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Abstract

It is a well known fact that a metric space satisfies the first axiom
of countability. The opposite isn’t always true. We show that for
topological groups satisfying the first axiom of countability implies
metrizability. In addition we give a counter example in the general
case.

1 Topology Backgroud

We shall start by mentioning some basic definitions and theorems.

Definition 1.1 (Neighborhood Base). Let X be a topological space, x ∈
X. A collection Bx of neighborhoods of x is called neighborhood base of x,
if and only if for every neighborhood N of x there exists a neighborhood
B ∈ Bx such that B ⊆ N .

If every set B ∈ Bx is open then Bx is called open neighborhood base.

Definition 1.2 (First Axiom of Countability). A space X fulfill the
First Axiom of Countability or is called first countable when for every x ∈ X
there exist a countable neighborhood base.

It is easy to ensure that:

Theorem 1.1. Every metrizable space is first countable.

Indeed, for every x ∈ X, we can take the collection of open spheres
D(x, 1/n) to be a countable neighborhood base of x.

Definition 1.3 (Second Axiom of Countability). A topological space X
fulfill the second Axiom of Countability or is called second countable if and
only if X’s topology has a countable base.

2 Metrization of topological groups

Recall that a metric ρ on a group G is called left invariant if ρ(ax, ay) =
ρ(x, y) for each elements a, x, y ∈ G.

Theorem 2.1. Let (G, T ) be a topological group satisfying the first axiom of
countability. Then there exists a left invariant metric ρ which generates the
topology T .
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Proof. Define by induction a fundamental system {Un}n∈N of symmetric
neighborhoods of e such that U1 = G, Un+1 ⊆ Un, for every n ∈ N.
Consider the function: f : G×G → R,

f(x, y) =





0, if x = y;
21−n, if n is the greatest natural number for which x−1y ∈ Un

(equivalently, x−1y ∈ Un \ Un+1).

Put ρ(x, y) = inf{∑n
i=0 f(xi, xi+1) : x0 = x, xn+1 = y, n ∈ N}.

Evidently, ρ(x, y) ≥ 0 for each x, y ∈ G. Since Un are symmetric, we
obtain that ρ(x, y) = ρ(y, x) for all x, y ∈ G.

We shall prove that ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ G.
Let ρ(x, y) = a, ρ(x, z) = b, ρ(y, z) = c. If ε > 0, then there ex-

ist n,m ∈ N, x0, . . . , xn+1, y0, . . . , ym+1 ∈ G such that a ≤ f(x0, x1) + . . . +
f(xn, xn+1) < a + ε

2
, b ≤ f(y0, y1) + . . . + f(ym, ym+1) < b + ε

2
, x0 = x,

xn+1 = y, y0 = y, yn+1 = z. Then c ≤ f(x0, x1) + . . . + f(xn, xn+1) +
f(y0, y1) + . . . + f(ym, ym+1) < a + b + ε ⇒ c ≤ a + b

Since ax = ay implies that x = y and x−1y = (ax)−1(ay) we obtain that
ρ(ax, ay) = ρ(x, y) for all a, x, y ∈ G.

Claim: If f(x1, x2)+f(x2, x3)+ . . .+f(xk, xk+1) < 21−n, then x−1
1 xk+1 ∈

Un.
Induction on k. If k = 1, then f(x1, x2) ≤ 21−n. Indeed, x1 = x2 the

claim is obvious. If x1 6= x2, then f(x1, x2) = 21−p < 21−n for some p ∈ N.
Then x−1

1 x2 ⊆ Up ⊆ Un.
Let k ≥ 2 and s = f(x1, x2)+f(x2, x3)+. . .+f(xk, xk+1) < 21−n. Without

loss of generality we may assume that xi 6= xi+1, i = 1, . . . , k.
Assume that f(x1, x2) + f(x2, x3) + . . . + f(xk, xk+1) < 2−n = 21−(n+1).

Then f(x1, x2) < 2−n and f(x2, x3)+. . .+f(xk, xk+1) < 2−n ⇒ x−1
1 x2 ∈ Un+1,

x−1
2 xk+1 ∈ Un+1 ⇒ x−1

1 xk+1 = x−1
1 x2x

−1
2 xk+1 ∈ Un+1 ⊆ Un.

Therefore we may assume that 2−n ≤ s < 21−n.
Case I. There exists an i such that xi is the last element with the property

f(x1, x2) + . . . + f(xi−1, xi) < 2−n, and f(xi, xi+1) + . . . + f(xk, xk+1) < 2−n.
According to the hypothesis x−1

1 xi ∈ Un+1, x−1
i xk+1 ∈ Un+1 ⇒ x−1

i xk+1 =
x−1

i xix
−1
i xk+1 ∈ Un+1 ⊆ Un.

Case II. There exists an i, j such that xi is the last element with the
property f(x1, x2) + f(x2, x3) + . . . + f(xi−1, xi) < 2−n, the number j is the
last element for which f(xi, xi+1) + . . . + f(xj−1, xj) < 2−n and f(xj, xj+1) +
. . . + f(xk, xk+1) < 2−n.

According to the hypothesis x−1
1 xi ∈ Un+1 & x−1

1 xj ∈ Un+1 & x−1
j xk+1 ∈

Un+1 ⇒ x−1
1 xk+1 ∈ Un.
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We affirm that there are no other cases.
Assume that s = s1 + s2 + . . . + sm + δ, where numbers s1, . . . , sm, δ

are defined as it follows: s1 = f(x1, x2) + . . . + f(xi−1, xi) and xi is the last
element for which this sum is less than 2−n; s2 = f(xi, xi+1)+. . .+f(xj−1, xj)
and xj is the last element for which this sum is < 2−n. At least, if sm =
f(xt, xt+1)+ . . .+ f(xq−1, xq), then δ = f(xq, xq+1)+ . . .+ f(xk, xk+1) < 2−n.

if m = 3 and δ = 0, then this case is included in case II. Hence we may
assume that m = 3 and δ > 0 or that m > 3. In both cases s1 + s2 ≥
2−n, s3 + . . . sm + δ ≥ 2−n. Then s ≥ 2 · 2−n = 21−n, a contradiction.

We affirm that {x ∈ G : ρ(e, x) < 21−n} ⊆ Un. Indeed, let ρ(e, x) < 21−n.
Then there exist x1, . . . , xk+1 ∈ G, k ∈ N such that x1 = e, xk+1 = x and
f(x1, x2) + . . . + f(xk, xk+1) < 21−n. By the above assertion e−1x = x ∈ Un.

It is obvious that e ∈ {x ∈ G : ρ(e, x) < 21−n}. If x 6= e, x ∈ Un+1,
then x = e−1x ∈ Un+1 ⇒ f(e, x) = 21−t, t ≥ n + 1. But 21−t < 21−n, hence
ρ(e, x) < 21−n. We proved that Un+1 ⊆ {x ∈ G : ρ(e, x) < 21−n}.

3 Sorgenfrey Line - A Counter Example

For non topological groups, the opposite is not always true. Let us give a
counterexample to illustrate this.

3.1 definition of Sorgenfrey Line

Definition 3.1 (Sorgenfrey Line). A topological space (R, τs) on the set
of all reals, where the family of the intervals [a, b), a < b ∈ R forms the
bases of the topology τs. We will denote that space as Rs.

It is easy to see that Rs is first countable. Indeed, for every real number
a we shall take the intervals collection {[a, a + 1/n)}n to be a countable
neighborhood base of a.

Theorem 3.1. Rs is not metrizable.

3.2 first proof

Proof. In order to prove that theorem we need some preliminaries.

Lemma 3.2. If a space X is metrizable then X ×X is also metrizable.
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Proof. (sketch) If d is the metrization of X, then

d̂(< x1, x2 >,< y1, y2 >) := d(< x1, y1 >) + d(< x2, y2 >)

would be the metrization of X ×X

Definition 3.2 (Normal Space). A topological space is called normal if
and only if every two disjoint closed sets can be separate by disjoint open
sets. In a more formal manner, for any closed A,B A ∩ B = ∅ there exist
open UA and UB such that UA ∩ UB = ∅, B ⊆ UB, A ⊆ UA.

Theorem 3.3. The product space Rs ×Rs is not normal.

Proof. For any a =< a1, a2 > in Rs ×Rs, the half open squares

[a1, a1 + ε)× [a2, a2 + ε)

are open neighborhood base of a.
Let us look at the subspace E over the secondary diagonal of R2, i.e. the

line y = −x.
For any x =< x,−x >∈ E, the half open square

[x, x + 1)× [−x,−x + 1)

is an open neighborhood of x in Rs × Rs and its intersection with E is the
singleton {x}, therefore every singleton in E is open in the subspace E, and
therefore this is a discrete subspace: Every subset of E is closed in E. E
itself is a closed subspace of Rs × Rs (since it is easy to see that Ec is open
in Rs ×Rs). Therefore every subset of E is closed in Rs ×Rs.

Define Ps and Qs as follows:

Ps := {p =< p,−p >: p ∈ P}

Qs := {q =< q,−q >: q ∈ Q}
(Q and P are the real rational and irrational numbers)

Ps and Qs are disjoint and closed in E and therefore also closed in Rs×Rs.

Claim: Ps and Qs don’t have disjoint neighborhoods in Rs ×Rs.

Proof. Let us take two open sets U and V in Rs × Rs s.t. Ps ⊆ U and
Qs ⊆ V . We will show that necessarily U ∩ V 6= ∅.
For each p ∈ Ps let’s choose εp s.t. [p, p + εp)× [−p,−p + εp) ⊆ U .
For every n ∈ N let Pn ⊆ P be: Pn := {p ∈ P : εp ≥ 1/n}.
Evidently, P = ∪∞n=1Pn.
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P is second category in the complete space R, therefore there is a natural k
s.t. Pk isn’t nowhere dense in R. Let choose such k and let (a, b) be an open
interval in which Pk is dense. Let choose a rational point q in this interval.
For q =< q,−q >, q ∈ Qs ⊆ V ⊆ Rs × Rs. Therefore, there exist an ε for
which Mq(ε) := [q, q + ε)× [−q,−q + ε) ⊆ V . In the interval (a, b) there are
points p from Pk as closed as we want to q for which the square Mp(1/k):

Mp(1/k) := [p, p + 1/k)× [−p,−p + 1/k) ⊆ [p, p + εp)× [−p,−p + εp) ⊆ U

If we shall get close enough to q we will get using this way a square Mp(1/k)
which meets Mq(ε).
Therefore U ∩ V 6= ∅.

Therefore there exist two closed disjoint sets which can’t be separate and
it yields that Rs ×Rs is not normal.

Having proved the above we can now finish the proof of our counter
example.
Rs ×Rs is not normal and therefore is not metrizable. As a result from this
and from lemma 3.2 Rs is not metrizable.

3.3 second proof

There is another simple and elegant proof for theorem 3.1. The following
theorem is well known:

Theorem 3.4. A metric space is separable if and only if it is a second count-
able space.

Theorem 3.5. Rs is not second countable.

Proof. Assume that Rs is a second countable space. Let B = {[a, b) : a < b}
be its base. By our assumption one can choose a sequence < [ak, bk) >k from
B which is also a base of Rs’s topology. Now choose a ∈ R s.t. for every
k, a 6= ak and let b > a. We show that the open set [a, b) is not a union of
sets from the base < [ak, bk) >k.
Assume that there exist a K ⊆ N s.t.
(*) [a, b) = ∪k∈K [ak, bk), then there exist a k ∈ K s.t. a ∈ [ak, bk), i.e.
ak ≤ a < bk. Since a 6= ak, ak < a, therefore there exist a real number c s.t.
ak < c < a but c ∈ [ak, bk) contrary to (*).

Corollary 3.6. Rs is not metrizable.
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Proof. it is separable since the rational numbers are dense in it. Now apply
Theorem 3.4.

Corollary 3.7. The sorgenfrey line is not a topological group for any group
operation on R.

4 A complete monothetic non locally com-

pact group example

Example 1. The circle group T is a compact metric and monothetic.

Hint: for every α such that α/π is irrational the complex number z :=
cisα generates an infinite cyclic subgroup H := {zn}n∈Z which is dense in T.

In order to construct an example of a complete monothetic non locally
compact group we recall the following result of Kronecker: Let λ1, λ2, . . . , λn

be independent over rationals. Then for the real numbers x1, x2, . . . , xn and
ε > 0 there exist q ∈ Z and n numbers pj ∈ Z such that |qλj − pj − xj| ≤
ε(1 ≤ j ≤ n).
Let G be the sequence z = {zn}, where zn ∈ R/Z with zn → 0.

Recall that if x̄ = a + Z ∈ R/Z, then ||x̄|| = inf{|a + n| : n ∈ Z}.
Define the addition {xn} + {yn} = {xn + yn} and the distance between

two elements {xn} and {yn} by d(x, y) = max||xn − yn||.
Then d is an invariant metric. We will prove that G is complete.
Let {z(i)} be a Cauchy sequence in G, where {z(i)

1 , . . . , z
(i)
k , . . .}. It follows

immediately from the definition of the metric d that for each k the sequence
z

(i)
k is a Cauchy sequence. Denote zk = lim zk

(i).
We note that z ∈ G : Let ε > 0. There exist n0 ∈ N s.t. d(z(i), z(j)) < ε

for i, j ≥ n0. Choose m0 ≥ n0 s.t. ||z(n0)
s || < ε for each s ≥ m0. Since

d(z(l), z(n0)) < ε for each l ≥ m0, we obtain ||z(l)
q − z

(n0)
q || < ε for each q ∈ N.

If l → ∞, we get ||zq − z
(n0)
q || ≤ ε ⇒ ||zq|| ≤ 2ε for each q ≥ m0, hence

zn → 0 ⇒ z ∈ G.
We affirm that z = lim z(i). Indeed, let ε > 0. There exists n0 ∈ N s.t.

d(z(i), z(j)) < ε for i, j ≥ n0. Therefore for each q ∈ N, ||z(i)
q − z

(j)
q || < ε ⇒

||z(i)
q − zq|| ≤ ε ⇒ for each i ≥ n0 ⇒ d(z(i), z) ≤ ε for each i ≥ n0 ⇒ z =

lim z(i).
Now we shall construct by induction integers k1, k2, . . . and numbers

λ1, λ2, . . . linearly independent over Q. Denote λ̄i = λi + Z ∈ R/Z, i ∈ N.
If n ∈ N, y = {yi} ∈ G, put Pny = {y1, . . . , yn, 0, . . .}. Put k1 = 1

and choose λ1 s.t. |λ1| ≤ 1
2
, λ2 is non-zero. Assume that we constructed
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λ1, . . . , λn−1 and k1, . . . , kn−1.
Define kn to be the smallest integer s.t. d(i{λ̄1, . . . , ¯λn−1, 0, . . .}, Pn−1y) ≤

1
2n−1 is satisfied for each y ∈ G and suitable i ∈ [0, kn]. the existence of kn

follows from the theorem of Kronecker. Choose λn ∈ R s.t. {λ1, . . . , λn} is
linearly independent over Q and |λn| ≤ 1

2nkn
. Put x = { ¯λ1, λ2}.

We observe that kn ≤ kn+1 for all n ∈ N. Assume the contrary: then
for each y ∈ G there exist i ∈ [0, kn] s.t. d(iPnx, Pny) ≤ 1

2n < 1
2n−1 . Since

d(iPn−1x, Pn−1y) ≤ d(iPnx, Pny) ≤ 1
2n−1 we obtain a contradiction with the

definition of kn.
We affirm that x is topological generator of G. Let y be an element of G

and ε > 0. There exist n0 ∈ N s.t. d(y, Pny) < ε
3

for all n > n0. Choose n >
n0 so as to have 1

2n < ε
3
. There exists i ∈ [0, kn+1] s.t. d(iPnx, Pny) ≤ 1

2n . For

m > n||iλ̄m|| ≤ i||λ̄m|| ≤ i|λm| ≤ kn+1

2mkm
≤ km

2mkm
= 1

2m < 1
2n . It follows that

d(ix, Pnx) ≤ 1
2n . therefore d(ix, y) ≤ d(ix, iPnx)+d(iPnx, Pny)+d(Pny, y) <

ε. Now we note that G is not locally compact. Since G is monothetic, it
suffices to show that G is neither compact nor discrete. Obviously, G is
not discrete. On the other hand G is not compact. Indeed, consider the
topological product Π∞

n=1Gn, Gn = R/Z for each n ∈ N. Then G as abstract
group is a dense subgroup of Π∞

n=1Gn and the topology induced from Π∞
n=1Gn

is weaker that the topology defined above. Therefore G is not compact.
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