
INTERVAL MAPS

SHITRIT DANNY

Abstract. In this chapter we shall concentrate on the special case of continuous maps
on the closed interval I.
This level of specialization allows us to prove some particularly striking results on periodic
points and topological entropy.

1. Orbits

1.1. Iteration. There are many kinds of problems in science and involve iteration. Iteration
means to repeat a process over and over.In dynamics ,the process that is repeated is the
application.
We wiil consider only functions of one variable as encountered in elementary calculus. We
wiil spend quite a bit of time discussing the quadratic functions Qc(x) = x2 + c where c ∈ R
(a real number) is a constant.Other functions that will arise often are the logistic functions
Fλ(x) = λx(1 − x), the exponentials Eλ(x) = λex , and the sine functions Sµ(x) = µsinx.
Here λ and µ are constant . The constants c, µ , and λ are called parameters. One of the
important questions we will address later is how the dynamics of these functions change as
these parameters are varied.
To iterate a function means to evaluate the function over and over , using the output of
the previous application as the input for the next .This is the same process as typing a
number into a scientific calculator.We write this as follows. For a function F, F 2(x), is
the second iterate of F , namely F (F (x)), F 3(x) is the third iterate F (F (F (x))), and ,in
general , Fn(x) is the n-fold composition of F with itself.For example, if F (x) = x2 + 1
then F2(x) = (x2 + 1)2 + 1 and F 3(x) = ((x2 + 1)2 + 1)2 + 1 . Similarly , if F (x) =

√
x,

then F 2(x) =
√√

xand F 3(x) =
√√√

x. It importent to realize that Fn(x) does not mean
raise F (x) to the nth power(an operation we wiil never use).Rather ,Fn(x) is the iterate of
F evaluated at x.

1.2. Orbit. Given X0 ∈ R , we define the orbit of x0 under F to be the sequence of points
x0, x1 = F (x0), x2 = F 2(x0), . . . , xn = Fn(x0), . . . The point x0 us called the seed of the
orbit.
For example, if F (x) =

√
x and x0 = 256, the first few points on the orbit of x0 are :

x0 = 256,x1 =
√

256 = 16,x2 =
√

16 = 4,x3 =
√

4 = 2,x4 =
√

2 = 1.41 . . .

An another example,if S(x) = sinx the orbit of x0 = 123 is x0 = 123 ,x1 = −0.4599 . . .,x2 =
−0.4438 . . . · · · x300 = −0.0975 . . . ,x301 = −0.0974 . . . · · · . Slowly, ever so slowly ,the
points on this orbit tend to 0 .If C(x) = cosx ,then orbit of x0 = 123 is x0 = 123,x1 =
−0.8879 . . ., · · · x50 = 0.739085, x51 = 0.739085, x52 = 0.739085, · · · .
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1.3. Types of Orbits. There are many different kinds of orbits in a typical dynamical
system.Undoubtedly the most important kind of orbit is a fixed point.A fixed point is a
point x0 that satisfies F (x0) = x0. Note that F 2(x0) = F (F (x0)) = F (x0) = x0 and , in
general,Fn(x0).So the orbit of a fixed point is the constant sequence x0, x0, x0 . . .A fixed
point never moves.As its name implies , it is fixed by the function . For example, 0 , 1 , and
-1 , are all fixed points for F (x) = x3,while only 0 and 1 are fixed points for F (x) = x2.Fixed
points are found by solving the equation F (x) = x.Thus ,F (x) = x2−x−4 has fixed points
at solutions of x2−x−4 = x,which are 1±√5 as determined by the qurdratic formula.Fixed
points may also be found geometrically by examining the intersection of the graph with the
diagonal line y = x.For example S(x) = sinx is x0 = 0, since that is the only point of
intersection of the graph of S with the diagonal y = x.Similarly, C(x) = cosx has a fixed
point at 0.739085 . . .
Another important kind of orbit is the periodic orbit or cycle.The point x0 is periodic if
Fn(x0) = x0 for some n > 0.The least such n is called the prime periodic of the orbit.
Note that if x0 is periodic with prime period n, then the orbit of x0 is just a repeating se-
quence of numbers x0, F (x0), . . . , Fn−1(x0), x0, F (x0), . . . , Fn−1(x0), . . . For example, 0 lies
on a cycle of prime period 2 for F (x) = x2 − 1, sinceF (0) = −1, andF (−1) = 0 .Thus the
orbit of 0 is simply 0,-1,0,-1,0,-1,. . . We also say that 0 and -1 from a 2-cycle. Similarly ,
0 lies on a periodic orbit of prime period 3 or a 3-cycle for F (x) = −3

2 x2 + 5
2x + 1,since

F (0) = 1, F (1) = 2, andF (2) = 0.So the orbit is 0,1,2,0,1,2,. . . We will see much later
that the appearance of this seemingly harmless 3-cycle has surprising implications for
the dynamics of this function.In general,it is very difficult to find periodic points ex-
actly.For example to find cycles of period 5 for F (x) = x2 − 2,we would have to solve
the equation F 5(x) − x = 0 Note that if x0 has prime period k,then x0 is also fixed by
F 2k.Indeed F 2k(x0) = F k(F k)(x0) = F k(x0) = x0Similarly x0 is fixed by Fnk,so we say
that x0has period nk for any positive integer n.We reserve the word prime period for the
case n=1.Also,x0lies on a periodic orbit of period k,then all points on the orbit of x0 have
period k as well.Indeed, the orbit of x1 is x1, x2, . . . , xk−1, x0, x1, . . . , xk−1, x0, x1 . . .which
has period k.A point x0 is called eventually fixed or eventually periodic if x0 itself is not
fixed or periodic, but some point on the orbit of x0 is fixed or periodic.For example, -1
is eventually fixed for F (x) = x2, sinceF (−1) = 1,which is fixed.Similarly,1 is eventually
periodic for F (x) = x2 − 1sinceF (1) = 0,which lies on a cycle of period 2.The point

√
2is

also eventually periodic for this function,since the orbit is
√

2,1,0,-1,0,-1,0,-1,. . .
In a typical dynamical system, most orbits are not fixed or periodic.For example,for the
linear function T (x) = 2x,only 0 is a fixed point.All other orbits of T get larger and larger(in
absolute value)under iteration since Tn(x0) = 2nx0 Indeed,if x0 6= 0,|Tn(x0)| tends infinity
as n approaches infinity .We denote this by |Tn(x0)| → ∞. the situation is reversed for
the linear function L(x) = 1

2x.For L,only 0 is fixed,but for any x0 6= 0,Ln(x0) = x0
2n .we

have Ln(x0) → 0.We say that the orbit of x0 converges to the fixed point 0.As another
example,consider the squaring function F (x) = x2.If |x0| < 1,it is easy to check that
Fn(x0) → 0.For example if x0 = 0.1,then the orbit of x0 is 0.1, 0.01, 0.0001, . . . , 10−2n

, . . . ,
which clearly tends to zero.

2. Graphical Analysis

In this section we introduce a geometric procedure that will help us understand the
dynamics of one-dimensional mappings.This procedure,called graphical analysis,enables us
to use the graph of a function to determine the behavior of orbits in many cases.Suppose
we have the graph of a function F and wish to display the orbit of a given point x0.We
begin by superimposing the diagonal line y=x on the graph of F.As we saw the points of
intersection of the diagonal with the graph give us the fixed points of F .To find the orbit
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of x0,we begin at the point (x0, x0) on the diagonal directly above x0 on the x-axis.We first
draw a vertical line to the graph of F .When this line meets the graph,we have reached the
point (x0, F (x0)).We then draw a horizontal line from this point to the diagonal.We reach
the diagonal at the point whose y-coordinateis F (x0),and so the x-coordinate is F (x0),the
next point on the orbit of x0.Now we continue this procedure.Draw a vertical line from
(F (x0), F (x0)) on the diagonal to the graph:this yields the point (F (x0), F 2(x0)). Then
a horizontal line to the diagonal reaches the diagonal at (F 2x0), F 2(x0)),directly above
the next point in the orbit.To display the orbit of x0 geometrically,we thus continue this
procedure:we first draw a vertical line from the diagonal to the graph,then a horizontal
line from the graph back to the diagonal.The resulting ”staircase” or ”cobweb” provides
an illustrative picture of the orbit of x0. In * we shows a typical application of graphical
analysis.This procedure may be used to describe some of the dynamical behavior we saw in
the previous section.In * For example,we sketch graphical analysis of F (x) =

√
x.Note that

any positive x0 gives a staircase which leads to the point of intersection of the graph of F
with the diagonal.This is,of course,the fixed point at x=1.* We depict graphical analysis of
C(x) = cosx.Note that any orbit in this case tends again to the point of intersection of th!
e graph

of C with the diagonal.As we observed numerically in the previous section,this point
is given approximately by 0.73908 . . . *As we saw,periodic points for F satisfy Fn(x0) =
x0.This means that the line segments generated by graphical analysis eventually return
to (x0, x0) on the diagonal,thus yielding a closed ”cicuit” in the graphical analysis.we can
shows * that F (x) = x2 − 1.1 a 2-cycle as illustarted by the square generated by graphical
analysis.and we can shows * that many orbits tend to the cycle.We cannot decipher the
behavior of all orbits by means of graphical analysis.For example,we have applied graphical
analysis to the quadratic function F (x) = 4x(1− x).Note how complicated the orbit of x0

is! This is another glimps of chaotic behavior.*

2.1. Orbits Analysis. Graphical analysis sometimes allows us to describe the behavior of
all orbits of a dynamical system.For example,consider the function F (X) = x3.The graph
of F shows that there are three fixed points : at 0,1and -1.Graphical analysis then allows
us to read off the following behavior.If * |x0| < 1 then the orbit of x0 tends to zero.On the
other hand,If |x0| > 1,then the orbit of x0 tends to ±∞.

2.2. phase portrait. One succinct method for all orbits of a dynamical system is the phase
portrait of the system.In the phase portrait,we represent fixed points by solid dots and the
dynamics along orbits by arrows.For example,as we saw above,for F (x) = x3,the fixed point
occur at ±1.If |x0| < 1,then Fn(x0) → 0,whereas if |x0| > 1,Fn(x0) → ±∞. * As another
example,F (x) = x2 has two fixed point,at 0 and 1,and an eventually fixed point at -1.Note
that if x0 < 0,then F (x0) > 0 and all subsequent points on the orbit of x0 are positive. *

3. A Fixed Point Theorem

3.1. The Intermediate Value Theorem. Suppose F : [a, b] → R is continuous. Suppose
y0 lies between F (a) and F (b) . Then there is an x0 in the interval [a,b] with F (x0) = y0.

3.2. Fixed Point Theorem. . Suppose F : [a, b] → [a, b] is continuous. Then there is a
fixed point for F in [a,b]
Definition. Suppose x0 is a fixed point for F . Then x0 is an attracting fixed point if
|F ′(x0)| < 1. the point x0 is a repelling fixed point if |F ′(x0)| > 1. Finally if |F ′(x0)| = 1,the
fixed point is called neutral or indifferent. The geometric rationale for this terminology is
supplied by graphical analysis. Consider the graphs in the Figure *,Both of these functions
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have fixed points at x0. The slope of the tangent line at x0,F ′(x0), is an both cases less
than 1 in magnitude: |F ′(x0)| < 1. Note that this forces nearby orbits to approach x0, just
as the linear cases above. If −1 < F ′(x0) < 0, the orbit hops from one side to the other as
it approaches x0. The phase portraits in the two cases 0 < F ′(x0) < 1 and −1 < F ′(x0) < 0
are sketched in the Figure*. On the other hand if |F ′(x0)| > 1, graphical analysis shows
that nearby points have orbits that move farther away, that is are repelled. Again, if if
|F ′(x0)| < −1 , orbits oscillate from side to side of x0 as they move away. As an example,
consider the function F (x) = 2x(1 − x) = 2x − 2x2. Clearly,0 and 1

2 are fixed points for
F . We have F ′(x) = 2− 4x,so F ′(0) = 2 and F ′(1

2) = 0. Thus 0 is a repelling fixed point,
while 1

2 is attracting.Graphical analysis confirms this.*
Why is true?The answer is provided by the theorems The Mean Value Theorem.Suppose
F is a differentiable function on the interval a ≤ x ≤ b.Then there exists c between a and
b for which the following equation is true:F ′(c) = F (a)−F (b)

b−a . The content of this theorem

is best exhibited geometrically.The quantity M = F (a)−F (b)
b−a is the slope of the straight line

connecting the two points (a, F (a)) and (b, F (b)) on the graph of F .So the theorem simply
says that,provided F is differentiable on the interval a ≤ x ≤ b,there is some point c between
a and b at which the slope of the tangent line,F ′(c),is exactly equal to M .*

3.3. Attracting Fixed Point Theorem. Suppose x0 is an attracting fixed point for F .Then
there is an interval I that contains x0 in its interior and in which the following condition is
satisfied :ifx ∈ I, then Fn(x) ∈ I for all n and,moreover,Fn(x) → x0 as n →∞
PROOF.Since |F ′(x0)| < 1,there is a number λ > 0 such that |F ′(x0)| < λ < 1.We
may therefore choose a number δ > 0 so that |F ′(x)| < λ provided x belongs to the
interval I = [x0 − δ, x0 + δ].Now let p be any point in I.By the Mean Value Theorem
F (p)−F (x0)

p−x0
< λ ,so that |F (p) − F (x0)| < λ|p − x0|.Since x0 is a fixed point,it follows that

|F (p)−x0| < λ|p−x0|.This means that the distance from F (p) to x0 is smaller than the dis-
tance from p to x0,since 0 < λ < 1.In particular,F (p) also lies in the interval I.Therefor we
may apply the same argument to F (p) and F (x0),finding |F 2(p)−x0| = |F 2(p)−F 2(x0)| <
λ|F (p) − F (x0)| < λ2|p − x0|. Since λ < 1,we have λ2 < λ.This means that the points
F 2(p) and x0 are even closer toghether than F (p) and x0.Thus we may continue using this
argument to find that,for any n > 0 , |Fn(p) − x0| < λn|x − x0| Now λn → 0 as n → ∞.
Thus,Fn(p) → x0 as n →∞.This completes the proof.

3.4. Repelling Fixed Point Theorem Suppose x0 is a repelling fixed point for F .Then there
is an interval I that contains x0 in its interior and in which the following condition is satisfied
:ifx ∈ Iand x 6= x0, then there is an integer n > 0 such that Fn(x) /∈ I.These two theorems
combined justify our use of the terminology ”attracting”’ and ”repelling” to describe the
corresponding fixed points.In particular,they tell us the ”local” dynamics near any fixed
point x0 for which |F ′(x0)| 6= 1. One major difference between attracting and repelling fixed
points is the fact that attracting points are ”visible” on the computer,whereas repelling fixed
points generally are not.We can often find an attracting fixed point by choosing an initial
seed randomly and computing its orbit numerically.If this orbit ever enters the interval I
about an attracting fixed point,then we know the fate of this orbit-it necessarily converges
to the attracting fixed point.On the other hand,in the case of the repelling fixed point,
the randomly chosen orbit would have to land exactly on the fixed point in order for us
to see it.This rarely happens,for even if the orbit comes very close to a repelling fixed
point,roundoff error will throw us off this fixed point and onto an orbit that moves away.The
situation for a neutral fixed point is not nearly as simple as the attracting or reppeling
cases.For example,the identity function F (x) = x fixes all points,but none are attracting or
repelling.Also,F (x) = −x fixes zero, but this is not an attracting or repelling fixed point
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since all other points lie on cycles of period 2.Finally, as in * ,F (x) = x−x2 has a fixed point
at zero,which is attracting from the right but repelling from the left.Note that |F ′(0)| = 1
.in all three cases.On the other hand,neutral fixed points may attract or repel all nearby
orbits.For example,graphical analysis shows that F (x) = x − x3 has a fixed point that
attracts the orbit of any x with |x| < 1!, wher

eas F (x) = x + x3 repels all orbits away from 0.These fixed points are sometimes called
weakly attracting or weakly repelling,since the converegence or divergenceis quite slow.

4. Fixed point and periodic points

Let T : I → I be a continuous map of the interval I=[0,1] to itself.Recall that a fixed
point x ∈ I satisfies Tx = x and that a periodic point (of periodic n) satisfies Tnx = x. We
say that x has prime period n if n is the smallest positive integer with this property (i.e.
T kx 6= x for k = 1, ..., n− 1).
For interval maps a very simple visualization of fixed points exists. We can draw the graph
GT of T : I → I and the digonal D = (x, x) : x ∈ I.

Lemma 4.1. The fixed points Tx=x occur at the intersection points (x, x) ∈ GT
⋂

D (see
figure 4.1). Similarly, if for n ≥ 2 we look for intersections of the graph GT n (of n compo-
sitions Tn : I → I) with the diagonal D then the intersection points (x, x) ∈ GT n ∩D are
periodic points of period n.

Lemma 4.2. Assume that we have an interval J ⊂ I with T (J) ⊃ J , then there exists a
fixed point Tx = x ∈ J .

PROOF.We see that showing the restriction of the graph GT to the portion above J
intersects the diagonal D.
This is obvious by the intermediate value theorem and figure 4.1.

Lemma 4.3. If T : I → I is a continuous map and J1, J2 ∈ I are (closed) sub-intervals
with T (J1) ⊃ J2 then we can choos a sub-interval J0 ⊂ J1 with T (J0) = J2.

Proof. Let J2 = [a, b] and introduce the disjoint closed sets A = {x ∈ J1 : T (x) = a}.and
B = {y ∈ J1 : T (Y ) = b} . Choose a′ ∈ A, b′ ∈ B .such that |a′ − b′| = inf{|x − y| : x ∈
A, y ∈ B}. then with J0 = [a′, b′]orJ0 = [b′, a′] the results follows. ¤

Theorem 4.4. Let T : I → I be a continuous map and suppose there exists a periodic point
x of prime period 3.Then for all n ≥ 1 there exists a periodic point of prime period n (i.e
∀n ≥ 1,∃z ∈ I with Tnz = z).

Proof. We shall do the simpler case n = 1 and the trickier case n ≥ 2 separately . ¤

(I) Existence of a fixed point (i.e n = 1). Let x, Tx, T 2x be the three distinct points in the
orbit of x . Let us assume (for simplicity) that x < Tx < T 2x (The five other permutations
are easy to derive from this case either by replacing x by Tx or T 2x , or by reversing the
horizontal axis of the graph of T.). Let J = [x, T 2x],then we can write J = J ′

⋃
J ′′ with

J ′ = [x, Tx] and J ′′ = [Tx, T 2x].
With these choices we have

(1) T (J ′) ⊃ J ′′ ,and

(2) T (J ′′) ⊃ J
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since the endpoints of the intervals J ′ and J ′′ are mapped to the endpoints of J ′ and J
,respectively , and the continuous image of an interval is again an interval . The existence of
a fixed point in J ′′ now follows immediately from Lemma 4.2 and (1) since T (J ′′) ⊃ J ⊃ J ′′.
(II) Existence of a point of period n ≥ 2. Since by the hypothesis of the theorem we already
have a point x of prime period 3 we shall assume henceforth that n 6= 3.
SUBLEMMA 4.4.1. There exists a nested sequence of intervals

J” = I0 ⊃ I1 ⊃ I2 ⊃ . . . ⊃ In−2 ⊃ In−1

with the following properties :
(i)Ik = T (Ik+1) for k = 0, . . . , n− 2.
(ii)Tn−1(In−1) = J ′, and
(iii)Tn(In−1) ⊃ J”.
To see that Sublemma 4.4.1implies Theorem 4.4 we first observe that by part (iii) we have
that Tn(In−1) ⊃ J” ⊃ In−1 and so applying Lemma 4.2 (with T replaced by the n-fold
composition Tn ) shows the existence of a fixed point z = Tnz ∈ In−1 for Tn (i.e. z is a
point of period n for T : I → I). However, we still have to show that this is a periodic point
of prime period n.We see from Sublemma 4.4.1 that
z, Tz, T 2z, . . . , Tn−2z ∈ J”(by part (i)since T iz ∈ T i(In−1) = In−i−2),Tn−1z ∈ J ′ (by part
(ii) ) .
To proceed we want to eliminate the possibility that z = Tx(∈ J ′ ∩ J”). Assume for a
contradiction that z = Tx , then we immediately have T 3z = z (since T 3x = x ). However,
this contradicts our assumption that n 6= 3. In particular , this means that in (4.1) we can
” improve ” the second conclusion to Tn−1z /∈ J” We are now in a position to see that n
is the prime period of z . If this were not the case , then T kz = z for some 1 ≤ k ≤ n− 1
(which must divide n).But this would mean , in particular, that T k−1z = Tn−1z /∈ J” which
is inconsistent with the first line of (4.1)
The only thing that remains in order to complete the proof of theorem 4.4 is to prove Sub-
lemma 4.4.1 .
PROOF OF SUBLEMMA 4.4.1 .
(i) We know from (b) that T (J”) ⊃ J ⊃ J” and so by Lemma 4.3 we can choose I1 ⊂ J”
with T (I1) = J” Similarly , since T (I1) = J” ⊃ I1 we can apply Lemma 4.3 again to choose
I2 ⊂ I1 with T (I2) = I1 .
Proceeding inductively , we can construct a sequence J” ⊃ I1 ⊃ I2 ⊃ . . . ⊃ In−2 with
T (Ik) = Ik−1 for k = 1, 2, . . . , n − 2 (which , in particular , implies that T k(Ik) = J” for
k = 1, 2, . . . , n− 2 ).
(ii) To construct In−1 , observe that Tn−1(In−2) = T (J”) ⊃ J ′ by (b). Applying Lemma
4.3 we can find In−1 ⊂ In− 2 with Tn−1(In−1) = J ′.
(iii) Finally,we observe that Tn(In−1) = T (J ′) ⊃ J” (by (a)).
This completes the proof of the sublemma (and consequently of Theorem 4.4).
This result that a point of prime period 3 implies points of all possible prime periods is a
special case of a more general result due to Sharkovski .We can introduce a new ordering
on the natural numbers N by

3 ≺ 5 ≺ 7 ≺ 9 ≺ . . . 2m + 1 ≺ . . .
. . . ≺ 6 ≺ 10 ≺ 14 ≺ 18 ≺ 22 ≺ . . . ≺ 2(2m + 1) ≺≺ . . .
. . . ≺ 12 ≺ 20 ≺ 28 ≺ 36 ≺ 44 ≺ . . . ≺ 4(2m + 1) ≺ . . .

. . . . . . . . .
. . . ≺ 2r · 3 ≺ 2r · 5 ≺ 2r · 7 ≺ 2r · 9 ≺ 2r · 11 ≺ . . . ≺ 2r(2m + 1) ≺ . . .

. . . . . . . . .
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. . . ≺ 2r+1 ≺ 2r ≺ 2r−1 ≺ . . . ≺ 16 ≺ 8 ≺ 4 ≺ 2 ≺ 1
This ordering is clearly somewhat different from the usual ordering on the natural numbers
. For example , the ordering of the first dozen natural numbers becomes 3 ≺ 5 ≺ 7 ≺ 9 ≺
11 ≺ 6 ≺ 10 ≺ 12 ≺ 8 ≺ 4 ≺ 2 ≺ 1.

Theorem 4.5. SHARKOVSKI.Let T : I → I be a continuous map and assume that T has
a point of prime period n.Then for each m > n (with respect to the above ordering )there
exist periodic points of prime period m.
The proof of Sharkovski’s theorem runs along similar lines to that of Theorem 4.4.
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