ... ◦ T̂ nNjz and comparing (5.1), (5.2) and (5.3) gives that

dDN
(Sny, x) ≤ dDN

(Sny, T̂ n1j ◦ ... ◦ T̂ nNjz′) + dDN
(T̂ n1j ...T̂ nNjz′, x) ≤

≤ dDN
(Sny, T̂ n1j ◦ ... ◦ T̂ nNjz′)+

+dDN
(T̂ n1j ◦ ... ◦ T̂ nNjz, T̂ n1j ◦ ... ◦ T̂ nNjz′) + dDN

(T̂ n1j ...T̂ nNjz, x) <

<
ε

4
+

ε

4
+

ε

2
= ε.

This completes the proof of Lemma 4.2.
¤

Proof. Proof of Lemma 4.3 (assuming Lemma 4.2). Fix z0 ∈ DN and let ε1 = ε
2
.

By Lemma 4.2 we can choose n1 ≥ 1 and z1 ∈ DN with d(T n1z1, z0) < ε1.
By continuity of T n1 we can find ε1 > ε2 > 0 such that d(z, z1) < ε2 implies that

d(T n1z, z0) < ε1.

We can now continue inductively (for k ≥ 2):

(a) By Lemma 4.3 we can choose nk ≥ 1 and zk ∈ DN with d(T nkzk, zk−1) < εk.
(b) By continuity of T nk we can find εk > εk+1 > 0 such that d(z, zk) < εk+1 implies

that d(T nkz, zk−1) < εk.

This results in sequences z0, z1, z2, ... ∈ DN , n0, n1, n2, ... ∈ N, ε0 > ε1 > ε2 > ...
such that d(T nkzk, zk−1) < εk, k ≥ 1 and d(z, zi) < εk+1 ⇒ d(T nkz, zk−1) < εk.
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In particular we get that whenever j < i then

d(T ni+ni−1+...+nj+2+nj+1zi, zj) < εi+1 ≤ ε

2
.

By compactness of DN we can find d(zi, zj) < ε
2

for some j < i.
By the triangle inequality we have that for N = ni + ni−1 + ... + nj+1

d(TNzi, zi) ≤ d(TNzi, zj) + d(zi, zj) < ε.

Thus the choice z = zi completes the proof of Lemma 4.3.
¤

6. Extensions of Van der Waerden Theorem

In this section, we’ll introduce several theorems which extend Van der Waerden
Theorem (without proof).

Theorem 6.1. (I. Schur, A. Brauer) For any finite partition N = C1 ∪C2 ∪ ...∪Cr

there is a Cj such that for any l = 1, 2, 3, ... there is a number d ∈ Cj and a number
e such that the arithmetic progression e + id, 0 ≤ i ≤ l, is contained in Cj.

The definitive result in this direction was obtained by R. Rado who characterized
the systems of equations which could be solved in one of the classes of an arbitrary
finite partition. Rado defines a regular system of equations

L∑
j=1

aijxj = 0, 1 ≤ i ≤ I, aij ∈ Q = rationals (6.1)

as a system which has a ”monochromatic” solution for any finite ”coloring” of the
integers.

Theorem 6.2. (R. Rado) The system (6.1) is regular if and only if there is a partition
{1, 2, ..., L} = J0 ∪ J1 ∪ ... ∪ Jk such that

∑
j∈J0

aij = 0, 1 ≤ i ≤ I;

∑
j∈J1

aij =
∑
j∈J0

c1
jaij, 1 ≤ i ≤ I, c1

j ∈ Q;

∑
j∈Jl

aij =
l−1∑
m=0

∑
j∈Jm

cl
jaij, 1 ≤ i ≤ I, cl

j ∈ Q.

Also, Van der Waerden’s theorem was extended to higher dimensional configura-
tions by S. Grünwald.
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Theorem 6.3. (Grünwald) For any finite partition Nm = C1 ∪C2 ∪ ...∪Cr and any
k = 1, 2, 3, ..., there is some Cj, some d ∈ N and some b ∈ Nm so that

b + d(x1, x2, ..., xm) ∈ Cj 1 ≤ xi ≤ k, 1 ≤ i ≤ m.

This result implies that for any finite configuration S ⊂ Nm, some Cj contains a
configuration similar to S.
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