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Abstract

It is a well known fact that a metric space satisfies the first axiom
of countability. The opposite isn’t always true. We show that for
topological groups satisfying the first axiom of countability implies
metrizability. In addition we give a counter example in the general
case.

1 Topology Backgroud

We shall start by mentioning some basic definitions and theorems.

Definition 1.1 (Neighborhood Base). Let X be a topological space, = €
X. A collection £, of neighborhoods of x is called neighborhood base of x,
if and only if for every neighborhood N of = there exists a neighborhood
B € %, such that B C N.

If every set B € %, is open then 4, is called open neighborhood base.

Definition 1.2 (First Axiom of Countability). A space X fulfill the
First Aziom of Countability or is called first countable when for every x € X
there exist a countable neighborhood base.

It is easy to ensure that:
Theorem 1.1. Every metrizable space is first countable.

Indeed, for every x € X, we can take the collection of open spheres
D(z,1/n) to be a countable neighborhood base of z.

Definition 1.3 (Second Axiom of Countability). A topological space X
fulfill the second Aziom of Countability or is called second countable if and
only if X’s topology has a countable base.

2 Metrization of topological groups

Recall that a metric p on a group G is called left invariant if p(ax,ay) =
p(x,y) for each elements a,z,y € G.

Theorem 2.1. Let (G,T) be a topological group satisfying the first axiom of
countability. Then there exists a left invariant metric p which generates the
topology T



Proof. Define by induction a fundamental system {U,},en of symmetric
neighborhoods of e such that U; = G, U, C U, for every n € N.
Consider the function: f: G x G — R,

0, ifx=y;
flx,y) =< 27", if n is the greatest natural number for which 21y € U,
(equivalently, z7 'y € U, \ Upy1).

Put p(z,y) =inf{d L, f(zi,xi41) 120 =2, xpy1 =y, ne€N}L

Evidently, p(x,y) > 0 for each x,y € G. Since U, are symmetric, we
obtain that p(z,y) = p(y, ) for all z,y € G.

We shall prove that p(x, z) < p(z,y) + p(y, z) for all z,y,z € G.

Let p(x,y) = a, p(x,z) = b, p(y,z) = c. If € > 0, then there ex-
ist n,m € Nyxo, ..., Zni1,%0,- -, Ymi1 € G such that a < f(xg,z1) + ...+
f(xn,an) < a-+ 5, b < f(yo,yl) + ...+ f(ym,ym+1) < b+ %, Tog = @,
Tpil = Yy Yo = Yy Yns1 = 2. Then ¢ < f(zo,m1) + ... + f(2p, Tpy1) +
fo,y) + -+ fUm, Ymar) <a+bte=c<a+b

Since ax = ay implies that * = y and 7'y = (ax)~'(ay) we obtain that
plaz,ay) = p(z,y) for all a,z,y € G.

Claim: If f(x1, 229) + f(22, 23) + ...+ f(@p, Tpp1) < 277, then 27wy, €
Unp.

Induction on k. If k = 1, then f(zy,79) < 2'7". Indeed, z; = xo the
claim is obvious. If z; # @9, then f(xy,79) = 2177 < 217" for some p € N.
Then xflxg CU, CU,.

Let k > 2and s = f(xq, 22)+ f(z2,x3)+. . .+ f(Tk, Ty 1) < 27", Without
loss of generality we may assume that x; # z;.1,i=1,... k.

Assume that f(zy,zo) + f(@2,23) + ... + f(2h, Tppy) < 277 = 217041,
Then f(z1,22) < 27" and f (9, 23)+. . .+ f(Tp, Tpp1) < 27" = 27 w9 € Upyy,
xglxk+1 ceUyp1 = xflxkﬂ = xflxgxglxkﬂ e U, CU,.

Therefore we may assume that 27" < s < 2177,

Case I. There exists an ¢ such that z; is the last element with the property
flry,ze) +o o+ flog, @) <277 and f(@g, viq) + oo+ fTp, Tpp) < 277
According to the hypothesis xl’lxi € Upie, a:;lxkﬂ c Up = x[lxkﬂ =
v w gy € Uyt C U,

Case II. There exists an 7,7 such that z; is the last element with the
property f(x1,xe) + f(xo,x3) + ...+ f(x;1,2;) < 27", the number j is the
last element for which f(z;, zi01) + ...+ f(zj-1,2;) < 27" and f(x;,2j11) +
.ot f(xk, .,,Uk+1) <27

According to the hypothesis a:flxi el & xflxj ceU & :c;lxkﬂ €
Un+1 = ZEl_lftk_H e U,.



We affirm that there are no other cases.

Assume that s = s; + s9 + ... + S, + 0, where numbers sq,...,S,,,0
are defined as it follows: s; = f(x1,22) + ...+ f(z;_1, ;) and x; is the last
element for which this sum is less than 27"; sy = f(x;, zi1)+. ..+ f(xj-1,75)
and z; is the last element for which this sum is < 27". At least, if s, =
flre, xep) +. oo+ f(zgo1,2g), then 6 = f(xg, xg1) +. ..+ f@g, 1) <27

if m = 3 and 6 = 0, then this case is included in case II. Hence we may
assume that m = 3 and 4 > 0 or that m > 3. In both cases s; + s9 >
27" s34+ ...5, +0>2"" Then s >2-27" = 2!"" a contradiction.

We affirm that {z € G : p(e, ) < 2'""} C U,,. Indeed, let p(e, x) < 21"
Then there exist zq,...,2511 € G,k € N such that 1 = e, x4y; = = and
flxy, ) + ...+ f(xg, Try1) < 277 By the above assertion e 'z = z € U,.

It is obvious that e € {z € G : ple,x) < 2'™"}. If & # e,z € Uy,
then v = e 'z € U,y = fle,z) =278 ¢t > n+ 1. But 217t < 217" hence
p(e,xz) < 27", We proved that U,y C {x € G : p(e,z) < 2'""}.

[

3 Sorgenfrey Line - A Counter Example

For non topological groups, the opposite is not always true. Let us give a
counterexample to illustrate this.

3.1 definition of Sorgenfrey Line

Definition 3.1 (Sorgenfrey Line). A topological space (R, 7;) on the set
of all reals, where the family of the intervals [a,b), a < b € R forms the
bases of the topology 75. We will denote that space as Rs.

It is easy to see that Ry is first countable. Indeed, for every real number
a we shall take the intervals collection {[a,a + 1/n)}, to be a countable
neighborhood base of a.

Theorem 3.1. R, is not metrizable.

3.2 first proof

Proof. In order to prove that theorem we need some preliminaries.

Lemma 3.2. If a space X is metrizable then X x X s also metrizable.



Proof. (sketch) If d is the metrization of X, then

~

d(< x1, w9 >, < y1,y2 >) = d(< x1,y1 >) +d(< T2,y2 >)
would be the metrization of X x X O

Definition 3.2 (Normal Space). A topological space is called normal if
and only if every two disjoint closed sets can be separate by disjoint open
sets. In a more formal manner, for any closed A, B AN B = & there exist
open U,y and Up such that Us NUp =@, B C U, A C Uyu.

Theorem 3.3. The product space Ry; X Ry 1s not normal.

Proof. For any a =< ai,as > in Ry X R,, the half open squares
la1, a1 + €) X [ag, as + €)

are open neighborhood base of a.

Let us look at the subspace E over the secondary diagonal of R?, i.e. the
line y = —z.

For any x =< x, —x >€ FE, the half open square

[t,x 4+ 1) X [—z,—x + 1)

is an open neighborhood of x in Ry X R and its intersection with £ is the
singleton {z}, therefore every singleton in F is open in the subspace F, and
therefore this is a discrete subspace: Every subset of E is closed in E. E
itself is a closed subspace of R, x Ry (since it is easy to see that E° is open
in Ry X Ry). Therefore every subset of E is closed in Ry X Rj.

Define P, and (), as follows:

P,:={p=<p,—p>pe P}

Qs ={a=<q,—¢>qcQ}

(@ and P are the real rational and irrational numbers)
P, and @), are disjoint and closed in £ and therefore also closed in R, X R;.

Claim: P, and @), don’t have disjoint neighborhoods in R, x R;.

Proof. Let us take two open sets U and V in R, x Ry s.t. P, C U and
Qs C V. We will show that necessarily U NV # &.

For each p € Ps let’s choose €, s.t. [p,p+¢€,) X [—p, —p +¢,) C U.

For every n € Nlet P, C P be: P,:={p€ P:¢, > 1/n}.

Evidently, P = U2, P,.



P is second category in the complete space R, therefore there is a natural k
s.t. Py isn’t nowhere dense in R. Let choose such k and let (a,b) be an open
interval in which P is dense. Let choose a rational point ¢ in this interval.
Forq=<¢q,—q¢ >, q€ Qs CV C R, X Rs. Therefore, there exist an ¢ for
which M,(e) :=[¢q,q¢ +€) X [—¢, —q¢+¢€) C V. In the interval (a,b) there are
points p from Py as closed as we want to g for which the square M, (1/k):

MP<1/k) = [p>p + 1/k) X [_p7 —p + 1/k) g [pap + EP) X [_p7 —p + ELD) g U

If we shall get close enough to ¢ we will get using this way a square M,(1/k)
which meets M, (¢).

Therefore UNV # @. O
Therefore there exist two closed disjoint sets which can’t be separate and

it yields that Ry X R, is not normal. O
Having proved the above we can now finish the proof of our counter

example.

R, x R, is not normal and therefore is not metrizable. As a result from this

and from lemma 3.2 R, is not metrizable. O

3.3 second proof

There is another simple and elegant proof for theorem 3.1. The following
theorem is well known:

Theorem 3.4. A metric space is separable if and only if it is a second count-
able space.

Theorem 3.5. R, is not second countable.

Proof. Assume that R; is a second countable space. Let Z = {[a,b) : a < b}
be its base. By our assumption one can choose a sequence < [ay, by) > from
% which is also a base of R,’s topology. Now choose a € R s.t. for every
k,a # ai and let b > a. We show that the open set [a,b) is not a union of
sets from the base < [ag, by) >.

Assume that there exist a K C N s.t.

(*) [a,b) = Uexlak,br), then there exist a k € K st. a € [ag, by), ie.
ar < a < bg. Since a # ag,ar < a, therefore there exist a real number c s.t.
ap < ¢ < a but ¢ € [ag, b;) contrary to (*). O

Corollary 3.6. R is not metrizable.



Proof. it is separable since the rational numbers are dense in it. Now apply
Theorem 13.4. O

Corollary 3.7. The sorgenfrey line is not a topological group for any group
operation on R.

4 A complete monothetic non locally com-
pact group example

Ezxample 1. The circle group T is a compact metric and monothetic.

Hint: for every a such that a/7 is irrational the complex number z :=
cisa generates an infinite cyclic subgroup H := {2"},cz which is dense in T.

In order to construct an example of a complete monothetic non locally
compact group we recall the following result of Kronecker: Let A, Ao, ..., A\,
be independent over rationals. Then for the real numbers z1, 2o, ..., z, and
€ > 0 there exist ¢ € Z and n numbers p; € Z such that |g\; — p; — x;| <
e(1<j<n).

Let G be the sequence z = {z,}, where z, € R/Z with z, — 0.

Recall that if z = a + Z € R/Z, then ||z|| = inf{|la+ n|: n € Z}.

Define the addition {z,} + {yn} = {x» + yn} and the distance between
two elements {z,} and {y,} by d(z,y) = mazx||z, — yn||.

Then d is an invariant metric. We will prove that G is complete

Let {2V} be a Cauchy sequence in G, where {z . zk ,...}. It follows
immediately from the definition of the metric d that for each k: the sequence
z,(;) is a Cauchy sequence. Denote zj, = lim ;.

We note that z € G : Let € > 0. There exist ng € N s.t. d(z®,20)) < ¢
for i,7 > ng. Choose my > ng s.t. HzSnO)H < € for each s > my. Since
d(zW, 2(")) < ¢ for each [ > myg, we obtain Hz(gl) — zé"O)H < € for each ¢ € N.
If | — oo, we get ||zg — 25"|| < € = ||z,]| < 2¢ for each ¢ > my, hence
z, — 0=z € G.

We affirm that z = lim (Y. Indeed, let € > 0. There ex1sts Tl() € N s.t.

d(z9, 20)) < e for i,j > ny. Therefore for each geN, |28 =29 < e =
||z(gz)fzq|| < € = for each i > ng = d(z1, )Seforeach22n0:>z—
lim 2

Now we shall construct by induction integers ki, ks,... and numbers

A1, Ag, ... linearly independent over Q. Denote \; = \; +Z € R/Z,i € N.
IfneNy={y}eG put Py ={vy1,.-.,9n,0,...}. Put kiy = 1
and choose A\ s.t. |\ < %,)\2 is non-zero. Assume that we constructed



A,y Apog and Ky, ... k.

Define k,, to be the smallest integer s.t. d(i{\1,..., A\u_1,0,...}, Po_1y) <
s is satisfied for each y € G and suitable i € [0, k,]. the existence of k,
follows from the theorem of Kronecker. Choose A, € R s.t. {A1,..., A\, } is
linearly independent over Q and |A,| < 2"1kn' Put x = {\;, A2}

We observe that k, < k,y; for all n € N. Assume the contrary: then
for each y € G there exist i € [0,k,] s.t. d(iP,x, Py) < 57 < 3. Since
d(iP,_1x, Py_1y) < d(iP,x, P,y) < 2%1 we obtain a contradiction with the
definition of k,,.

We affirm that x is topological generator of GG. Let y be an element of GG
and € > 0. There exist ng € N s.t. d(y, P,y) < 5 for all n > ny. Choose n >
ng so as to have 2% < 5. There exists i € [0, kpq1] s.t. d(iPx, Pyy) < 2% For
m > nl[idg|| < il[An]] < ilAn| < g < ghme = oo < L It follows that
d(iz, P,x) < 5. therefore d(iz, y) < d(iz,iP,x)+d(iP,z, Py)+d(Poy, y) <
e. Now we note that G is not locally compact. Since G is monothetic, it
suffices to show that G is neither compact nor discrete. Obviously, G is
not discrete. On the other hand G is not compact. Indeed, consider the
topological product I1> ,G,,, G,, = R/Z for each n € N. Then G as abstract
group is a dense subgroup of II?? ; G, and the topology induced from I1°° G,

is weaker that the topology defined above. Therefore G is not compact.
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