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Chapter 0

Introduction

Topology is an important and interesting area of mathematics, the study of which

will not only introduce you to new concepts and theorems but also put into context

old ones like continuous functions. However, to say just this is to understate

the significance of topology. It is so fundamental that its influence is evident in

almost every other branch of mathematics. This makes the study of topology

relevant to all who aspire to be mathematicians whether their first love is (or

will be) algebra, analysis, category theory, chaos, continuum mechanics, dynamics,

geometry, industrial mathematics, mathematical biology, mathematical economics,

mathematical finance, mathematical modelling, mathematical physics, mathematics

of communication, number theory, numerical mathematics, operations research or

statistics. (The substantial bibliography at the end of this book suffices to indicate

that topology does indeed have relevance to all these areas, and more.) Topological

notions like compactness, connectedness and denseness are as basic to mathematicians

of today as sets and functions were to those of last century.

Topology has several different branches — general topology (also known as point-

set topology), algebraic topology, differential topology and topological algebra — the

first, general topology, being the door to the study of the others. I aim in this book

to provide a thorough grounding in general topology. Anyone who conscientiously

studies about the first ten chapters and solves at least half of the exercises will

certainly have such a grounding.

For the reader who has not previously studied an axiomatic branch of mathematics

such as abstract algebra, learning to write proofs will be a hurdle. To assist you to

learn how to write proofs, quite often in the early chapters, I include an aside which

does not form part of the proof but outlines the thought process which led to the

proof.
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6 CHAPTER 0. INTRODUCTION

Asides are indicated in the following manner:

In order to arrive at the proof, I went through this thought process, which

might well be called the “discovery” or “experiment phase”.

However, the reader will learn that while discovery or experimentation is

often essential, nothing can replace a formal proof.

This book is typset using the beautiful typesetting package, TEX, designed by

Donald Knuth. While this is a very clever software package, it is my strong view

that, wherever possible, the statement of a result and its entire proof should appear

on the same page – this makes it easier for the reader to keep in mind what facts are

known, what you are trying to prove, and what has been proved up to this point in a

proof. So I do not hesitate to leave a blank half-page (or use subtleTEXtypesetting

tricks) if the result will be that the statement of a result and its proof will then be

on the one page.

There are many exercises in this book. Only by working through a good number

of exercises will you master this course. I have not provided answers to the exercises,

and I have no intention of doing so. It is my opinion that there are enough worked

examples and proofs within the text itself, that it is not necessary to provide answers

to exercises – indeed it is probably undesirable to do so. Very often I include new

concepts in the exercises; the concepts which I consider most important will generally

be introduced again in the text.

Harder exercises are indicated by an *.

Readers of this book may wish to communicate with each other regarding

difficulties, solutions to exercises, comments on this book, and further reading.

To make this easier I have created a Facebook Group called “Topology Without

Tears Readers”. You are most welcome to join this Group. First, search for the

Group, and then from there ask to join the Group.

Finally, I should mention that mathematical advances are best understood when

considered in their historical context. This book currently fails to address the

historical context sufficiently. For the present I have had to content myself with notes

on topology personalities in Appendix 2 - these notes largely being extracted from

The MacTutor History of Mathematics Archive [214]. The reader is encouraged to

visit the website The MacTutor History of Mathematics Archive [214] and to read the

full articles as well as articles on other key personalities. But a good understanding
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of history is rarely obtained by reading from just one source.

In the context of history, all I will say here is that much of the topology described

in this book was discovered in the first half of the twentieth century. And one could

well say that the centre of gravity for this period of discovery is, or was, Poland.

(Borders have moved considerably.) It would be fair to say that World War II

permanently changed the centre of gravity. The reader should consult Appendix 2

to understand this remark.

0.1 Acknowledgments

Portions of earlier versions of this book were used at La Trobe University, University

of New England, University of Wollongong, University of Queensland, University of

South Australia, City College of New York, and the University of Ballarat over the

last 30 years. I wish to thank those students who criticized the earlier versions

and identified errors. Special thanks go to Deborah King and Allison Plant for

pointing out numerous errors and weaknesses in the presentation. Thanks also go to

several others, some of them colleagues, including Ewan Barker, Eldar Hajilarov, Karl

Heinrich Hofmann, Ralph Kopperman, Ray-Shang Lo, , Rodney Nillsen, Guillermo

Pineda-Villavicencio, Peter Pleasants, Geoffrey Prince, Carolyn McPhail Sandison,

and Bevan Thompson who read various versions and offered suggestions for improvements.

Thanks go to Rod Nillsen whose notes on chaos were useful in preparing the relevant

appendix. Particular thanks also go to Jack Gray whose excellent University of New

South Wales Lecture Notes “Set Theory and Transfinite Arithmetic”, written in the

1970s, influenced our Appendix on Infinite Set Theory.

In various places in this book, especially Appendix 2, there are historical notes.

I acknowledge two wonderful sources Bourbaki [32] and The MacTutor History of

Mathematics Archive [214].

Initially the book was typset using Donald Knuth’s beautiful and powerful TEXpackage.

As the book was expanded and colour introduced, this was translated into LATEX.

Appendix 5 is based on my 1977 book ”Pontryagin duality and the structure of

locally compact abelian groups” Morris [172]. I am grateful to Dr Carolyn McPhail

Sandison for typesetting this book in TEXfor me, a decade ago.
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0.2 Readers – Locations and Professions

This book has been, or is being, used by professors, graduate students, undergraduate

students, high school students, and retirees, some of whom are studying to be, are

or were, accountants, actuaries, applied and pure mathematicians, astronomers,

chemists, computer graphics, computer scientists, econometricians, economists,

aeronautical, database, electrical, mechanical, software, space, spatial and telecommunications

engineers, finance experts, neurophysiologists, nutritionists, options traders, philosophers,

physicists, psychiatrists, psychoanalysts, psychologists, sculptors, software developers,

spatial information scientists, and statisticians in Algeria, Argentina, Australia, Austria,

Bangladesh, Bolivia, Belarus, Belgium, Belize, Brazil, Bulgaria, Cambodia, Cameroon,

Canada, Chile, Gabon, People’s Republic of China, Colombia, Costa Rica, Croatia,

Cyprus, Czech Republic, Denmark, Egypt, Estonia, Ethiopia, Fiji, Finland, France,

Gaza, Germany, Ghana, Greece, Greenland, Guatemala, Guyana, Hungary, Iceland,

India, Indonesia, Iran, Iraq, Israel, Italy, Jamaica, Japan, Kenya, Korea, Kuwait,

Liberia, Lithuania, Luxembourg, Malaysia, Malta, Mauritius, Mexico, New Zealand,

Nicaragua, Nigeria, Norway, Pakistan, Panama, Paraguay, Peru, Poland, Portugal,

Qatar, Romania, Russia, Serbia, Sierra Leone, Singapore, Slovenia, South Africa,

Spain, Sri Lanka, Sudan, Sweden, Switzerland, Taiwan, Thailand, The Netherlands,

The Phillippines, Trinidad and Tobago, Tunisia, Turkey, United Kingdom, Ukraine,

United Arab Emirates, United States of America, Uruguay, Uzbekistan, Venezuela,

and Vietnam.

The book is referenced, in particular, on http://www.econphd.net/notes.htm a

website designed to make known useful references for “graduate-level course notes

in all core disciplines” suitable for Economics students and on Topology Atlas a

resource on Topology

http://at.yorku.ca/topology/educ.htm.

0.3 Readers’ Compliments

T. Lessley, USA: “delightful work, beautifully written”;

E. Ferrer, Australia: “your notes are fantastic”;

E. Yuan, Germany: “it is really a fantastic book for beginners in Topology”;

S. Kumar, India: “very much impressed with the easy treatment of the subject,

which can be easily followed by nonmathematicians”;

Pawin Siriprapanukul, Thailand: “I am preparing myself for a Ph.D. (in economics)
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study and find your book really helpful to the complex subject of topology”;

Hannes Reijner, Sweden: “think it’s excellent”;

G. Gray, USA: “wonderful text”;

Dipak Banik, India: “beautiful note”;

B. Pragoff Jr, USA: “explains topology to an undergrad very well”;

Tapas Kumar Bose, India: “an excellent collection of information”;

Muhammad Sani Abdullahi, Nigeria: “I don’t even know the words to use,in order to

express my profound gratitude, because, to me a mere saying ‘thank you very much’

is not enough. However, since it a tradition, that whenever a good thing is done to

you, you should at least, say ’thank you’ I will not hesitate to say the same, but, I

know that, I owe you more than that, therefore, I will continue praying for you”;

S. Saripalli, USA: “I’m a homeschooled 10th grader . . . I’ve enjoyed reading Topology

Without Tears”;

Samuel Frade,USA:“Firstly I would like to thank you for writing an excellent Topology

text, I have finished the first two chapters and I really enjoy it. I would suggest

adding some ”challenge” exercises. The exercises are a little easy. Then again, I

am a mathematics major and I have taken courses in analysis and abstract algebra

and your book is targeted at a wider audience. You see, my school is undergoing a

savage budget crisis and the mathematics department does not have enough funds

to offer topology so I am learning it on my own because I feel it will give me a

deeper understanding of real and complex analysis”;

Andree Garca Valdivia, Peru: ”I would like you to let me download your spanish

version of the book, it is only for private use, Im coursing economics and Im interested

in learning about the topic for my self. I study in San Marcos University that its the

oldest university of Latin America”;

Eszter Csernai, Hungary: “I am an undergraduate student student studying Math-

ematical Economics ... I’m sure that you have heard it many times before, but I will

repeat it anyway that the book is absolutely brilliant!”;

Christopher Roe, Australia: “May I first thank you for writing your book ’Topology

without tears’ ? Although it is probably very basic to you, I have found reading it a

completely wonderful experience”;

Jeanine Dorminey, USA: “I am currently taking Topology and I am having an unusual

amount of difficulty with the class. I have been reading your book online as it helps

so much”;

Michael Ng, Macau:“Unlike many other math books, your one is written in a friendly

manner. For instance, in the early chapters, you gave hints and analysis to almost all
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the proof of the theorems. It makes us, especial the beginners, easier to understand

how to think out the proofs. Besides, after each definition, you always give a number

of examples as well as counterexamples so that we can have a correct and clear idea

of the concept”;

Tarek Fouda, USA: “I study advanced calculus in Stevens institute of technology

to earn masters of science in financial engineering major. It is the first time I am

exposed to the subject of topology. I bought few books but I find yours the only

that explains the subject in such an interesting way and I wish to have the book

with me just to read it in train or school.”

Ahmad Al-Omari, Malaysia:“I am Ph.D. student in UKM (Malaysia) my area of

research is general topology and I fined your book is very interesting”;

Annukka Ristiniemi, Greece: “I found your excellent book in topology online . . . I

am student of Mphil Economics at the University of Athens, and studying topology

as part of the degree”;

Jose Vieitez, Uruguay:“n this semester I am teaching Topology in the Facultad de

Ciencias of Universidad de la Republica. I would like to have a printable version of

your (very good) book.”

Muhammad Y. Bello, Professor of Mathematics, Bayero University, Nigeria: “Your

ebook, ‘Topology Without Tears’, is an excellent resource for anyone requiring the

knowledge of topology. I do teach some analysis courses which assumes basic

background in topology. Unfortunately, some of my students either do not have

such a background, or have forgotten it. After going through the electronic version,

I observe your book would be a good source of refreshing/providing the background

to the students.”

Prof. dr. Ljubomir R. Savic, Institute for Mechanics and Theory of Structures,

University of Belgrade, Serbia:“I just learn topology and I have seen your superb

book. My field is in fact Continuum Mechanics and Structural Analysis”;

Pascal Lehmann, Germany:“I must print your fantastic book for writing notes on

edge of the real sheets of paper”;

Professor Luis J. Alias, Department of Mathematics at University of Murcia, Spain:

“I have just discovered your excellent text ”Topology Without Tears”. During this

course, I will be teaching a course on General Topology (actually, I will start my

course tomorrow morning). I started to teach that course last year, and esentially I

followed Munkres’s book (Topology, Second edition), from which I covered Chapters

2, 3, part of 4, 5, and part of 9. I have been reading your book and I have really

enjoyed it. I like it very much, specially the way you introduce new concepts and
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also the hints and key remarks that you give to the students.”

Daniel Nkemzi, Lecturer, Department of Physics,University of Buea, Cameroon:

”After many years of struggle to understand the rudiments of topology, without any

success at all, I gave up!. Then recently I stumbled upon your God-sent text while

browsing the web. Flipping through the pages of the on-line I am convinced that

if I cannot understand the subject from this text, then no other book can probably

help me”;

Tirthankar Chakravarty, Oxford University, UK: “I am the University of Cambridge

and am an econometrician. Your notes are very well written”;

Thomas Evelbauer, Germany: “I was intensely attracted to contents and style.

Especially, I like the way you introduce the basics and make them work via exercises

and guided proofs.”;

Gabriele. E.M. Biella MD PhD, Head of Research, Institute of Molecular Bioimaging

and Physiology, National Research Council, Italy: “I am a neurophysiologist and

am trying to achieve some new neurodynamic description of sensory processes by

topological approach. I stepped into your wonderful book.”

Fazal Haq, Pakistan:“I am PhD student in the faculty of Enginneering Ghlam Ishaq

Khan Institute of Sciences and Techonology Topi swabi Pakistan. I was surprised

by reading your nice book topology without tears. In fact i have never seen such a

beautifully weitten book on topology before”;

Gabriele Luculli, Italy: “I’m just a young student, but I found very interesting the

way you propose the topology subject, especially the presence of so many examples”;

K. Orr, USA: “excellent book”;

Professor Ahmed Ould, Colombia: “let me congratulate you for presentation, simplicity

and the clearness of the material”;

Paul Unstead, USA: “I like your notes since they provide many concrete examples

and do not assume that the reader is a math major”;

Alberto Garca Raboso, Spain: “I like it very much”;

Guiseppe Curci, Research Director in Theoretical Physics, National Institute of

Theoretical Physics, Pisa: “nice and illuminating book on topology”;

M. Rinaldi, USA: “this is by far the clearest and best introduction to topology I have

ever seen . . . when I studied your notes the concepts clicked and your examples are

great”;

Joaquin Poblete, Undergraduate Professor of Economics, Catholic University of

Chile: “I have just finished reading your book and I really liked it. It is very clear

and the examples you give are revealing”;
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Alexander Liden, Sweden: “I’ve been enjoying reading your book from the screen

but would like to have a printable copy”

Francois Neville, USA: “I am a graduate student in a spatial engineering course at

the University of Maine (US), and our professor has enthusiastically recommended

your text for the Topology unit.”;

Hsin-Han Shen, USA: “I am a Finance PhD student in State Univ of New York

at Buffalo. I found the Topology materials on your website is very detailed and

readable, which is an ideal first-course-in topology material for a PhD student who

does not major in math, like me”;

Degin Cai, USA: “your book is wonderful”;

Eric Yuan, Darmstadt, Germany: “I am now a mathematics student in Darmstadt

University of Technology, studying Topology, and our professor K.H. Hofmann

recommended your book ‘Topology Without Tears’ very highly”;

Martin Vu, Oxford University: “I am an Msc student in Applied Math here in oxford.

Since I am currently getting used to abstract concepts in maths, the title of the

book topology without tears has a natural attraction”;

Ahmet Erdem, Turkey: “I liked it a lot”;

Kartika Bhatia, India: “i am pursuing my master in economics here at Delhi School of

Economics, University of Delhi,I found your book very useful and easy to understand.

Many of my doubts have been solved while reading your book”;

Wolfgang Moens, Belgium:“I am a Bachelor-student of the ”Katholieke Universiteit

Leuven. I found myself reading most of the first part of ”Topology Without Tears”

in a matter of hours. Before I proceed, I must praise you for your clear writing and

excellent structure (it certainly did not go unnoticed!)”

Duncan Chen, USA: “You must have received emails like this one many times, but I

would still like thanks you for the book ‘Topology without Tears’. I am a professional

software developer and enjoy reading mathematics.”

Maghaisvarei Sellakumaran, Singapore: “I will be going to US to do my PhD in

Economics shortly. I found your book on topology to be extremely good”;

Tom Hunt, USA: “thank you for making your fine text available on the web”;

Fausto Saporito, Italy: “i’m reading your very nice book and this is the best one I

saw until now about this subject”;

Takayuki Osogami, USA: “ started reading your ”Topology Without Tears” online,

and found that it is a very nice material to learn topology as well as general

mathematical concept”;

Roman Knöll, Germany: “Thank you very much for letting me read your great book.
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The ‘topology without tears’ helped me a lot and i regained somehow my interest

in mathematics, which was temporarily lost because of unsystematic lectures and

superfluous learning by heart”;

Yuval Yatskan, USA:“I had a look at the book and it does seem like a marvelous

work”;

N.S. Mavrogiannis, Greece: “It is a very good work”;

Semih Tumen, Turkey: “I know that PhD in Economics programs are mathematically

demanding, so I found your book extremely useful while reviewing the necessary

topics”;

Pyung Ho Kim, USA: “I am currently a Ph.D. student... I am learning economic

geography, and i found your book is excellent to learn a basic concept of topology”;

Javier Hernandez, Turkey: “I am really grateful to all those, which like you, spend

their efforts to share knowledge with the others, without thinking only in the benefit

they could get by hiding the candle under the table and getting money to let us spot

the light”;

Martin D. Siyaranamual, Center for Economics and Development Studies (CEDS),

Padjadjaran University, Bandung, Indonesia: “I found it is very useful for me, since

next September I will continue my study at Stockholm School of Economics. Thank

you very much for what you have done, it helps me a lot, for my preparation before

I go to the grad school.”

J. Chand, Australia: “Many thanks for producing topology without tears. Your book

is fantastic.”;

Richard Vande Velde, USA: “Two years ago I contacted you about downloading a

copy of your ”Topology without Tears” for my own use. At that time I was teaching

a combined undergraduate / graduate course in topology. I gave the students the

URL to access (online) the text. Even though I did not follow the topics and

development in exactly the same order which you do, one of the better students in

the class indicated that I should have made that the one and only required text for

the course! I think that is a nice recommendation. Well, history repeats itself and

two years later I am again teaching the same course to the same sort of audience.

So, I would like to be able to download a complete version of the text”;

Professor Sha Xin Wei, Fine Arts and Computer Science, Concordia University,

Canada:

“Compliments on your very carefully and humanely written text on topology! I

would like to consider adopting it for a course introducing ”living” mathematics to

ambitious scholarly peers and artists. It’s always a pleasure to find works such as
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yours that reaches out to peers without compromise.”;

Associate Professor Dr Rehana Bari, Bangladesh: “I am a course teacher of Topology

in M.Sc. class of the department of Mathematics, University of Dhaka, Bangladesh.

Can I have a copy of your wonderful book ”Topology Without Tears” for my personal

use?”;

Emrah Akyar, Department of Mathematics,Anadolu University, Turkey: ”I have just

seen your beautiful book ”Topology without Tears” and I m planning to follow your

book for this summer semester”;

Rahul Nilakantan, PhD Student, Department of Economics University of Southern

California, USA: “I am a PhD student at the Department of Economics of the

University of Southern California, Los Angeles. I hope to work in the area of general

equilibrium with incomplete markets. This area requires a thorough understanding

of topological concepts. Your excellent book was referred to me by a colleague of

mine from Kansas University (a Mr. Ramu Gopalan). After having read part of the

book from the non-printable pdf file, I have concluded that this is the book that I

want to read to learn topology.”
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Renato Orellana, Chile: “Congratulations for your great book. I went through the

first chapters and had a great time. I thought that topology was out of my reach,

now I declare myself an optimist in this matter. ”;

Sisay Regasa Senbeta, Assistant Dean, Faculty of Business and Economics, Addis

Ababa University Ethopia:“ I am prospective PhD student of Economics currently a
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Ernita R. Calayag, Philippines:”I’m Ms. Ernita R. Calayag, a Filipino, student of De
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your approval I can start to understand Topology more as a foundational subject of
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mathematics.”
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myself without teacher. some subject in this is difficult for me (for example topology
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now study your book(topology whithout tears). this book very very different from

other books in this subject and teached me many things which abstract for me until

now.[thank you]”;

Dr Abdul Iguda, Bayero University, Kano, Nigeria: ”My name is ABDUL IGUDA

(PhD-in General Topology). I have been teaching General Topology for the past 18

years in my university, I am also a visiting lecturer to some orther two universities

(Gwambe State University and Umaru Musa Yar’Adua University). Sir, I will like to

posses a (free) printable Vesion of your Book (Topology Without Tears). Thank

you very much”;

Mahdi Jafari, KNToosi University, Tehran, Iran: ”My name is Mahdi Jafari and study

space engineering.”

M.A.R. Khan, Karachi: “thank you for remembering a third world student”.
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Chapter 1

Topological Spaces

Introduction

Tennis, football, baseball and hockey may all be exciting games but to play them

you must first learn (some of) the rules of the game. Mathematics is no different.

So we begin with the rules for topology.

This chapter opens with the definition of a topology and is then devoted to

some simple examples: finite topological spaces, discrete spaces, indiscrete spaces,

and spaces with the finite-closed topology.

Topology, like other branches of pure mathematics such as group theory, is an

axiomatic subject. We start with a set of axioms and we use these axioms to prove

propositions and theorems. It is extremely important to develop your skill at writing

proofs.

Why are proofs so important? Suppose our task were to construct a building.

We would start with the foundations. In our case these are the axioms or definitions

– everything else is built upon them. Each theorem or proposition represents a new

level of knowledge and must be firmly anchored to the previous level. We attach the

new level to the previous one using a proof. So the theorems and propositions are

the new heights of knowledge we achieve, while the proofs are essential as they are

the mortar which attaches them to the level below. Without proofs the structure

would collapse.

So what is a mathematical proof?

17
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A mathematical proof is a watertight argument which begins with information

you are given, proceeds by logical argument, and ends with what you are asked to

prove.

You should begin a proof by writing down the information you are given and

then state what you are asked to prove. If the information you are given or what

you are required to prove contains technical terms, then you should write down the

definitions of those technical terms.

Every proof should consist of complete sentences. Each of these sentences

should be a consequence of (i) what has been stated previously or (ii) a theorem,

proposition or lemma that has already been proved.

In this book you will see many proofs, but note that mathematics is not a

spectator sport. It is a game for participants. The only way to learn to write proofs

is to try to write them yourself.

1.1 Topology

1.1.1 Definitions. Let X be a non-empty set. A set τ of subsets of X is

said to be a topology on X if

(i) X and the empty set, Ø, belong to τ ,

(ii) the union of any (finite or infinite) number of sets in τ belongs to τ , and

(iii) the intersection of any two sets in τ belongs to τ .

The pair (X,τ ) is called a topological space.

1.1.2 Example. Let X = {a, b, c, d, e, f} and

τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then τ 1 is a topology on X as it satisfies conditions (i), (ii) and (iii) of Definitions

1.1.1.
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1.1.3 Example. Let X = {a, b, c, d, e} and

τ 2 = {X,Ø, {a}, {c, d}, {a, c, e}, {b, c, d}}.

Then τ 2 is not a topology on X as the union

{c, d} ∪ {a, c, e} = {a, c, d, e}

of two members of τ 2 does not belong to τ 2 ; that is, τ 2 does not satisfy condition

(ii) of Definitions 1.1.1.

1.1.4 Example. Let X = {a, b, c, d, e, f} and

τ 3 = {X,Ø, {a}, {f}, {a, f}, {a, c, f}, {b, c, d, e, f}} .

Then τ 3 is not a topology on X since the intersection

{a, c, f} ∩ {b, c, d, e, f} = {c, f}

of two sets in τ 3 does not belong to τ 3 ; that is, τ 3 does not have property (iii) of

Definitions 1.1.1.

1.1.5 Example. Let N be the set of all natural numbers (that is, the set of all

positive integers) and let τ 4 consist of N, Ø, and all finite subsets of N. Then τ 4 is

not a topology on N, since the infinite union

{2} ∪ {3} ∪ · · · ∪ {n} ∪ · · · = {2, 3, . . . , n, . . . }

of members of τ 4 does not belong to τ 4 ; that is, τ 4 does not have property (ii) of

Definitions 1.1.1.

1.1.6 Definitions. Let X be any non-empty set and let τ be the collection

of all subsets of X. Then τ is called the discrete topology on the set X. The

topological space (X,τ ) is called a discrete space.

We note that τ in Definitions 1.1.6 does satisfy the conditions of Definitions

1.1.1 and so is indeed a topology.

Observe that the set X in Definitions 1.1.6 can be any non-empty set. So there

is an infinite number of discrete spaces – one for each set X.
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1.1.7 Definitions. Let X be any non-empty set and τ = {X,Ø}. Then τ is

called the indiscrete topology and (X,τ ) is said to be an indiscrete space.

Once again we have to check that τ satisfies the conditions of Definitions 1.1.1

and so is indeed a topology.

We observe again that the set X in Definitions 1.1.7 can be any non-empty

set. So there is an infinite number of indiscrete spaces – one for each set X.

In the introduction to this chapter we discussed the

importance of proofs and what is involved in writing

them. Our first experience with proofs is in Example

1.1.8 and Proposition 1.1.9. You should study these

proofs carefully.
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1.1.8 Example. If X = {a, b, c} and τ is a topology on X with {a} ∈ τ , {b} ∈ τ ,

and {c} ∈ τ , prove that τ is the discrete topology.

Proof.

We are given that τ is a topology and that {a} ∈ τ , {b} ∈ τ , and {c} ∈ τ .

We are required to prove that τ is the discrete topology; that is, we are

required to prove (by Definitions 1.1.6) that τ contains all subsets of X.

Remember that τ is a topology and so satisfies conditions (i), (ii) and (iii)

of Definitions 1.1.1.

So we shall begin our proof by writing down all of the subsets of X.

The set X has 3 elements and so it has 23 distinct subsets. They are: S1 = Ø,

S2 = {a}, S3 = {b}, S4 = {c}, S5 = {a, b}, S6 = {a, c}, S7 = {b, c}, and S8 = {a, b, c} = X.

We are required to prove that each of these subsets is in τ . As τ is a topology,

Definitions 1.1.1 (i) implies that X and Ø are in τ ; that is, S1 ∈ τ and S8 ∈ τ .

We are given that {a} ∈ τ , {b} ∈ τ and {c} ∈ τ ; that is, S2 ∈ τ , S3 ∈ τ and S4 ∈ τ .

To complete the proof we need to show that S5 ∈ τ , S6 ∈ τ , and S7 ∈ τ . But

S5 = {a, b} = {a}∪ {b}. As we are given that {a} and {b} are in τ , Definitions 1.1.1 (ii)

implies that their union is also in τ ; that is, S5 = {a, b} ∈ τ .

Similarly S6 = {a, c} = {a} ∪ {c} ∈ τ and S7 = {b, c} = {b} ∪ {c} ∈ τ .

In the introductory comments on this chapter we observed that mathematics

is not a spectator sport. You should be an active participant. Of course your

participation includes doing some of the exercises. But more than this is expected

of you. You have to think about the material presented to you.

One of your tasks is to look at the results that we prove and to ask pertinent

questions. For example, we have just shown that if each of the singleton sets

{a}, {b} and {c} is in τ and X = {a, b, c}, then τ is the discrete topology. You should

ask if this is but one example of a more general phenomenon; that is, if (X,τ ) is

any topological space such that τ contains every singleton set, is τ necessarily the

discrete topology? The answer is “yes”, and this is proved in Proposition 1.1.9.
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1.1.9 Proposition. If (X,τ ) is a topological space such that, for every x ∈ X,

the singleton set {x} is in τ , then τ is the discrete topology.

Proof.

This result is a generalization of Example 1.1.8. Thus you might expect

that the proof would be similar. However, we cannot list all of the subsets of

X as we did in Example 1.1.8 because X may be an infinite set. Nevertheless

we must prove that every subset of X is in τ .

At this point you may be tempted to prove the result for some special

cases, for example taking X to consist of 4, 5 or even 100 elements. But this

approach is doomed to failure. Recall our opening comments in this chapter

where we described a mathematical proof as a watertight argument. We

cannot produce a watertight argument by considering a few special cases,

or even a very large number of special cases. The watertight argument

must cover all cases. So we must consider the general case of an arbitrary

non-empty set X. Somehow we must prove that every subset of X is in τ .

Looking again at the proof of Example 1.1.8 we see that the key is that

every subset of X is a union of singleton subsets of X and we already know

that all of the singleton subsets are in τ . This is also true in the general

case.

We begin the proof by recording the fact that every set is a union of its singleton

subsets. Let S be any subset of X. Then

S =
⋃
x∈S

{x}.

Since we are given that each {x} is in τ , Definitions 1.1.1 (ii) and the above equation

imply that S ∈ τ . As S is an arbitrary subset of X, we have that τ is the discrete

topology.
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That every set S is a union of its singleton subsets is a result which we shall

use from time to time throughout the book in many different contexts. Note that

it holds even when S = Ø as then we form what is called an empty union and get Ø

as the result.

Exercises 1.1

1. Let X = {a, b, c, d, e, f}. Determine whether or not each of the following

collections of subsets of X is a topology on X:

(a) τ 1 = {X, Ø, {a}, {a, f}, {b, f}, {a, b, f}};

(b) τ 2 = {X, Ø, {a, b, f}, {a, b, d}, {a, b, d, f}};

(c) τ 3 = {X, Ø, {f}, {e, f}, {a, f}}.

2. Let X = {a, b, c, d, e, f}. Which of the following collections of subsets of X is a

topology on X? (Justify your answers.)

(a) τ 1 = {X, Ø, {c}, {b, d, e}, {b, c, d, e}, {b}};

(b) τ 2 = {X, Ø, {a}, {b, d, e}, {a, b, d}, {a, b, d, e}};

(c) τ 3 = {X, Ø, {b}, {a, b, c}, {d, e, f}, {b, d, e, f}}.

3. If X = {a, b, c, d, e, f} and τ is the discrete topology on X, which of the following

statements are true?

(a) X ∈ τ ; (b) {X} ∈ τ ; (c) {Ø} ∈ τ ; (d) Ø ∈ τ ;

(e) Ø ∈ X; (f) {Ø} ∈ X; (g) {a} ∈ τ ; (h) a ∈ τ ;

(i) Ø ⊆ X; (j) {a} ∈ X; (k) {Ø} ⊆ X; (l) a ∈ X;

(m) X ⊆ τ ; (n) {a} ⊆ τ ; (o) {X} ⊆ τ ; (p) a ⊆ τ .
[Hint. Precisely six of the above are true.]

4. Let (X,τ ) be any topological space. Verify that the intersection of any finite

number of members of τ is a member of τ .

[Hint. To prove this result use “mathematical induction”.]
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5. Let R be the set of all real numbers. Prove that each of the following collections

of subsets of R is a topology.

(i) τ 1 consists of R, Ø, and every interval (−n, n), for n any positive integer;

(ii) τ 2 consists of R, Ø, and every interval [−n, n], for n any positive integer;

(iii) τ 3 consists of R, Ø, and every interval [n,∞), for n any positive integer.

6. Let N be the set of all positive integers. Prove that each of the following

collections of subsets of N is a topology.

(i) τ 1 consists of N, Ø, and every set {1, 2, . . . , n}, for n any positive integer.

(This is called the initial segment topology.)

(ii) τ 2 consists of N, Ø, and every set {n, n + 1, . . . }, for n any positive integer.

(This is called the final segment topology.)

7. List all possible topologies on the following sets:

(a) X = {a, b} ;

(b) Y = {a, b, c}.

8. Let X be an infinite set and τ a topology on X. If every infinite subset of X is

in τ , prove that τ is the discrete topology.

9.* Let R be the set of all real numbers. Precisely three of the following ten

collections of subsets of R are topologies? Identify these and justify your answer.

(i) τ 1 consists of R, Ø, and every interval (a, b), for a and b any real numbers

with a < b ;

(ii) τ 2 consists of R, Ø, and every interval (−r, r), for r any positive real number;

(iii) τ 3 consists of R, Ø, and every interval (−r, r), for r any positive rational

number;

(iv) τ 4 consists of R, Ø, and every interval [−r, r], for r any positive rational

number;

(v) τ 5 consists of R, Ø, and every interval (−r, r), for r any positive irrational

number;
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(vi) τ 6 consists of R, Ø, and every interval [−r, r], for r any positive irrational

number;

(vii) τ 7 consists of R, Ø, and every interval [−r, r), for r any positive real number;

(viii) τ 8 consists of R, Ø, and every interval (−r, r], for r any positive real number;

(ix) τ 9 consists of R, Ø, every interval [−r, r], and every interval (−r, r), for r any

positive real number;

(x) τ 10 consists of R, Ø, every interval [−n, n], and every interval (−r, r), for n

any positive integer and r any positive real number.

1.2 Open Sets, Closed Sets, and Clopen Sets

Rather than continually refer to “members of τ ”, we find it more convenient to give

such sets a name. We call them “open sets”. We shall also name the complements

of open sets. They will be called “closed sets”. This nomenclature is not ideal,

but derives from the so-called “open intervals” and “closed intervals” on the real

number line. We shall have more to say about this in Chapter 2.

1.2.1 Definition. Let (X,τ ) be any topological space. Then the members

of τ are said to be open sets.

1.2.2 Proposition. If (X,τ ) is any topological space, then

(i) X and Ø are open sets,

(ii) the union of any (finite or infinite) number of open sets is an open set and

(iii) the intersection of any finite number of open sets is an open set.

Proof. Clearly (i) and (ii) are trivial consequences of Definition 1.2.1 and

Definitions 1.1.1 (i) and (ii). The condition (iii) follows from Definition 1.2.1 and

Exercises 1.1 #4.
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On reading Proposition 1.2.2, a question should have popped into your mind:

while any finite or infinite union of open sets is open, we state only that finite

intersections of open sets are open. Are infinite intersections of open sets always

open? The next example shows that the answer is “no”.

1.2.3 Example. Let N be the set of all positive integers and let τ consist of Ø

and each subset S of N such that the complement of S in N, N \ S, is a finite set.

It is easily verified that τ satisfies Definitions 1.1.1 and so is a topology on N. (In

the next section we shall discuss this topology further. It is called the finite-closed

topology.) For each natural number n, define the set Sn as follows:

Sn = {1} ∪ {n+ 1} ∪ {n+ 2} ∪ {n+ 3} ∪ · · · = {1} ∪
∞⋃

m=n+1

{m}.

Clearly each Sn is an open set in the topology τ , since its complement is a finite

set. However,
∞⋂
n=1

Sn = {1}. (1)

As the complement of {1} is neither N nor a finite set, {1} is not open. So (1) shows

that the intersection of the open sets Sn is not open.

You might well ask: how did you find the example presented in Example 1.2.3?

The answer is unglamorous! It was by trial and error.

If we tried, for example, a discrete topology, we would find that each intersection

of open sets is indeed open. The same is true of the indiscrete topology. So what

you need to do is some intelligent guesswork.

Remember that to prove that the intersection of open sets is not necessarily

open, you need to find just one counterexample!

1.2.4 Definition. Let (X,τ ) be a topological space. A subset S of X is said

to be a closed set in (X,τ ) if its complement in X, namely X \ S, is open in

(X,τ ).

In Example 1.1.2, the closed sets are

Ø, X, {b, c, d, e, f}, {a, b, e, f}, {b, e, f} and {a}.
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If (X,τ ) is a discrete space, then it is obvious that every subset of X is a closed set.

However in an indiscrete space, (X,τ ), the only closed sets are X and Ø.

1.2.5 Proposition. If (X,τ ) is any topological space, then

(i) Ø and X are closed sets,

(ii) the intersection of any (finite or infinite) number of closed sets is a closed

set and

(iii) the union of any finite number of closed sets is a closed set.

Proof. (i) follows immediately from Proposition 1.2.2 (i) and Definition 1.2.4, as

the complement of X is Ø and the complement of Ø is X.

To prove that (iii) is true, let S1, S2, . . . , Sn be closed sets. We are required to

prove that S1 ∪ S2 ∪ · · · ∪ Sn is a closed set. It suffices to show, by Definition 1.2.4,

that X \ (S1 ∪ S2 ∪ · · · ∪ Sn) is an open set.

As S1, S2, . . . , Sn are closed sets, their complements X \ S1, X \ S2, . . . , X \ Sn are

open sets. But

X \ (S1 ∪ S2 ∪ · · · ∪ Sn) = (X \ S1) ∩ (X \ S2) ∩ · · · ∩ (X \ Sn). (1)

As the right hand side of (1) is a finite intersection of open sets, it is an open

set. So the left hand side of (1) is an open set. Hence S1 ∪ S2 ∪ · · · ∪ Sn is a closed

set, as required. So (iii) is true.

The proof of (ii) is similar to that of (iii). [However, you should read the warning

in the proof of Example 1.3.9.]
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Warning. The names “open” and “closed” often lead newcomers to the world

of topology into error. Despite the names, some open sets are also closed sets!

Moreover, some sets are neither open sets nor closed sets! Indeed, if we consider

Example 1.1.2 we see that

(i) the set {a} is both open and closed;

(ii) the set {b, c} is neither open nor closed;

(iii) the set {c, d} is open but not closed;

(iv) the set {a, b, e, f} is closed but not open.

In a discrete space every set is both open and closed, while in an indiscrete space

(X,τ ), all subsets of X except X and Ø are neither open nor closed.

To remind you that sets can be both open and closed we introduce the following

definition.

1.2.6 Definition. A subset S of a topological space (X,τ ) is said to be clopen

if it is both open and closed in (X,τ ).

In every topological space (X,τ ) both X and Ø are clopen1.

In a discrete space all subsets of X are clopen.

In an indiscrete space the only clopen subsets are X and Ø.

Exercises 1.2

1. List all 64 subsets of the set X in Example 1.1.2. Write down, next to each set,

whether it is (i) clopen; (ii) neither open nor closed; (iii) open but not closed;

(iv) closed but not open.

2. Let (X,τ ) be a topological space with the property that every subset is closed.

Prove that it is a discrete space.

1We admit that “clopen” is an ugly word but its use is now widespread.
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3. Observe that if (X,τ ) is a discrete space or an indiscrete space,then every open

set is a clopen set. Find a topology τ on the set X = {a, b, c, d} which is not

discrete and is not indiscrete but has the property that every open set is clopen.

4. Let X be an infinite set. If τ is a topology on X such that every infinite subset

of X is closed, prove that τ is the discrete topology.

5. Let X be an infinite set and τ a topology on X with the property that the only

infinite subset of X which is open is X itself. Is (X,τ ) necessarily an indiscrete

space?

6. (i) Let τ be a topology on a set X such that τ consists of precisely four

sets; that is, τ = {X,Ø, A,B}, where A and B are non-empty distinct proper

subsets of X. [A is a proper subset of X means that A ⊆ X and A 6= X.

This is denoted by A ⊂ X.] Prove that A and B must satisfy exactly one of

the following conditions:

(a) B = X \ A; (b) A ⊂ B; (c) B ⊂ A.

[Hint. Firstly show that A and B must satisfy at least one of the conditions

and then show that they cannot satisfy more than one of the conditions.]

(ii) Using (i) list all topologies on X = {1, 2, 3, 4} which consist of exactly four

sets.

1.3 The Finite-Closed Topology

It is usual to define a topology on a set by stating which sets are open. However,

sometimes it is more natural to describe the topology by saying which sets are closed.

The next definition provides one such example.
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1.3.1 Definition. Let X be any non-empty set. A topology τ on X is called

the finite-closed topology or the cofinite topology if the closed subsets of X are

X and all finite subsets of X; that is, the open sets are Ø and all subsets of X

which have finite complements.

Once again it is necessary to check that τ in Definition 1.3.1 is indeed a topology;

that is, that it satisfies each of the conditions of Definitions 1.1.1.

Note that Definition 1.3.1 does not say that every topology which has X and

the finite subsets of X closed is the finite-closed topology. These must be the only

closed sets. [Of course, in the discrete topology on any set X, the set X and all

finite subsets of X are indeed closed, but so too are all other subsets of X.]

In the finite-closed topology all finite sets are closed. However, the following

example shows that infinite subsets need not be open sets.

1.3.2 Example. If N is the set of all positive integers, then sets such as {1},
{5, 6, 7}, {2, 4, 6, 8} are finite and hence closed in the finite-closed topology. Thus their

complements

{2, 3, 4, 5, . . .}, {1, 2, 3, 4, 8, 9, 10, . . .}, {1, 3, 5, 7, 9, 10, 11, . . .}

are open sets in the finite-closed topology. On the other hand, the set of even

positive integers is not a closed set since it is not finite and hence its complement,

the set of odd positive integers, is not an open set in the finite-closed topology.

So while all finite sets are closed, not all infinite sets are open.
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1.3.3 Example. Let τ be the finite-closed topology on a set X. If X has at least

3 distinct clopen subsets, prove that X is a finite set.

Proof.

We are given that τ is the finite-closed topology, and that there are at least

3 distinct clopen subsets.

We are required to prove that X is a finite set.

Recall that τ is the finite-closed topology means that the family of all

closed sets consists of X and all finite subsets of X. Recall also that a set

is clopen if and only if it is both closed and open.

Remember that in every topological space there are at least 2 clopen

sets, namely X and Ø. (See the comment immediately following Definition

1.2.6.) But we are told that in the space (X,τ ) there are at least 3 clopen

subsets. This implies that there is a clopen subset other than Ø and X. So

we shall have a careful look at this other clopen set!

As our space (X,τ ) has 3 distinct clopen subsets, we know that there is a clopen

subset S of X such that S 6= X and S 6= Ø. As S is open in (X,τ ), Definition 1.2.4

implies that its complement X \ S is a closed set.

Thus S and X \ S are closed in the finite-closed topology τ . Therefore S and

X \ S are both finite, since neither equals X. But X = S ∪ (X \ S) and so X is the

union of two finite sets. Thus X is a finite set, as required.

We now know three distinct topologies we can put on any infinite set – and

there are many more. The three we know are the discrete topology, the indiscrete

topology, and the finite-closed topology. So we must be careful always to specify

the topology on a set.

For example, the set {n : n ≥ 10} is open in the finite-closed topology on the

set of natural numbers, but is not open in the indiscrete topology. The set of odd

natural numbers is open in the discrete topology on the set of natural numbers, but

is not open in the finite-closed topology.
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We shall now record some definitions which you have probably met before.

1.3.4 Definitions. Let f be a function from a set X into a set Y .

(i) The function f is said to be one-to-one or injective if f(x1) = f(x2) implies

x1 = x2, for x1, x2 ∈ X;

(ii) The function f is said to be onto or surjective if for each y ∈ Y there exists

an x ∈ X such that f(x) = y;

(iii) The function f is said to be bijective if it is both one-to-one and onto.

1.3.5 Definitions. Let f be a function from a set X into a set Y . The

function f is said to have an inverse if there exists a function g of Y into X such

that g(f(x)) = x, for all x ∈ X and f(g(y)) = y, for all y ∈ Y . The function g is

called an inverse function of f .

The proof of the following proposition is left as an exercise for you.

1.3.6 Proposition. Let f be a function from a set X into a set Y .

(i) The function f has an inverse if and only if f is bijective.

(ii) Let g1 and g2 be functions from Y into X. If g1 and g2 are both inverse

functions of f , then g1 = g2; that is, g1(y) = g2(y), for all y ∈ Y .

(iii) Let g be a function from Y into X. Then g is an inverse function of f if

and only if f is an inverse function of g.

Warning. It is a very common error for students to think that a function is one-

to-one if “it maps one point to one point”.

All functions map one point to one point. Indeed this is part of the definition

of a function.

A one-to-one function is a function that maps different points to different

points.
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We now turn to a very important notion that you may not have met before.

1.3.7 Definition. Let f be a function from a set X into a set Y . If S is any

subset of Y , then the set f−1(S) is defined by

f−1(S) = {x : x ∈ X and f(x) ∈ S}.

The subset f−1(S) of X is said to be the inverse image of S.

Note that an inverse function of f : X → Y exists if and only if f is bijective. But

the inverse image of any subset of Y exists even if f is neither one-to-one nor onto.

The next example demonstrates this.

1.3.8 Example. Let f be the function from the set of integers, Z, into itself

given by f(z) = |z|, for each z ∈ Z.

The function f is not one-to one, since f(1) = f(−1).

It is also not onto, since there is no z ∈ Z, such that f(z) = −1. So f is certainly

not bijective. Hence, by Proposition 1.3.6 (i), f does not have an inverse function.

However inverse images certainly exist. For example,

f−1({1, 2, 3}) = {−1,−2,−3, 1, 2, 3}

f−1({−5, 3, 5, 7, 9}) = {−3,−5,−7,−9, 3, 5, 7, 9}. �

We conclude this section with an interesting example.

1.3.9 Example. Let (Y,τ ) be a topological space and X a non-empty set.

Further, let f be a function from X into Y . Put τ 1 = {f−1(S) : S ∈ τ }. Prove

that τ 1 is a topology on X.

Proof.

Our task is to show that the collection of sets, τ 1, is a topology on X;

that is, we have to show that τ 1 satisfies conditions (i), (ii) and (iii) of

Definitions 1.1.1.
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X ∈ τ 1 since X = f−1(Y ) and Y ∈ τ .

Ø ∈ τ 1 since Ø = f−1(Ø) and Ø ∈ τ .

Therefore τ 1 has property (i) of Definitions 1.1.1.

To verify condition (ii) of Definitions 1.1.1, let {Aj : j ∈ J} be a collection

of members of τ 1 , for some index set J. We have to show that
⋃
j∈J Aj ∈ τ 1.

As Aj ∈ τ 1, the definition of τ 1 implies that Aj = f−1(Bj), where Bj ∈ τ . Also⋃
j∈J Aj =

⋃
j∈J f

−1(Bj) = f−1
(⋃

j∈J Bj

)
. [See Exercises 1.3 # 1.]

Now Bj ∈ τ , for all j ∈ J, and so
⋃
j∈J Bj ∈ τ , since τ is a topology on Y .

Therefore, by the definition of τ 1, f
−1
(⋃

j∈J Bj

)
∈ τ 1; that is,

⋃
j∈J Aj ∈ τ 1.

So τ 1 has property (ii) of Definitions 1.1.1.

[Warning. You are reminded that not all sets are countable. (See the Appendix

for comments on countable sets.) So it would not suffice, in the above argument,

to assume that sets A1, A2. . . . , An, . . . are in τ 1 and show that their union A1 ∪ A2 ∪
. . . ∪ An ∪ . . . is in τ 1. This would prove only that the union of a countable number

of sets in τ 1 lies in τ 1, but would not show that τ 1 has property (ii) of Definitions

1.1.1 – this property requires all unions, whether countable or uncountable, of sets

in τ 1 to be in τ 1.]

Finally, let A1 and A2 be in τ 1. We have to show that A1 ∩ A2 ∈ τ 1.

As A1, A2 ∈ τ 1, A1 = f−1(B1) and A2 = f−1(B2), where B1, B2 ∈ τ .

A1 ∩ A2 = f−1(B1) ∩ f−1(B2) = f−1(B1 ∩B2). [See Exercises 1.3 #1.]

As B1 ∩B2 ∈ τ , we have f−1(B1 ∩B2) ∈ τ 1. Hence A1 ∩A2 ∈ τ 1, and we have shown

that τ 1 also has property (iii) of Definitions 1.1.1.

So τ 1 is indeed a topology on X.
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Exercises 1.3

1. Let f be a function from a set X into a set Y . Then we stated in Example

1.3.9 that

f−1
(⋃
j∈J

Bj

)
=
⋃
j∈J

f−1(Bj) (1)

and

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2) (2)

for any subsets Bj of Y , and any index set J.

(a) Prove that (1) is true.

[Hint. Start your proof by letting x be any element of the set on the left-

hand side and show that it is in the set on the right-hand side. Then do

the reverse.]

(b) Prove that (2) is true.

(c) Find (concrete) sets A1, A2, X, and Y and a function f : X → Y such that

f(A1 ∩ A2) 6= f(A1) ∩ f(A2), where A1 ⊆ X and A2 ⊆ X.

2. Is the topology τ described in Exercises 1.1 #6 (ii) the finite-closed topology?

(Justify your answer.)

3. A topological space (X,τ ) is said to be a T1-space if every singleton set {x} is

closed in (X,τ ). Show that precisely two of the following nine topological spaces

are T1-spaces. (Justify your answer.)

(i) a discrete space;

(ii) an indiscrete space with at least two points;

(iii) an infinite set with the finite-closed topology;

(iv) Example 1.1.2;

(v) Exercises 1.1 #5 (i);

(vi) Exercises 1.1 #5 (ii);

(vii) Exercises 1.1 #5 (iii);

(viii) Exercises 1.1 #6 (i);

(ix) Exercises 1.1 #6 (ii).
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4. Let τ be the finite-closed topology on a set X. If τ is also the discrete topology,

prove that the set X is finite.

5. A topological space (X,τ ) is said to be a T0-space if for each pair of distinct

points a, b in X, either there exists an open set containing a and not b, or there

exists an open set containing b and not a.

(i) Prove that every T1-space is a T0-space.

(ii) Which of (i)–(vi) in Exercise 3 above are T0-spaces? (Justify your answer.)

(iii) Put a topology τ on the set X = {0, 1} so that (X,τ ) will be a T0-space but

not a T1-space. [The topological space you obtain is called the Sierpinski

space.]

(iv) Prove that each of the topological spaces described in Exercises 1.1 #6

is a T0-space. (Observe that in Exercise 3 above we saw that neither is a

T1-space.)

6. Let X be any infinite set. The countable-closed topology is defined to be the

topology having as its closed sets X and all countable subsets of X. Prove that

this is indeed a topology on X.

7. Let τ 1 and τ 2 be two topologies on a set X. Prove each of the following

statements.

(i) If τ 3 is defined by τ 3 = τ 1 ∪ τ 2, then τ 3 is not necessarily a topology on X.

(Justify your answer, by finding a concrete example.)

(ii) If τ 4 is defined by τ 4 = τ 1 ∩τ 2, then τ 4 is a topology on X. (The topology

τ 4 is said to be the intersection of the topologies τ 1 and τ 2.)

(iii) If (X,τ 1) and (X,τ 2) are T1-spaces, then (X,τ 4) is also a T1-space.

(iv) If (X,τ 1) and (X,τ 2) are T0-spaces, then (X,τ 4) is not necessarily a T0-space.

(Justify your answer by finding a concrete example.)

(v) If τ 1,τ 2, . . . ,τ n are topologies on a set X, then τ =
n⋂
i=1

τ i is a topology on

X.

(vi) If for each i ∈ I, for some index set I, each τ i is a topology on the set X,

then τ =
⋂
i∈I
τ i is a topology on X.
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1.4 Postscript

In this chapter we introduced the fundamental notion of a topological space. As

examples we saw various finite topological spaces2, as well as discrete spaces,

indiscrete spaces and spaces with the finite-closed topology. None of these is a

particularly important example as far as applications are concerned. However, in

Exercises 4.3 #8, it is noted that every infinite topological space “contains” an

infinite topological space with one of the five topologies: the indiscrete topology,

the discrete topology, the finite-closed topology, the initial segment topology, or the

final segment topology of Exercises 1.1 #6. In the next chapter we describe the

very important euclidean topology.

En route we met the terms “open set” and “closed set” and we were warned

that these names can be misleading. Sets can be both open and closed, neither

open nor closed, open but not closed, or closed but not open. It is important to

remember that we cannot prove that a set is open by proving that it is not closed.

Other than the definitions of topology, topological space, open set, and closed

set the most significant topic covered was that of writing proofs.

In the opening comments of this chapter we pointed out the importance of

learning to write proofs. In Example 1.1.8, Proposition 1.1.9, and Example 1.3.3

we have seen how to “think through” a proof. It is essential that you develop your

own skill at writing proofs. Good exercises to try for this purpose include Exercises

1.1 #8, Exercises 1.2 #2,4, and Exercises 1.3 #1,4.

Some students are confused by the notion of topology as it involves “sets of

sets”. To check your understanding, do Exercises 1.1 #3.

The exercises included the notions of T0-space and T1-space which will be formally

introduced later. These are known as separation properties.

Finally we emphasize the importance of inverse images. These are dealt with in

Example 1.3.9 and Exercises 1.3 #1. Our definition of continuous mapping will rely

on inverse images.

2By a finite topological space we mean a topological space (X,τ ) where the set X is finite.



Chapter 2

The Euclidean Topology

Introduction

In a movie or a novel there are usually a few central characters about whom the

plot revolves. In the story of topology, the euclidean topology on the set of real

numbers is one of the central characters. Indeed it is such a rich example that we

shall frequently return to it for inspiration and further examination.

Let R denote the set of all real numbers. In Chapter 1 we defined three topologies

that can be put on any set: the discrete topology, the indiscrete topology and the

finite-closed topology. So we know three topologies that can be put on the set R.

Six other topologies on R were defined in Exercises 1.1 #5 and #9. In this chapter

we describe a much more important and interesting topology on R which is known

as the euclidean topology.

An analysis of the euclidean topology leads us to the notion of “basis for a

topology”. In the study of Linear Algebra we learn that every vector space has a

basis and every vector is a linear combination of members of the basis. Similarly, in

a topological space every open set can be expressed as a union of members of the

basis. Indeed, a set is open if and only if it is a union of members of the basis.

38
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2.1 The Euclidean Topology on RRR

2.1.1 Definition. A subset S of R is said to be open in the euclidean topology

on R if it has the following property:

(∗) For each x ∈ S, there exist a, b in R, with a < b, such that x ∈ (a, b) ⊆ S.

Notation. Whenever we refer to the topological space R without specifying the

topology, we mean R with the euclidean topology.

2.1.2 Remarks. (i) The “euclidean topology” τ is a topology.

Proof.

We are required to show that τ satisfies conditions (i), (ii), and (iii) of

Definitions 1.1.1.

We are given that a set is in τ if and only if it has property ∗.

Firstly, we show that R ∈ τ . Let x ∈ R. If we put a = x − 1 and b = x + 1, then

x ∈ (a, b) ⊆ R; that is, R has property ∗ and so R ∈ τ . Secondly, Ø ∈ τ as Ø has

property ∗ by default.

Now let {Aj : j ∈ J}, for some index set J, be a family of members of τ . Then

we have to show that
⋃
j∈J Aj ∈ τ ; that is, we have to show that

⋃
j∈J Aj has property

∗. Let x ∈
⋃
j∈J Aj. Then x ∈ Ak, for some k ∈ J. As Ak ∈ τ , there exist a and b in R

with a < b such that x ∈ (a, b) ⊆ Ak. As k ∈ J, Ak ⊆
⋃
j∈J Aj and so x ∈ (a, b) ⊆

⋃
j∈J Aj.

Hence
⋃
j∈J Aj has property ∗ and thus is in τ , as required.

Finally, let A1 and A2 be in τ . We have to prove that A1∩A2 ∈ τ . So let y ∈ A1∩A2.

Then y ∈ A1. As A1 ∈ τ , there exist a and b in R with a < b such that y ∈ (a, b) ⊆ A1.

Also y ∈ A2 ∈ τ . So there exist c and d in R with c < d such that y ∈ (c, d) ⊆ A2. Let

e be the greater of a and c, and f the smaller of b and d. It is easily checked that

e < y < f, and so y ∈ (e, f). As (e, f) ⊆ (a, b) ⊆ A1 and (e, f) ⊆ (c, d) ⊆ A2, we deduce that

y ∈ (e, f) ⊆ A1 ∩ A2. Hence A1 ∩ A2 has property ∗ and so is in τ .

Thus τ is indeed a topology on R. �
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We now proceed to describe the open sets and the closed sets in the euclidean

topology on R. In particular, we shall see that all open intervals are indeed open

sets in this topology and all closed intervals are closed sets.

(ii) Let r, s ∈ R with r < s. In the euclidean topology τ on R, the open interval

(r, s) does indeed belong to τ and so is an open set.

Proof.

We are given the open interval (r, s).

We must show that (r, s) is open in the euclidean topology; that is, we

have to show that (r, s) has property (∗) of Definition 2.1.1.

So we shall begin by letting x ∈ (r, s). We want to find a and b in R with

a < b such that x ∈ (a, b) ⊆ (r, s).

Let x ∈ (r, s). Choose a = r and b = s. Then clearly

x ∈ (a, b) ⊆ (r, s).

So (r, s) is an open set in the euclidean topology. �

(iii) The open intervals (r,∞) and (−∞, r) are open sets in R, for every real

number r.

Proof.

Firstly, we shall show that (r,∞) is an open set; that is, that it has property

(∗).

To show this we let x ∈ (r,∞) and seek a, b ∈ R such that

x ∈ (a, b) ⊆ (r,∞).

Let x ∈ (r,∞). Put a = r and b = x+ 1. Then x ∈ (a, b) ⊆ (r,∞) and so (r,∞) ∈ τ .

A similar argument shows that (−∞, r) is an open set in R. �
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(iv) It is important to note that while every open interval is an open set in

R, the converse is false. Not all open sets in R are intervals. For example, the

set (1, 3) ∪ (5, 6) is an open set in R, but it is not an open interval. Even the set⋃∞
n=1(2n, 2n+ 1) is an open set in R. �

(v) For each c and d in R with c < d, the closed interval [c, d] is not an open set

in R.

Proof.

We have to show that [c, d] does not have property (∗).

To do this it suffices to find any one x such that there is no a, b having

property (∗).

Obviously c and d are very special points in the interval [c, d]. So we shall

choose x = c and show that no a, b with the required property exist.

We use the method of proof called proof by contradiction. We suppose

that a and b exist with the required property and show that this leads to a

contradiction, that is something which is false.

Consequently the supposition is false! Hence no such a and b exist. Thus

[c, d] does not have property (∗) and so is not an open set.

Observe that c ∈ [c, d]. Suppose there exist a and b in R with a < b such that

c ∈ (a, b) ⊆ [c, d]. Then c ∈ (a, b) implies a < c < b and so a < c+a
2
< c < b. Thus c+a

2
∈ (a, b)

and c+a
2

/∈ [c, d]. Hence (a, b) 6⊆ [c, d], which is a contradiction. So there do not exist

a and b such that c ∈ (a, b) ⊆ [c, d]. Hence [c, d] does not have property (∗) and so

[c, d] /∈ τ . �

(vi) For each a and b in R with a < b, the closed interval [a, b] is a closed set in

the euclidean topology on R.

Proof. To see that it is closed we have to observe only that its complement

(−∞, a) ∪ (b,∞), being the union of two open sets, is an open set. �
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(vii) Each singleton set {a} is closed in R.

Proof. The complement of {a} is the union of the two open sets (−∞, a) and (a,∞)

and so is open. Therefore {a} is closed in R, as required.

[In the terminology of Exercises 1.3 #3, this result says that R is a T1-space.]�

(viii) Note that we could have included (vii) in (vi) simply by replacing “a < b”

by “a ≤ b”. The singleton set {a} is just the degenerate case of the closed interval

[a, b]. �

(ix) The set Z of all integers is a closed subset of R.

Proof. The complement of Z is the union
⋃∞
n=−∞(n, n+ 1) of open subsets (n, n+ 1)

of R and so is open in R. Therefore Z is closed in R. �

(x) The set Q of all rational numbers is neither a closed subset of R nor an

open subset of R.

Proof.

We shall show that Q is not an open set by proving that it does not have

property (∗).

To do this it suffices to show that Q does not contain any interval (a, b),

with a < b.

Suppose that (a, b) ⊆ Q, where a and b are in R with a < b. Between any two

distinct real numbers there is an irrational number. (Can you prove this?) Therefore

there exists c ∈ (a, b) such that c /∈ Q. This contradicts (a, b) ⊆ Q. Hence Q does not

contain any interval (a, b), and so is not an open set.

To prove that Q is not a closed set it suffices to show that R \Q is not an open

set. Using the fact that between any two distinct real numbers there is a rational

number we see that R \Q does not contain any interval (a, b) with a < b. So R \Q is

not open in R and hence Q is not closed in R. �

(xi) In Chapter 3 we shall prove that the only clopen subsets of R are the trivial

ones, namely R and Ø. �
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Exercises 2.1

1. Prove that if a, b ∈ R with a < b then neither [a, b) nor (a, b] is an open subset of

R. Also show that neither is a closed subset of R.

2. Prove that the sets [a,∞) and (−∞, a] are closed subsets of R.

3. Show, by example, that the union of an infinite number of closed subsets of R
is not necessarily a closed subset of R.

4. Prove each of the following statements.

(i) The set Z of all integers is not an open subset of R.

(ii) The set S of all prime numbers is a closed subset of R but not an open

subset of R.

(iii) The set P of all irrational numbers is neither a closed subset nor an open

subset of R.

5. If F is a non-empty finite subset of R, show that F is closed in R but that F is

not open in R.

6. If F is a non-empty countable subset of R, prove that F is not an open set.

7. (i) Let S = {0, 1, 1/2, 1/3, 1/4, 1/5, . . . , 1/n, . . .}. Prove that the set S is closed in

the euclidean topology on R.

(ii) Is the set T = {1, 1/2, 1/3, 1/4, 1/5, . . . , 1/n, . . .} closed in R?

(iii) Is the set {
√

2, 2
√

2, 3
√

2, . . . , n
√

2, . . . } closed in R?

8. (i) Let (X,τ ) be a topological space. A subset S of X is said to be an Fσ-set

if it is the union of a countable number of closed sets. Prove that all open

intervals (a, b) and all closed intervals [a, b], are Fσ-sets in R.

(ii) Let (X,τ ) be a topological space. A subset T of X is said to be a Gδ-set

if it is the intersection of a countable number of open sets. Prove that all

open intervals (a, b) and all closed intervals [a, b] are Gδ-sets in R.

(iii) Prove that the set Q of rationals is an Fσ-set in R. (In Exercises 6.5#3 we

prove that Q is not a Gδ-set in R.)

(iv) Verify that the complement of an Fσ-set is a Gδ-set and the complement of

a Gδ-set is an Fσ-set.
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2.2 Basis for a Topology

Remarks 2.1.2 allow us to describe the euclidean topology on R in a much more

convenient manner. To do this, we introduce the notion of a basis for a topology.

2.2.1 Proposition. A subset S of R is open if and only if it is a union of

open intervals.

Proof.

We are required to prove that S is open if and only if it is a union of open

intervals; that is, we have to show that

(i) if S is a union of open intervals, then it is an open set, and

(ii) if S is an open set, then it is a union of open intervals.

Assume that S is a union of open intervals; that is, there exist open intervals

(aj, bj), where j belongs to some index set J, such that S =
⋃
j∈J(aj, bj). By Remarks

2.1.2 (ii) each open interval (aj, bj) is an open set. Thus S is a union of open sets

and so S is an open set.

Conversely, assume that S is open in R. Then for each x ∈ S, there exists an

interval Ix = (a, b) such that x ∈ Ix ⊆ S. We now claim that S =
⋃
x∈S Ix.

We are required to show that the two sets S and
⋃
x∈S Ix are equal.

These sets are shown to be equal by proving that

(i) if y ∈ S, then y ∈
⋃
x∈S Ix, and

(ii) if z ∈
⋃
x∈S Ix, then z ∈ S.

[Note that (i) is equivalent to the statement S ⊆
⋃
x∈S Ix, while (ii) is

equivalent to
⋃
x∈S Ix ⊆ S.]

Firstly let y ∈ S. Then y ∈ Iy. So y ∈
⋃
x∈S Ix, as required. Secondly, let z ∈

⋃
x∈S Ix.

Then z ∈ It, for some t ∈ S. As each Ix ⊆ S, we see that It ⊆ S and so z ∈ S. Hence

S =
⋃
x∈S Ix, and we have that S is a union of open intervals, as required.
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The above proposition tells us that in order to describe the topology of R it

suffices to say that all intervals (a, b) are open sets. Every other open set is a union

of these open sets. This leads us to the following definition.

2.2.2 Definition. Let (X,τ ) be a topological space. A collection B of open

subsets of X is said to be a basis for the topology τ if every open set is a union

of members of B.

If B is a basis for a topology τ on a set X then a subset U of X is in τ if

and only if it is a union of members of B. So B “generates” the topology τ in the

following sense: if we are told what sets are members of B then we can determine

the members of τ – they are just all the sets which are unions of members of B.

2.2.3 Example. Let B = {(a, b) : a, b ∈ R, a < b}. Then B is a basis for the euclidean

topology on R, by Proposition 2.2.1. �

2.2.4 Example. Let (X,τ ) be a discrete space and B the family of all singleton

subsets of X; that is, B = {{x} : x ∈ X}. Then, by Proposition 1.1.9, B is a basis for

τ . �

2.2.5 Example. Let X = {a, b, c, d, e, f} and

τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then B = {{a}, {c, d}, {b, c, d, e, f}} is a basis for τ 1 as B ⊆ τ 1 and every member of τ 1

can be expressed as a union of members of B. (Observe that Ø is an empty union

of members of B.)

Note that τ 1 itself is also a basis for τ 1. �
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2.2.6 Remark. Observe that if (X,τ ) is a topological space then B = τ is a basis

for the topology τ . So, for example, the set of all subsets of X is a basis for the

discrete topology on X.

We see, therefore, that there can be many different bases for the same topology.

Indeed if B is a basis for a topology τ on a set X and B1 is a collection of subsets

of X such that B ⊆ B1 ⊆ τ , then B1 is also a basis for τ . [Verify this.] �

As indicated above the notion of “basis for a topology” allows us to define

topologies. However the following example shows that we must be careful.

2.2.7 Example. Let X = {a, b, c} and B = {{a}, {c}, {a, b}, {b, c}}. Then B is not a basis

for any topology on X. To see this, suppose that B is a basis for a topology τ .

Then τ consists of all unions of sets in B; that is,

τ = {X,Ø, {a}, {c}, {a, c}, {a, b}, {b, c}}.

(Once again we use the fact that Ø is an empty union of members of B and so

Ø ∈ τ .)

However, τ is not a topology since the set {b} = {a, b} ∩ {b, c} is not in τ and so

τ does not have property (iii) of Definitions 1.1.1. This is a contradiction, and so

our supposition is false. Thus B is not a basis for any topology on X. �

Thus we are led to ask: if B is a collection of subsets of X, under what conditions

is B a basis for a topology? This question is answered by Proposition 2.2.8.
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2.2.8 Proposition. Let X be a non-empty set and let B be a collection of

subsets of X. Then B is a basis for a topology on X if and only if B has the

following properties:

(a) X =
⋃
B∈B

B, and

(b) for any B1, B2 ∈ B, the set B1 ∩B2 is a union of members of B.

Proof. If B is a basis for a topology τ then τ must have the properties (i), (ii), and

(iii) of Definitions 1.1.1. In particular X must be an open set and the intersection

of any two open sets must be an open set. As the open sets are just the unions of

members of B, this implies that (a) and (b) above are true.

Conversely, assume that B has properties (a) and (b) and let τ be the collection

of all subsets of X which are unions of members of B. We shall show that τ is

a topology on X. (If so then B is obviously a basis for this topology τ and the

proposition is true.)

By (a), X =
⋃
B∈B B and so X ∈ τ . Note that Ø is an empty union of members of

B and so Ø ∈ τ . So we see that τ does have property (i) of Definitions 1.1.1.

Now let {Tj} be a family of members of τ . Then each Tj is a union of members

of B. Hence the union of all the Tj is also a union of members of B and so is in τ .

Thus τ also satisfies condition (ii) of Definitions 1.1.1.

Finally let C and D be in τ . We need to verify that C ∩D ∈ τ . But C =
⋃
k∈K Bk,

for some index set K and sets Bk ∈ B. Also D =
⋃
j∈J Bj, for some index set J and

Bj ∈ B. Therefore

C ∩D =

( ⋃
k∈K

Bk

) ⋂ (⋃
j∈J

Bj

)
=

⋃
k∈K, j∈J

(Bk ∩Bj).

You should verify that the two expressions for C ∩D are indeed equal!

In the finite case this involves statements like

(B1 ∪B2) ∩ (B3 ∪B4) = (B1 ∩B3) ∪ (B1 ∩B4) ∪ (B2 ∩B3) ∪ (B2 ∩B4).

By our assumption (b), each Bk ∩ Bj is a union of members of B and so C ∩ D
is a union of members of B. Thus C ∩ D ∈ τ . So τ has property (iii) of Definition

1.1.1. Hence τ is indeed a topology, and B is a basis for this topology, as required.�
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Proposition 2.2.8 is a very useful result. It allows us to define topologies by

simply writing down a basis. This is often easier than trying to describe all of the

open sets.

We shall now use this Proposition to define a topology on the plane. This

topology is known as the “euclidean topology”.

2.2.9 Example. Let B be the collection of all “open rectangles”

{〈x, y〉 : 〈x, y〉 ∈ R2, a < x < b, c < y < d} in the plane which have each side parallel to

the X- or Y -axis.
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Then B is a basis for a topology on the plane. This topology is called the euclidean

topology.

Whenever we use the symbol R2 we mean the plane, and if we refer to R2 as a

topological space without explicitly saying what the topology is, we mean the plane

with the euclidean topology.

To see that B is indeed a basis for a topology, observe that (i) the plane is the

union of all of the open rectangles, and (ii) the intersection of any two rectangles is

a rectangle. [By “rectangle” we mean one with sides parallel to the axes.] So the

conditions of Proposition 2.2.8 are satisfied and hence B is a basis for a topology.�

2.2.10 Remark. By generalizing Example 2.2.9 we see how to put a topology

on Rn = {〈x1, x2, . . . , xn〉 : xi ∈ R, i = 1, . . . , n}, for each integer n > 2. We let B be

the collection of all subsets {〈x1, x2, . . . , xn〉 ∈ Rn : ai < xi < bi, i = 1, 2, . . . , n} of Rn with

sides parallel to the axes. This collection B is a basis for the euclidean topology on

Rn. �
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Exercises 2.2

1. In this exercise you will prove that disc {〈x, y〉 : x2 + y2 < 1} is an open subset of

R2, and then that every open disc in the plane is an open set.

(i) Let 〈a, b〉 be any point in the disc D = {〈x, y〉 : x2 + y2 < 1}. Put r =
√
a2 + b2.

Let R〈a,b〉 be the open rectangle with vertices at the points 〈a± 1−r
8
, b± 1−r

8
〉.

Verify that R〈a,b〉 ⊂ D.

(ii) Using (i) show that

D =
⋃
〈a,b〉∈D

R〈a,b〉.

(iii) Deduce from (ii) that D is an open set in R2.

(iv) Show that every disc {〈x, y〉 : (x− a)2 + (y − b)2 < c2, a, b, c ∈ R} is open in R2.

2. In this exercise you will show that the collection of all open discs in R2 is a basis

for a topology on R2. [Later we shall see that this is the euclidean topology.]

(i) Let D1 and D2 be any open discs in R2 with D1∩D2 6= Ø. If 〈a, b〉 is any point

in D1 ∩D2, show that there exists an open disc D〈a,b〉 with centre 〈a, b〉 such

that D〈a,b〉 ⊂ D1 ∩D2.

[Hint: draw a picture and use a method similar to that of Exercise 1 (i).]

(ii) Show that

D1 ∩D2 =
⋃

〈a,b〉∈D1∩D2

D〈a,b〉.

(iii) Using (ii) and Proposition 2.2.8, prove that the collection of all open discs

in R2 is a basis for a topology on R2.

3. Let B be the collection of all open intervals (a, b) in R with a < b and a and

b rational numbers. Prove that B is a basis for the euclidean topology on R.

[Compare this with Proposition 2.2.1 and Example 2.2.3 where a and b were

not necessarily rational.]

[Hint: do not use Proposition 2.2.8 as this would show only that B is a basis

for some topology not necessarily a basis for the euclidean topology.]
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4. A topological space (X,τ ) is said to satisfy the second axiom of countability or

to be second countable if there exists a basis B for τ , where B consists of only

a countable number of sets.

(i) Using Exercise 3 above show that R satisfies the second axiom of countability.

(ii) Prove that the discrete topology on an uncountable set does not satisfy

the second axiom of countability.

[Hint. It is not enough to show that one particular basis is uncountable.

You must prove that every basis for this topology is uncountable.]

(iii) Prove that Rn satisfies the second axiom of countability, for each positive

integer n.

(iv) Let (X,τ ) be the set of all integers with the finite-closed topology. Does

the space (X,τ ) satisfy the second axiom of countability?

5. Prove the following statements.

(i) Let m and c be real numbers, with m 6= 0. Then the line L = {〈x, y〉 : y = mx+c}
is a closed subset of R2.

(ii) Let S1 be the unit circle given by S1 = {〈x, y〉 ∈ R2 : x2 + y2 = 1}. Then S1 is a

closed subset of R2.

(iii) Let Sn be the unit n-sphere given by

Sn = {〈x1, x2, . . . , xn, xn+1〉 ∈ Rn+1 : x21 + x22 + · · ·+ x2n+1 = 1}.

Then Sn is a closed subset of Rn+1.

(iv) Let Bn be the closed unit n-ball given by

Bn = {〈x1, x2, . . . , xn〉 ∈ Rn : x21 + x22 + · · ·+ x2n ≤ 1}.

Then Bn is a closed subset of Rn.

(v) The curve C = {〈x, y〉 ∈ R2 : xy = 1} is a closed subset of R2.

6. Let B1 be a basis for a topology τ 1 on a set X and B2 a basis for a topology τ 2

on a set Y . The set X × Y consists of all ordered pairs 〈x, y〉, x ∈ X and y ∈ Y .

Let B be the collection of subsets of X × Y consisting of all the sets B1 × B2

where B1 ∈ B1 and B2 ∈ B2. Prove that B is a basis for a topology on X×Y . The

topology so defined is called the product topology on X × Y .

[Hint. See Example 2.2.9.]
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7. Using Exercise 3 above and Exercises 2.1 #8, prove that every open subset of

R is an Fσ-set and a Gδ-set.

2.3 Basis for a Given Topology

Proposition 2.2.8 told us under what conditions a collection B of subsets of a set

X is a basis for some topology on X. However sometimes we are given a topology

τ on X and we want to know whether B is a basis for this specific topology τ . To

verify that B is a basis for τ we could simply apply Definition 2.2.2 and show that

every member of τ is a union of members of B. However, Proposition 2.3.2 provides

us with an alternative method.

But first we present an example which shows that there is a difference between

saying that a collection B of subsets of X is a basis for some topology, and saying

that it is a basis for a given topology.

2.3.1 Example. Let B be the collection of all half-open intervals of the form

(a, b], a < b, where (a, b] = {x : x ∈ R, a < x ≤ b}. Then B is a basis for a topology on R,

since R is the union of all members of B and the intersection of any two half-open

intervals is a half-open interval.

However, the topology τ 1 which has B as its basis, is not the euclidean topology

on R. We can see this by observing that (a, b] is an open set in R with topology τ 1,

while (a, b] is not an open set in R with the euclidean topology. (See Exercises 2.1

#1.) So B is a basis for some topology but not a basis for the euclidean topology

on R. �
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2.3.2 Proposition. Let (X,τ ) be a topological space. A family B of open

subsets of X is a basis for τ if and only if for any point x belonging to any open

set U , there is a B ∈ B such that x ∈ B ⊆ U.

Proof.

We are required to prove that

(i) if B is a basis for τ and x ∈ U ∈ τ , then there exists a B ∈ B such that

x ∈ B ⊆ U ,

and

(ii) if for each U ∈ τ and x ∈ U there exists a B ∈ B such that x ∈ B ⊆ U ,

then B is

a basis for τ .

Assume B is a basis for τ and x ∈ U ∈ τ . As B is a basis for τ , the open set U

is a union of members of B; that is, U =
⋃
j∈J Bj, where Bj ∈ B, for each j in some

index set J. But x ∈ U implies x ∈ Bj, for some j ∈ J. Thus x ∈ Bj ⊆ U , as required.

Conversely, assume that for each U ∈ τ and each x ∈ U , there exists a B ∈ B with

x ∈ B ⊆ U . We have to show that every open set is a union of members of B. So

let V be any open set. Then for each x ∈ V , there is a Bx ∈ B such that x ∈ Bx ⊆ V .

Clearly V =
⋃
x∈V Bx. (Check this!) Thus V is a union of members of B. �

2.3.3 Proposition. Let B be a basis for a topology τ on a set X. Then a

subset U of X is open if and only if for each x ∈ U there exists a B ∈ B such that

x ∈ B ⊆ U .

Proof. Let U be any subset of X. Assume that for each x ∈ U , there exists a

Bx ∈ B such that x ∈ Bx ⊆ U . Clearly U =
⋃
x∈U Bx. So U is a union of open sets

and hence is open, as required. The converse statement follows from Proposition

2.3.2. �
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Observe that the basis property described in Proposition 2.3.3 is precisely what

we used in defining the euclidean topology on R. We said that a subset U of R is

open if and only if for each x ∈ U , there exist a and b in R with a < b, such that

x ∈ (a, b) ⊆ U.

Warning. Make sure that you understand the difference between Proposition 2.2.8

and Proposition 2.3.2. Proposition 2.2.8 gives conditions for a family B of subsets

of a set X to be a basis for some topology on X. However, Proposition 2.3.2 gives

conditions for a family B of subsets of a topological space (X,τ ) to be a basis for

the given topology τ .

We have seen that a topology can have many different bases. The next

proposition tells us when two bases B1 and B2 on the set X define the same topology.

2.3.4 Proposition. Let B1 and B2 be bases for topologies τ 1 and τ 2,

respectively, on a non-empty set X. Then τ 1 = τ 2 if and only if

(i) for each B ∈ B1 and each x ∈ B, there exists a B
′ ∈ B2 such that x ∈ B′ ⊆ B,

and

(ii) for each B ∈ B2 and each x ∈ B, there exists a B
′ ∈ B1 such that x ∈ B′ ⊆ B.

Proof.

We are required to show that B1 and B2 are bases for the same topology

if and only if (i) and (ii) are true.

Firstly we assume that they are bases for the same topology, that is

τ 1 = τ 2, and show that conditions (i) and (ii) hold.

Next we assume that (i) and (ii) hold and show that τ 1 = τ 2.

Firstly, assume that τ 1 = τ 2. Then (i) and (ii) are immediate consequences of

Proposition 2.3.2.

Conversely, assume that B1 and B2 satisfy the conditions (i) and (ii). By

Proposition 2.3.2, (i) implies that each B ∈ B1 is open in (X,τ 2); that is, B1 ⊆ τ 2. As

every member of τ 1 is a union of members of τ 2 this implies τ 1 ⊆ τ 2. Similarly (ii)

implies τ 2 ⊆ τ 1. Hence τ 1 = τ 2, as required. �
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2.3.5 Example. Show that the set B of all “open equilateral triangles” with base

parallel to the X-axis is a basis for the euclidean topology on R2. (By an “open

triangle” we mean that the boundary is not included.)

Outline Proof. (We give here only a pictorial argument. It is left to you to write a

detailed proof.)

We are required to show that B is a basis for the euclidean topology.

We shall apply Proposition 2.3.4, but first we need to show that B is a

basis for some topology on R2.

To do this we show that B satisfies the conditions of Proposition 2.2.8.
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...........................

The first thing we observe is that B is a basis for some topology because it

satisfies the conditions of Proposition 2.2.8. (To see that B satisfies Proposition

2.2.8, observe that R2 equals the union of all open equilateral triangles with base

parallel to the X-axis, and that the intersection of two such triangles is another such

triangle.)

Next we shall show that the conditions (i) and (ii) of Proposition 2.3.4 are

satisfied.

Firstly we verify condition (i). Let R be an open rectangle with sides parallel to

the axes and any x any point in R. We have to show that there is an open equilateral

triangle T with base parallel to the X-axis such that x ∈ T ⊆ R. Pictorially this is

easy to see.
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Finally we verify condition (ii) of Proposition 2.3.4. Let T ′ be an open equilateral

triangle with base parallel to the X-axis and let y be any point in T ′. Then there

exists an open rectangle R′ such that y ∈ R′ ⊆ T ′. Pictorially, this is again easy to

see.
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So the conditions of Proposition 2.3.4 are satisfied. Thus B is indeed a basis for

the euclidean topology on R2. �

In Example 2.2.9 we defined a basis for the euclidean topology to be the

collection of all “open rectangles” (with sides parallel to the axes). Example 2.3.5

shows that “open rectangles” can be replaced by “open equilateral triangles” (with

base parallel to the X-axis) without changing the topology. In Exercises 2.3 #1

we see that the conditions above in brackets can be dropped without changing the

topology. Also “open rectangles” can be replaced by “open discs”1.

1In fact, most books describe the euclidean topology on R2 in terms of open discs.
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Exercises 2.3

1. Determine whether or not each of the following collections is a basis for the

euclidean topology on R2 :

(i) the collection of all “open” squares with sides parallel to the axes;

(ii) the collection of all “open” discs;

(iii) the collection of all “open” squares;

(iv) the collection of all “open” rectangles.

(v) the collection of all “open” triangles

2. (i) Let B be a basis for a topology τ on a non-empty set X. If B1 is a collection

of subsets of X such that τ ⊇ B1 ⊇ B, prove that B1 is also a basis for τ .

(ii) Deduce from (i) that there exist an uncountable number of distinct bases

for the euclidean topology on R.

3. Let B = {(a, b] : a, b ∈ R, a < b}. As seen in Example 2.3.1, B is a basis for a

topology τ on R and τ is not the euclidean topology on R. Nevertheless, show

that each interval (a, b) is open in (R,τ ).

4.* Let C[0, 1] be the set of all continuous real-valued functions on [0, 1].

(i) Show that the collection M, where M = {M(f, ε) : f ∈ C[0, 1] and ε is a

positive real number} and M(f, ε) =
{
g : g ∈ C[0, 1] and

∫ 1

0

|f − g| < ε
}

, is a

basis for a topology τ 1 on C[0, 1].

(ii) Show that the collection U, where U = {U(f, ε) : f ∈ C[0, 1] and ε is a positive

real number} and U(f, ε) = {g : g ∈ C[0, 1] and supx∈[0,1] | f(x) − g(x) |< ε}, is a

basis for a topology τ 2 on C[0, 1].

(iii) Prove that τ 1 6= τ 2.
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5. Let (X,τ ) be a topological space. A non-empty collection S of open subsets

of X is said to be a subbasis for τ if the collection of all finite intersections of

members of S forms a basis for τ .

(i) Prove that the collection of all open intervals of the form (a,∞) or (−∞, b)
is a subbasis for the euclidean topology on R.

(ii) Prove that S = {{a}, {a, c, d}, {b, c, d, e, f}} is a subbasis for the topology τ 1 of

Example 1.1.2.

6. Let S be a subbasis for a topology τ on the set R. (See Exercise 5 above.) If

all of the closed intervals [a, b], with a < b, are in S, prove that τ is the discrete

topology.

7. Let X be a non-empty set and S the collection of all sets X \ {x}, x ∈ X. Prove

S is a subbasis for the finite-closed topology on X.

8. Let X be any infinite set and τ the discrete topology on X. Find a subbasis S
for τ such that S does not contain any singleton sets.

9. Let S be the collection of all straight lines in the plane R2. If S is a subbasis

for a topology τ on the set R 2, what is the topology?

10. Let S be the collection of all straight lines in the plane which are parallel to

the X-axis. If S is a subbasis for a topology τ on R2, describe the open sets in

(R2,τ ).

11. Let S be the collection of all circles in the plane. If S is a subbasis for a topology

τ on R2, describe the open sets in (R2,τ ).

12. Let S be the collection of all circles in the plane which have their centres on

the X-axis. If S is a subbasis for a topology τ on R2, describe the open sets in

(R2,τ ).
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2.4 Postscript

In this chapter we have defined a very important topological space – R, the set

of all real numbers with the euclidean topology, and spent some time analyzing it.

We observed that, in this topology, open intervals are indeed open sets (and closed

intervals are closed sets). However, not all open sets are open intervals. Nevertheless,

every open set in R is a union of open intervals. This led us to introduce the notion

of “basis for a topology” and to establish that the collection of all open intervals is

a basis for the euclidean topology on R.

In the introduction to Chapter 1 we described a mathematical proof as a

watertight argument and underlined the importance of writing proofs. In this chapter

we were introduced to proof by contradiction in Remarks 2.1.2 (v) with another

example in Example 2.2.7. Proving “necessary and sufficient” conditions, that is,

“if and only if” conditions, was explained in Proposition 2.2.1, with further examples

in Propositions 2.2.8, 2.3.2, 2.3.3, and 2.3.4.

Bases for topologies is a significant topic in its own right. We saw, for example,

that the collection of all singletons is a basis for the discrete topology. Proposition

2.2.8 gives necessary and sufficient conditions for a collection of subsets of a set X

to be a basis for some topology on X. This was contrasted with Proposition 2.3.2

which gives necessary and sufficient conditions for a collection of subsets of X to be

a basis for the given topology on X. It was noted that two different collections B1
and B2 can be bases for the same topology. Necessary and sufficient conditions for

this are given by Proposition 2.3.4.

We defined the euclidean topology on Rn, for n any positive integer. We saw

that the family of all open discs is a basis for R2, as is the family of all open squares,

or the family of all open rectangles.

The exercises introduced three interesting ideas. Exercises 2.1 #8 covered

the notions of Fσ-set and Gδ-set which are important in measure theory. Exercises

2.3 #4 introduced the space of continuous real-valued functions. Such spaces are

called function spaces which are the central objects of study in functional analysis.

Functional analysis is a blend of (classical) analysis and topology, and was for some

time called modern analysis, cf. Simmons [204]. Finally, Exercises 2.3 #5–12 dealt

with the notion of subbasis.



Chapter 3

Limit Points

Introduction

On the real number line we have a notion of “closeness”. For example each point in

the sequence .1, .01, .001, .0001, .00001, . . . is closer to 0 than the previous one. Indeed, in

some sense, 0 is a limit point of this sequence. So the interval (0, 1] is not closed, as

it does not contain the limit point 0. In a general topological space we do not have

a “distance function”, so we must proceed differently. We shall define the notion

of limit point without resorting to distances. Even with our new definition of limit

point, the point 0 will still be a limit point of (0, 1] . The introduction of the notion

of limit point will lead us to a much better understanding of the notion of closed

set.

Another very important topological concept we shall introduce in this chapter is

that of connectedness. Consider the topological space R. While the sets [0, 1] ∪ [2, 3]

and [4, 6] could both be described as having length 2, it is clear that they are different

types of sets . . . the first consists of two disjoint pieces and the second of just one

piece. The difference between the two is “topological” and will be exposed using

the notion of connectedness.

59
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3.1 Limit Points and Closure

If (X,τ ) is a topological space then it is usual to refer to the elements of the set X

as points.

3.1.1 Definition. Let A be a subset of a topological space (X,τ ). A point

x ∈ X is said to be a limit point (or accumulation point or cluster point) of A if

every open set, U , containing x contains a point of A different from x.

3.1.2 Example. Consider the topological space (X,τ ) where the set X =

{a, b, c, d, e}, the topology τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}}, and A = {a, b, c}. Then

b, d, and e are limit points of A but a and c are not limit points of A.

Proof.

The point a is a limit point of A if and only if every open set containing a

contains another point of the set A.

So to show that a is not a limit point of A, it suffices to find even one

open set which contains a but contains no other point of A.

The set {a} is open and contains no other point of A. So a is not a limit point

of A.

The set {c, d} is an open set containing c but no other point of A. So c is not a

limit point of A.

To show that b is a limit point of A, we have to show that every open set

containing b contains a point of A other than b.

We shall show this is the case by writing down all of the open sets

containing b and verifying that each contains a point of A other than b.

The only open sets containing b are X and {b, c, d, e} and both contain another

element of A, namely c. So b is a limit point of A.

The point d is a limit point of A, even though it is not in A. This is so since

every open set containing d contains a point of A. Similarly e is a limit point of A

even though it is not in A. �
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3.1.3 Example. Let (X,τ ) be a discrete space and A a subset of X. Then A has

no limit points, since for each x ∈ X, {x} is an open set containing no point of A

different from x. �

3.1.4 Example. Consider the subset A = [a, b) of R. Then it is easily verified that

every element in [a, b) is a limit point of A. The point b is also a limit point of A. �

3.1.5 Example. Let (X,τ ) be an indiscrete space and A a subset of X with at

least two elements. Then it is readily seen that every point of X is a limit point of

A. (Why did we insist that A have at least two points?) �

The next proposition provides a useful way of testing whether a set is closed or

not.

3.1.6 Proposition. Let A be a subset of a topological space (X,τ ). Then A

is closed in (X,τ ) if and only if A contains all of its limit points.

Proof.

We are required to prove that A is closed in (X,τ ) if and only if A contains

all of its limit points; that is, we have to show that

(i) if A is a closed set, then it contains all of its limit points, and

(ii) if A contains all of its limit points, then it is a closed set.

Assume that A is closed in (X,τ ). Suppose that p is a limit point of A which

belongs to X \ A. Then X \ A is an open set containing the limit point p of A.

Therefore X \ A contains an element of A. This is clearly false and so we have a

contradiction to our supposition. Therefore every limit point of A must belong to

A.

Conversely, assume that A contains all of its limit points. For each z ∈ X \A, our

assumption implies that there exists an open set Uz 3 z such that Uz ∩ A = Ø; that

is, Uz ⊆ X \A. Therefore X \A =
⋃
z∈X\A Uz. (Check this!) So X \A is a union of open

sets and hence is open. Consequently its complement, A, is closed. �
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3.1.7 Example. As applications of Proposition 3.1.6 we have the following:

(i) the set [a, b) is not closed in R, since b is a limit point and b /∈ [a, b);

(ii) the set [a, b] is closed in R, since all the limit points of [a, b] (namely all the

elements of [a, b]) are in [a, b];

(iii) (a, b) is not a closed subset of R, since it does not contain the limit point a;

(iv) [a,∞) is a closed subset of R. �

3.1.8 Proposition. Let A be a subset of a topological space (X,τ ) and A′

the set of all limit points of A. Then A ∪ A′ is a closed set.

Proof. From Proposition 3.1.6 it suffices to show that the set A ∪ A′ contains all

of its limit points or equivalently that no element of X \ (A ∪ A′) is a limit point of

A ∪ A′.

Let p ∈ X \ (A ∪ A′). As p /∈ A′, there exists an open set U containing p with

U ∩ A = {p} or Ø. But p /∈ A, so U ∩ A = Ø. We claim also that U ∩ A′ = Ø. For if

x ∈ U then as U is an open set and U ∩ A = Ø, x /∈ A′. Thus U ∩ A′ = Ø. That is,

U ∩ (A ∪ A′) = Ø, and p ∈ U. This implies p is not a limit point of A ∪ A′ and so A ∪ A′

is a closed set. �

3.1.9 Definition. Let A be a subset of a topological space (X,τ ). Then the

set A∪A′ consisting of A and all its limit points is called the closure of A and is

denoted by A.

3.1.10 Remark. It is clear from Proposition 3.1.8 that A is a closed set. By

Proposition 3.1.6 and Exercises 3.1 #5 (i), every closed set containing A must also

contain the set A′. So A∪A′ = A is the smallest closed set containing A. This implies

that A is the intersection of all closed sets containing A. �



3.1. LIMIT POINTS AND CLOSURE 63

3.1.11 Example. Let X = {a, b, c, d, e} and

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Show that {b} = {b, e}, {a, c} = X, and {b, d} = {b, c, d, e}.

Proof.

To find the closure of a particular set, we shall find all the closed sets

containing that set and then select the smallest. We therefore begin by

writing down all of the closed sets – these are simply the complements of

all the open sets.

The closed sets are Ø, X, {b, c, d, e}, {a, b, e}, {b, e} and {a}. So the smallest closed set

containing {b} is {b, e}; that is, {b} = {b, e}. Similarly {a, c} = X, and {b, d} = {b, c, d, e}.�

3.1.12 Example. Let Q be the subset of R consisting of all the rational numbers.

Prove that Q = R.

Proof. Suppose Q 6= R. Then there exists an x ∈ R \ Q. As R\Q is open in R,

there exist a, b with a < b such that x ∈ (a, b) ⊆ R \Q. But in every interval (a, b) there

is a rational number q; that is, q ∈ (a, b). So q ∈ R \Q which implies q ∈ R \Q. This is

a contradiction, as q ∈ Q. Hence Q = R. �

3.1.13 Definition. Let A be a subset of a topological space (X,τ ). Then A

is said to be dense in X or everywhere dense in X if A = X.

We can now restate Example 3.1.12 as: Q is a dense subset of R.

Note that in Example 3.1.11 we saw that {a, c} is dense in X.

3.1.14 Example. Let (X,τ ) be a discrete space. Then every subset of X is

closed (since its complement is open). Therefore the only dense subset of X is X

itself, since each subset of X is its own closure. �
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3.1.15 Proposition. Let A be a subset of a topological space (X,τ ). Then

A is dense in X if and only if every non-empty open subset of X intersects A

non-trivially (that is, if U ∈ τ and U 6= Ø then A ∩ U 6= Ø.)

Proof. Assume, firstly that every non-empty open set intersects A non-trivially.

If A = X, then clearly A is dense in X. If A 6= X, let x ∈ X \ A. If U ∈ τ and x ∈ U
then U ∩ A 6= Ø. So x is a limit point of A. As x is an arbitrary point in X \ A, every

point of X \ A is a limit point of A. So A′ ⊇ X \ A and then, by Definition 3.1.9,

A = A′ ∪ A = X; that is, A is dense in X.

Conversely, assume A is dense in X. Let U be any non-empty open subset of

X. Suppose U ∩ A = Ø. Then if x ∈ U , x /∈ A and x is not a limit point of A, since

U is an open set containing x which does not contain any element of A. This is a

contradiction since, as A is dense in X, every element of X \A is a limit point of A.

So our supposition is false and U ∩ A 6= Ø, as required. �

Exercises 3.1

1. (a) In Example 1.1.2, find all the limit points of the following sets:

(i) {a},
(ii) {b, c},
(iii) {a, c, d},
(iv) {b, d, e, f}.

(b) Hence, find the closure of each of the above sets.

(c) Now find the closure of each of the above sets using the method of Example

3.1.11.

2. Let (Z,τ ) be the set of integers with the finite-closed topology. List the set of

limit points of the following sets:

(i) A = {1, 2, 3, . . . , 10},
(ii) The set, E, consisting of all even integers.

3. Find all the limit points of the open interval (a, b) in R, where a < b.
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4. (a) What is the closure in R of each of the following sets?

(i) {1, 1
2
, 1
3
, 1
4
, . . . , 1

n
, . . . },

(ii) the set Z of all integers,

(iii) the set P of all irrational numbers.

(b) Let S be a subset of R and a ∈ R. Prove that a ∈ S if and only if for each

positive integer n, there exists an xn ∈ S such that |xn − a| < 1
n
.

5. Let S and T be non-empty subsets of a topological space (X,τ ) with S ⊆ T .

(i) If p is a limit point of the set S, verify that p is also a limit point of the set

T .

(ii) Deduce from (i) that S ⊆ T .

(iii) Hence show that if S is dense in X, then T is dense in X.

(iv) Using (iii) show that R has an uncountable number of distinct dense subsets.

[Hint. Uncountable sets are discussed in Appendix 2.]

(v)* Again using (iii), prove that R has an uncountable number of distinct

countable dense subsets and 2c distinct uncountable dense subsets.

[Hint. Note that c is discussed in Appendix 1.]

3.2 Neighbourhoods

3.2.1 Definition. Let (X,τ ) be a topological space, N a subset of X and p a

point in N . Then N is said to be a neighbourhood of the point p if there exists

an open set U such that p ∈ U ⊆ N.

3.2.2 Example. The closed interval [0, 1] in R is a neighbourhood of the point 1
2
,

since 1
2
∈ (1

4
, 3
4
) ⊆ [0, 1]. �

3.2.3 Example. The interval (0, 1] in R is a neighbourhood of the point 1
4
, as

1
4
∈ (0, 1

2
) ⊆ (0, 1]. But (0, 1] is not a neighbourhood of the point 1. (Prove this.) �
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3.2.4 Example. If (X,τ ) is any topological space and U ∈ τ , then from Definition

3.2.1, it follows that U is a neighbourhood of every point p ∈ U. So, for example,

every open interval (a, b) in R is a neighbourhood of every point that it contains. �

3.2.5 Example. Let (X,τ ) be a topological space, and N a neighbourhood of a

point p. If S is any subset of X such that N ⊆ S, then S is a neighbourhood of p. �

The next proposition is easily verified, so its proof is left to the reader.

3.2.6 Proposition. Let A be a subset of a topological space (X,τ ). A point

x ∈ X is a limit point of A if and only if every neighbourhood of x contains a

point of A different from x. �

As a set is closed if and only if it contains all its limit points we deduce the

following:

3.2.7 Corollary. Let A be a subset of a topological space (X,τ ). Then the

set A is closed if and only if for each x ∈ X \ A there is a neighbourhood N of x

such that N ⊆ X \ A. �

3.2.8 Corollary. Let U be a subset of a topological space (X,τ ). Then U ∈ τ
if and only if for each x ∈ U there exists a neighbourhood N of x such that

N ⊆ U. �

The next corollary is readily deduced from Corollary 3.2.8.

3.2.9 Corollary. Let U be a subset of a topological space (X,τ ). Then U ∈ τ
if and only if for each x ∈ U there exists a V ∈ τ such that x ∈ V ⊆ U. �

Corollary 3.2.9 provides a useful test of whether a set is open or not. It says

that a set is open if and only if it contains an open set about each of its points.
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Exercises 3.2

1. Let A be a subset of a topological space (X,τ ). Prove that A is dense in X if

and only if every neighbourhood of each point in X \A intersects A non-trivially.

2. (i) Let A and B be subsets of a topological space (X,τ ). Prove carefully that

A ∩B ⊆ A ∩B.

(ii) Construct an example in which

A ∩B 6= A ∩B.

3. Let (X,τ ) be a topological space. Prove that τ is the finite-closed topology

on X if and only if (i) (X,τ ) is a T1-space, and (ii) every infinite subset of X is

dense in X.

4. A topological space (X,τ ) is said to be separable if it has a dense subset which

is countable. Determine which of the following spaces are separable:

(i) the set R with the usual topology;

(ii) a countable set with the discrete topology;

(iii) a countable set with the finite-closed topology;

(iv) (X,τ ) where X is finite;

(v) (X,τ ) where τ is finite;

(vi) an uncountable set with the discrete topology;

(vii) an uncountable set with the finite-closed topology;

(viii) a space (X,τ ) satisfying the second axiom of countability.
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5. Let (X,τ ) be any topological space and A any subset of X. The largest open

set contained in A is called the interior of A and is denoted by Int(A). [It is the

union of all open sets in X which lie wholly in A.]

(i) Prove that in R, Int([0, 1]) = (0, 1).

(ii) Prove that in R, Int((3, 4)) = (3, 4).

(iii) Show that if A is open in (X,τ ) then Int(A) = A.

(iv) Verify that in R, Int({3}) = Ø.

(v) Show that if (X,τ ) is an indiscrete space then, for all proper subsets A of

X, Int(A) = Ø.

(vi) Show that for every countable subset A of R, Int(A) = Ø.

6. Show that if A is any subset of a topological space (X,τ ), then Int(A) = X\(X \ A).

(See Exercise 5 above for the definition of Int.)

7. Using Exercise 6 above, verify that A is dense in (X,τ ) if and only if Int(X\A) = Ø.

8. Using the definition of Int in Exercise 5 above, determine which of the following

statements are true for arbitrary subsets A1 and A2 of a topological space (X,τ )?

(i) Int(A1 ∩ A2) = Int(A1) ∩ Int(A2),

(ii) Int(A1 ∪ A2) = Int(A1) ∪ Int(A2),

(iii) A1 ∪ A2 = A1 ∪ A2.

(If your answer to any part is “true” you must write a proof. If your answer is

“false” you must give a concrete counterexample.)

9.* Let S be a dense subset of a topological space (X,τ ). Prove that for every

open subset U of X, S ∩ U = U.

10. Let S and T be dense subsets of a space (X,τ ). If T is also open, deduce from

Exercise 9 above that S ∩ T is dense in X.
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11. Let B = {[a, b) : a ∈ R, b ∈ Q, a < b}. Prove each of the following statements.

(i) B is a basis for a topology τ 1 on R. (The space (R,τ 1) is called the

Sorgenfrey line.)

(ii) If τ is the Euclidean topology on R, then τ 1 ⊃ τ .

(iii) For all a, b ∈ R with a < b, [a, b) is a clopen set in (R,τ 1).

(iv) The Sorgenfrey line is a separable space.

(v)* The Sorgenfrey line does not satisfy the second axiom of countability.

3.3 Connectedness

3.3.1 Remark. We record here some definitions and facts you should already

know. Let S be any set of real numbers. If there is an element b in S such that x ≤ b,

for all x ∈ S, then b is said to be the greatest element of S. Similarly if S contains an

element a such that a ≤ x, for all x ∈ S, then a is called the least element of S. A set

S of real numbers is said to be bounded above if there exists a real number c such

that x ≤ c, for all x ∈ S, and c is called an upper bound for S. Similarly the terms

“bounded below” and “lower bound” are defined. A set which is bounded above

and bounded below is said to be bounded. �

Least Upper Bound Axiom: Let S be a non-empty set of real numbers. If S is

bounded above, then it has a least upper bound. �

The least upper bound, also called the supremum of S, denoted by sup(S), may

or may not belong to the set S. Indeed, the supremum of S is an element of S if and

only if S has a greatest element. For example, the supremum of the open interval

S = (1, 2) is 2 but 2 /∈ (1, 2), while the supremum of [3, 4] is 4 which does lie in [3, 4]

and 4 is the greatest element of [3, 4]. Any set S of real numbers which is bounded

below has a greatest lower bound which is also called the infimum and is denoted

by inf(S).
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3.3.2 Lemma. Let S be a subset of R which is bounded above and let p be

the supremum of S. If S is a closed subset of R, then p ∈ S.

Proof. Suppose p ∈ R \ S. As R \ S is open there exist real numbers a and b with

a < b such that p ∈ (a, b) ⊆ R \ S. As p is the least upper bound for S and a < p, it is

clear that there exists an x ∈ S such that a < x. Also x < p < b, and so x ∈ (a, b) ⊆ R\S.
But this is a contradiction, since x ∈ S. Hence our supposition is false and p ∈ S. �

3.3.3 Proposition. Let T be a clopen subset of R. Then either T = R or

T = Ø.

Proof. Suppose T 6= R and T 6= Ø. Then there exists an element x ∈ T and an

element z ∈ R\T . Without loss of generality, assume x < z. Put S = T ∩ [x, z]. Then S,

being the intersection of two closed sets, is closed. It is also bounded above, since z

is obviously an upper bound. Let p be the supremum of S. By Lemma 3.3.2, p ∈ S.

Since p ∈ [x, z], p ≤ z. As z ∈ R \ S, p 6= z and so p < z.

Now T is also an open set and p ∈ T . So there exist a and b in R with a < b

such that p ∈ (a, b) ⊆ T . Let t be such that p < t < min(b, z), where min(b, z) denotes

the smaller of b and z. So t ∈ T and t ∈ [p, z]. Thus t ∈ T ∩ [x, z] = S. This is a

contradiction since t > p and p is the supremum of S. Hence our supposition is false

and consequently T = R or T = Ø. �

3.3.4 Definition. Let (X,τ ) be a topological space. Then it is said to be

connected if the only clopen subsets of X are X and Ø.

So restating Proposition 3.3.3 we obtain:

3.3.5 Proposition. The topological space R is connected. �
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3.3.6 Example. If (X,τ ) is any discrete space with more than one element, then

(X,τ ) is not connected as each singleton set is clopen. �

3.3.7 Example. If (X,τ ) is any indiscrete space, then it is connected as the only

clopen sets are X and Ø. (Indeed the only open sets are X and Ø.) �

3.3.8 Example. If X = {a, b, c, d, e} and

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

then (X,τ ) is not connected as {b, c, d, e} is a clopen subset. �

3.3.9 Remark. From Definition 3.3.4 it follows that a topological space (X,τ ) is

not connected (that is, it is disconnected) if and only if there are non-empty open

sets A and B such that A ∩B = Ø and A ∪B = X.1 (See Exercises 3.3 #3.)

We conclude this section by recording that R2 (and indeed, Rn, for each n ≥ 1)

is a connected space. However the proof is delayed to Chapter 5.

Connectedness is a very important property about which we shall say a lot more.

Exercises 3.3

1. Let S be a set of real numbers and T = {x : −x ∈ S}.

(a) Prove that the real number a is the infimum of S if and only if −a is the

supremum of T .

(b) Using (a) and the Least Upper Bound Axiom prove that every non-empty

set of real numbers which is bounded below has a greatest lower bound.

1Most books use this property to define connectedness.
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2. For each of the following sets of real numbers find the greatest element and

the least upper bound, if they exist.

(i) S = R.

(ii) S = Z = the set of all integers.

(iii) S = [9, 10).

(iv) S = the set of all real numbers of the form 1 − 3
n2 , where n is a positive

integer.

(v) S = (−∞, 3].

3. Let (X,τ ) be any topological space. Prove that (X,τ ) is not connected if

and only if it has proper non-empty disjoint open subsets A and B such that

A ∪B = X.

4. Is the space (X,τ ) of Example 1.1.2 connected?

5. Let (X,τ ) be any infinite set with the finite-closed topology. Is (X,τ ) connected?

6. Let (X,τ ) be an infinite set with the countable-closed topology. Is (X,τ )

connected?

7. Which of the topological spaces of Exercises 1.1 #9 are connected?

3.4 Postscript

In this chapter we have introduced the notion of limit point and shown that a set

is closed if and only if it contains all its limit points. Proposition 3.1.8 then tells us

that any set A has a smallest closed set A which contains it. The set A is called the

closure of A.

A subset A of a topological space (X,τ ) is said to be dense in X if A = X. We

saw that Q is dense in R and the set P of all irrational numbers is also dense in R.

We introduced the notion of neighbourhood of a point and the notion of connected

topological space. We proved an important result, namely that R is connected. We

shall have much more to say about connectedness later.

In the exercises we introduced the notion of interior of a set, this concept being

complementary to that of closure of a set.



Chapter 4

Homeomorphisms

Introduction

In each branch of mathematics it is essential to recognize when two structures are

equivalent. For example two sets are equivalent, as far as set theory is concerned,

if there exists a bijective function which maps one set onto the other. Two groups

are equivalent, known as isomorphic, if there exists a a homomorphism of one to the

other which is one-to-one and onto. Two topological spaces are equivalent, known

as homeomorphic, if there exists a homeomorphism of one onto the other.

4.1 Subspaces

4.1.1 Definition. Let Y be a non-empty subset of a topological space (X,τ ).

The collection τ Y = {O ∩ Y : O ∈ τ } of subsets of Y is a topology on Y called

the subspace topology (or the relative topology or the induced topology or the

topology induced on Y by τ ). The topological space (Y,τ Y ) is said to be a

subspace of (X,τ ).

Of course you should check that TY is indeed a topology on Y .

73
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4.1.2 Example. Let X = {a, b, c, d, e, f},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}

, and Y = {b, c, e}. Then the subspace topology on Y is

τ Y = {Y,Ø, {c}}. �

4.1.3 Example. Let X = {a, b, c, d, e},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

and Y = {a, d, e}. Then the induced topology on Y is

τ Y = {Y,Ø, {a}, {d}, {a, d}, {d, e}}. �

4.1.4 Example. Let B be a basis for the topology τ on X and let Y be a subset

of X. Then it is not hard to show that the collection BY = {B ∩ Y : B ∈ B} is a basis

for the subspace topology τ Y on Y . [Exercise: verify this.]

So let us consider the subset (1, 2) of R. A basis for the induced topology on

(1, 2) is the collection {(a, b)∩ (1, 2) : a, b ∈ R, a < b}; that is, {(a, b) : a, b ∈ R, 1 ≤ a < b ≤ 2}
is a basis for the induced topology on (1, 2). �

4.1.5 Example. Consider the subset [1, 2] of R. A basis for the subspace topology

τ on [1, 2] is

{(a, b) ∩ [1, 2] : a, b ∈ R, a < b};

that is,

{(a, b) : 1≤ a < b≤ 2} ∪ {[1, b) : 1 < b≤ 2} ∪ {(a, 2] : 1≤ a < 2} ∪ {[1, 2]}

is a basis for τ .

But here we see some surprising things happening; e.g. [1, 11
2
) is certainly not an

open set in R, but [1, 11
2
) = (0, 11

2
) ∩ [1, 2], is an open set in the subspace [1, 2].

Also (1, 2] is not open in R but is open in [1, 2]. Even [1, 2] is not open in R, but

is an open set in [1, 2].

So whenever we speak of a set being open we must make perfectly clear in what

space or what topology it is an open set. �
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4.1.6 Example. Let Z be the subset of R consisting of all the integers. Prove that

the topology induced on Z by the euclidean topology on R is the discrete topology.

Proof.

To prove that the induced topology, τZ, on Z is discrete, it suffices, by

Proposition 1.1.9, to show that every singleton set in Z is open in τZ; that

is, if n ∈ Z then {n} ∈ τZ.

Let n ∈ Z. Then {n} = (n− 1, n+ 1)∩Z. But (n− 1, n+ 1) is open in R and therefore

{n} is open in the induced topology on Z. Thus every singleton set in Z is open in

the induced topology on Z. So the induced topology is discrete. �

Notation. Whenever we refer to

Q = the set of all rational numbers,

Z = the set of all integers,

N = the set of all positive integers,

P = the set of all irrational numbers,

(a, b), [a, b], [a, b), (−∞, a), (−∞, a], (a,∞), or [a,∞)

as topological spaces without explicitly saying what the topology is, we mean the

topology induced as a subspace of R. (Sometimes we shall refer to the induced

topology on these sets as the “usual topology”.)

Exercises 4.1

1. Let X = {a, b, c, d, e} and τ = {X,Ø, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}. List the

members of the induced topologies τ Y on Y = {a, c, e} and τ Z on Z = {b, c, d, e}.

2. Describe the topology induced on the set N of positive integers by the euclidean

topology on R.
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3. Write down a basis for the usual topology on each of the following:

(i) [a, b), where a < b;

(ii) (a, b], where a < b;

(iii) (−∞, a];

(iv) (−∞, a);

(v) (a,∞);

(vi) [a,∞).

[Hint: see Examples 4.1.4 and 4.1.5.]

4. Let A ⊆ B ⊆ X and X have the topology τ . Let τ B be the subspace topology on

B. Further let τ 1 be the topology induced on A by τ , and τ 2 be the topology

induced on A by τ B. Prove that τ 1 = T2. (So a subspace of a subspace is a

subspace.)

5. Let (Y,τ Y ) be a subspace of a space (X,τ ). Show that a subset Z of Y is closed

in (Y,τ Y ) if and only if Z = A ∩ Y , where A is a closed subset of (X,τ ).

6. Show that every subspace of a discrete space is discrete.

7. Show that every subspace of an indiscrete space is indiscrete.

8. Show that the subspace [0, 1] ∪ [3, 4] of R has at least 4 clopen subsets. Exactly

how many clopen subsets does it have?

9. Is it true that every subspace of a connected space is connected?

10. Let (Y,τ Y ) be a subspace of (X,τ ). Show that τ Y ⊆ τ if and only if Y ∈ τ .

[Hint: Remember Y ∈ τ Y .]

11. Let A and B be connected subspaces of a topological space (X,τ ). If A∩B 6= Ø,

prove that the subspace A ∪B is connected.

12. Let (Y,τ 1) be a subspace of a T1-space (X,τ ). Show that (Y,τ 1) is also a

T1-space.
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13. A topological space (X,τ ) is said to be Hausdorff (or a T2-space) if given any

pair of distinct points a, b in X there exist open sets U and V such that a ∈ U ,

b ∈ V , and U ∩ V = Ø.

(i) Show that R is Hausdorff.

(ii) Prove that every discrete space is Hausdorff.

(iii) Show that any T2-space is also a T1-space.

(iv) Show that Z with the finite-closed topology is a T1-space but is not a

T2-space.

(v) Prove that any subspace of a T2-space is a T2-space.

14. Let (Y,τ 1) be a subspace of a topological space (X,τ ). If (X,τ ) satisfies the

second axiom of countability, show that (Y,τ 1) also satisfies the second axiom

of countability.

15. Let a and b be in R with a < b. Prove that [a, b] is connected.

[Hint: In the statement and proof of Proposition 3.3.3 replace R everywhere by

[a, b].]

16. Let Q be the set of all rational numbers with the usual topology and let P be

the set of all irrational numbers with the usual topology.

(i) Prove that neither Q nor P is a discrete space.

(ii) Is Q or P a connected space?

(iii) Is Q or P a Hausdorff space?

(iv) Does Q or P have the finite-closed topology?

17. A topological space (X,τ ) is said to be a regular space if for any closed subset

A of X and any point x ∈ X \A, there exist open sets U and V such that x ∈ U ,

A ⊆ V , and U ∩ V = Ø. If (X,τ ) is regular and a T1-space, then it is said to be a

T3-space. Prove the following statements.

(i) Every subspace of a regular space is a regular space.

(ii) The spaces R, Z, Q, P, and R 2 are regular spaces.

(iii) If (X,τ ) is a regular T1-space, then it is a T2-space.

(iv) The Sorgenfrey line is a regular space.

(v)* Let X be the set, R, of all real numbers and S = { 1
n

: n ∈ N}. Define a set

C ⊆ R to be closed if C = A∪ T , where A is closed in the euclidean topology

on R and T is any subset of S. The complements of these closed sets form

a topology τ on R which is Hausdorff but not regular.
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4.2 Homeomorphisms

We now turn to the notion of equivalent topological spaces. We begin by considering

an example:

X = {a, b, c, d, e}, Y = {g, h, i, j, k},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

and

τ 1 = {Y,Ø, {g}, {i, j}, {g, i, j}, {h, i, j, k}}.

It is clear that in an intuitive sense (X,τ ) is “equivalent” to (Y,τ 1). The function

f : X → Y defined by f(a) = g, f(b) = h, f(c) = i, f(d) = j, and f(e) = k, provides the

equivalence. We now formalize this.

4.2.1 Definition. Let (X,τ ) and (Y,τ 1) be topological spaces. Then they

are said to be homeomorphic if there exists a function f : X → Y which has the

following properties:

(i) f is one-to-one (that is f(x1) = f(x2) implies x1 = x2),

(ii) f is onto (that is, for any y ∈ Y there exists an x ∈ X such that f(x) = y),

(iii) for each U ∈ τ 1, f−1(U) ∈ τ , and

(iv) for each V ∈ τ , f(V ) ∈ τ 1.

Further, the map f is said to be a homeomorphism between (X,τ ) and (Y,τ 1).

We write (X,τ ) ∼= (Y,τ 1). �

We shall show that “∼=” is an equivalence relation and use this to show that all

open intervals (a, b) are homeomorphic to each other. Example 4.2.2 is the first step,

as it shows that “∼=” is a transitive relation.
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4.2.2 Example. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces. If (X,τ ) ∼=
(Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2), prove that (X,τ ) ∼= (Z, T2).

Proof.

We are given that (X, τ ) ∼= (Y, τ 1); that is, there exists a homeomorphism

f : (X, τ ) → (Y, τ 1). We are also given that (Y, τ 1) ∼= (Z, τ 2); that is, there

exists a homeomorphism g : (Y, τ 1)→ (Z, τ 2).

We are required to prove that (X, τ ) ∼= (Z, τ 2); that is, we need to find a

homeomorphism h : (X, τ )→ (Z, τ 2). We will prove that the composite map

g ◦ f : X → Z is the required homeomorphism.

As (X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2), there exist homeomorphisms f : (X, T ) →
(Y,τ 1) and g : (Y,τ 1) → (Z,τ 2). Consider the composite map g ◦ f : X → Z. [Thus

g ◦ f(x) = g(f(x)), for all x ∈ X.] It is a routine task to verify that g ◦ f is one-to-

one and onto. Now let U ∈ τ 2. Then, as g is a homeomorphism g−1(U) ∈ τ 1.

Using the fact that f is a homeomorphism we obtain that f−1(g−1(U)) ∈ τ . But

f−1(g−1(U)) = (g ◦ f)−1(U). So g ◦ f has property (iii) of Definition 4.2.1. Next let

V ∈ τ . Then f(V ) ∈ T1 and so g(f(V )) ∈ τ 2; that is g ◦ f(V ) ∈ τ 2 and we see that g ◦ f
has property (iv) of Definition 4.2.1. Hence g ◦ f is a homeomorphism. �

4.2.3 Remark. Example 4.2.2 shows that “∼=” is a transitive binary relation.

Indeed it is easily verified that it is an equivalence relation; that is,

(i) (X,τ ) ∼= (X,τ ) (Reflexive);

(ii) (X,τ ) ∼= (Y,τ 1) implies (Y,τ 1) ∼= (X,τ ) (Symmetric);

[Observe that if f : (X,τ )→ (Y,τ 1) is a homeomorphism, then its inverse

f−1 : (Y,τ 1)→ (X,τ ) is also a homeomorphism.]

(iii) (X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2) implies (X,τ ) ∼= (Z,τ 2) (Transitive).

�
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The next three examples show that all open intervals in R are homeomorphic.

Length is certainly not a topological property. In particular, an open interval of finite

length, such as (0, 1), is homeomorphic to one of infinite length, such as (−∞, 1).

Indeed all open intervals are homeomorphic to R.
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4.2.4 Example. Prove that every two non-empty open intervals (a, b) and (c, d)

are homeomorphic.

Outline Proof.

By Remark 4.2.3 it suffices to show that (a, b) is homeomorphic to (0, 1) and

(c, d) is homeomorphic to (0, 1). But as a and b are arbitrary (except that

a < b), if (a, b) is homeomorphic to (0, 1) then (c, d) is also homeomorphic

to (0, 1). To prove that (a, b) is homeomorphic to (0, 1) it suffices to find a

homeomorphism f : (0, 1)→ (a, b).

Let a, b ∈ R with a < b and consider the function f : (0, 1) → (a, b) given by

f(x) = a(1− x) + bx.
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a

b

0 1

Clearly f : (0, 1)→ (a, b) is one-to-one and onto. It is also clear from the diagram that

the image under f of any open interval in (0, 1) is an open interval in (a, b); that is,

f(open interval in (0, 1)) = an open interval in (a, b).

But every open set in (0, 1) is a union of open intervals in (0, 1) and so

f(open set in (0, 1)) = f(union of open intervals in (0, 1))

= union of open intervals in (a, b)

= open set in (a, b).

So condition (iv) of Definition 4.2.1 is satisfied. Similarly, we see that f−1 (open set

in (a, b)) is an open set in (0, 1). So condition (iii) of Definition 4.2.1 is also satisfied.

[Exercise: write out the above proof carefully.]

Hence f is a homeomorphism and (0, 1) ∼= (a, b), for all a, b ∈ R with a < b.

From the above it immediately follows that (a, b) ∼= (c, d), as required. �
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4.2.5 Example. Prove that the space R is homeomorphic to the open interval

(−1, 1) with the usual topology.

Outline Proof. Define f : (−1, 1)→ R by

f(x) =
x

1− | x |
.

It is readily verified that f is one-to-one and onto, and a diagrammatic argument

like that in Example 4.2.2 indicates that f is a homeomorphism.
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[Exercise: write out a proof that f is a homeomorphism.] �

4.2.6 Example. Prove that every open interval (a, b), with a < b, is homeomorphic

to R.

Proof. This follows immediately from Examples 4.2.5 and 4.2.4 and Remark

4.2.3. �

4.2.7 Remark. It can be proved in a similar fashion that any two intervals [a, b]

and [c, d], with a < b and c < d, are homeomorphic. �
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Exercises 4.2

1. (i) If a, b, c, and d are real numbers with a < b and c < d, prove that [a, b] ∼= [c, d].

(ii) If a and b are any real numbers, prove that

(−∞, a] ∼= (−∞, b] ∼= [a,∞) ∼= [b,∞).

(iii) If c, d, e, and f are any real numbers with c < d and e < f , prove that

[c, d) ∼= [e, f) ∼= (c, d] ∼= (e, f ].

(iv) Deduce that for any real numbers a and b with a < b,

[0, 1) ∼= (−∞, a] ∼= [a,∞) ∼= [a, b) ∼= (a, b].

2. Prove that Z ∼= N

3. Let m and c be non-zero real numbers and X the subspace of R2 given by

X = {〈x, y〉 : y = mx+ c}. Prove that X is homeomorphic to R.

4. (i) Let X1 and X2 be the closed rectangular regions in R2 given by

X1 = {〈x, y〉 : |x| ≤ a1 and |y| ≤ b1}

and X2 = {〈x, y〉 : |x| ≤ a2 and |y| ≤ b2}

where a1, b1, a2, and b2 are positive real numbers. If X1 and X2 are given their

induced topologies, τ 1 and τ 2 respectively, from R2, show that X1
∼= X2.

(ii) Let D1 and D2 be the closed discs in R2 given by

D1 = {〈x, y〉 : x2 + y2 ≤ c1}

and D2 = {〈x, y〉 : x2 + y2 ≤ c2}

where c1 and c2 are positive real numbers. Prove that the topological space

D1
∼= D2, where D1 and D2 have their subspace topologies.

(iii) Prove that X1
∼= D1.
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5. Let X1 and X2 be subspaces of R given by X1 = (0, 1)∪ (3, 4) and X2 = (0, 1)∪ (1, 2).

Is X1
∼= X2? (Justify your answer.)

6. (Group of Homeomorphisms) Let (X,τ ) be any topological space and G the

set of all homeomorphisms of X into itself.

(i) Show that G is a group under the operation of composition of functions.

(ii) If X = [0, 1], show that G is infinite.

(iii) If X = [0, 1], is G an abelian group?

7. Let (X,τ ) and (Y,τ 1) be homeomorphic topological spaces. Prove that

(i) If (X,τ ) is a T0-space, then (Y,τ 1) is a T0-space.

(ii) If (X,τ ) is a T1-space, then (Y,τ 1) is a T1-space.

(iii) If (X,τ ) is a Hausdorff space, then (Y,τ 1) is a Hausdorff space.

(iv) If (X,τ ) satisfies the second axiom of countability, then (Y,τ 1) satisfies the

second axiom of countability.

(v) If (X,τ ) is a separable space, then (Y,τ 1) is a separable space.

8.* Let (X,τ ) be a discrete topological space. Prove that (X,τ ) is homeomorphic

to a subspace of R if and only if X is countable.

4.3 Non-Homeomorphic Spaces

To prove two topological spaces are homeomorphic we have to find a homeomorphism

between them.

But, to prove that two topological spaces are not homeomorphic is often much

harder as we have to show that no homeomorphism exists. The following example

gives us a clue as to how we might go about showing this.
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4.3.1 Example. Prove that [0, 2] is not homeomorphic to the subspace [0, 1]∪ [2, 3]

of R.

Proof. Let (X,τ ) = [0, 2] and (Y,τ 1) = [0, 1] ∪ [2, 3]. Then

[0, 1] = [0, 1] ∩ Y ⇒ [0, 1] is closed in (Y,τ 1)

and [0, 1] = (−1, 1
1

2
) ∩ Y ⇒ [0, 1] is open in (Y,τ 1).

Thus Y is not connected, as it has [0, 1] as a proper non-empty clopen subset.

Suppose that (X,τ ) ∼= (Y,τ 1). Then there exists a homeomorphism f : (X,τ )→
(Y,τ 1). So f−1([0, 1]) is a clopen subset of X, and hence X is not connected. This is

false as [0, 2] = X is connected. (See Exercises 4.1 #15.) So we have a contradiction

and thus (X,τ ) 6∼= (Y,τ 1). �

What do we learn from this?

4.3.2 Proposition. Any topological space homeomorphic to a connected

space is connected. �

Proposition 4.3.2 gives us one way to try to show two topological spaces are

not homeomorphic . . . by finding a property “preserved by homeomorphisms” which

one space has and the other does not.
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We have met many properties “preserved by homeomorphisms” amongst the

exercises:

(i) T0-space;

(ii) T1-space;

(iii) T2-space or Hausdorff space;

(iv) regular space;

(v) T3-space;

(vi) satisfying the second axiom of countability;

(vii) separable space. [See Exercises 4.2 #7.]

There are also others:

(viii) discrete space;

(ix) indiscrete space;

(x) finite-closed topology;

(xi) countable-closed topology.

So together with connectedness we know twelve properties which are preserved

by homeomorphisms. Also two spaces (X,τ ) and (Y,τ 1) cannot be homeomorphic if

X and Y have different cardinalities (e.g. X is countable and Y is uncountable) or if

τ and τ 1 have different cardinalities.

Nevertheless when faced with a specific problem we may not have the one we

need. For example, show that (0, 1) is not homeomorphic to [0, 1] or show that R
is not homeomorphic to R2. We shall see how to show that these spaces are not

homeomorphic shortly.
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Before moving on to this let us settle the following question: which subspaces

of R are connected?

4.3.3 Definition. A subset S of R is said to be an interval if it has the

following property: if x ∈ S, z ∈ S, and y ∈ R are such that x < y < z, then y ∈ S.

4.3.4 Remarks. Note the following:

(i) Each singleton set {x} is an interval; Each singleton set {x} is an interval.

(ii) Every interval has one of the following forms: {a}, [a, b], (a, b), [a, b), (a, b], (−∞, a),

(−∞, a], (a,∞), [a,∞), (−∞,∞).

(iii) It follows from Example 4.2.6, Remark 4.2.7, and Exercises 4.2 #1, that every

interval is homeomorphic to (0, 1), [0, 1], [0, 1), or {0}. In Exercises 4.3 #1 we are

able to make an even stronger statement.

4.3.5 Proposition. A subspace S of R is connected if and only if it is an

interval.

Proof. That all intervals are connected can be proved in a similar fashion to

Proposition 3.3.3 by replacing R everywhere in the proof by the interval we are

trying to prove connected.

Conversely, let S be connected. Suppose x ∈ S, z ∈ S, x < y < z, and y /∈ S.

Then (−∞, y) ∩ S = (−∞, y] ∩ S is an open and closed subset of S. So S has a clopen

subset, namely (−∞, y) ∩ S. To show that S is not connected we have to verify only

that this clopen set is proper and non-empty. It is non-empty as it contains x. It is

proper as z ∈ S but z /∈ (−∞, y) ∩ S. So S is not connected. This is a contradiction.

Therefore S is an interval. �

We now see a reason for the name “connected”. Subspaces of R such as [a, b],

(a, b), etc. are connected, while subspaces like X = [0, 1]∪ [2, 3]∪ [5, 6], which is a union

of “disconnected” pieces, are not connected.

Now let us turn to the problem of showing that (0, 1) 6∼= [0, 1]. Firstly, we present

a seemingly trivial observation.
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4.3.6 Remark. Let f : (X,τ ) → (Y,τ 1) be a homeomorphism. Let a ∈ X, so

that X \ {a} is a subspace of X and has induced topology τ 2. Also Y \ {f(a)} is a

subspace of Y and has induced topology τ 3. Then (X \ {a},τ 2) is homeomorphic to

(Y \ {f(a)},τ 3).

Outline Proof. Define g : X \ {a} → Y \ {f(a)} by g(x) = f(x), for all x ∈ X \ {a}. Then

it is easily verified that g is a homeomorphism. (Write down a proof of this.) �

As an immediate consequence of this we have:

4.3.7 Corollary. If a, b, c, and d are real numbers with a < b and c < d, then

(i) (a, b) 6∼= [c, d),

(ii) (a, b) 6∼= [c, d], and

(iii) [a, b) 6∼= [c, d].

Proof. (i) Let (X,τ ) = [c, d) and (Y,τ 1) = (a, b). Suppose that (X,τ ) ∼= (Y,τ 1).

Then X \ {c} ∼= Y \ {y}, for some y ∈ Y . But, X \ {c} = (c, d) is an interval, and so is

connected, while no matter which point we remove from (a, b) the resultant space is

disconnected. Hence by Proposition 4.3.2,

X \ {c} 6∼= Y \ {y}, for each y ∈ Y.

This is a contradiction. So [c, d) 6∼= (a, b).

(ii) [c, d]\{c} is connected, while (a, b)\{y} is disconnected for all y ∈ (a, b). Thus

(a, b) 6∼= [c, d].

(iii) Suppose that [a, b) ∼= [c, d]. Then [c, d] \ {c} ∼= [a, b) \ {y} for some y ∈ [a, b).

Therefore ([c, d] \ {c}) \ {d} ∼= ([a, b) \ {y}) \ {z}, for some z ∈ [a, b) \ {y}; that is,

(c, d) ∼= [a, b) \ {y, z}, for some distinct y and z in [a, b). But (c, d) is connected, while

[a, b) \ {y, z}, for any two distinct points y and z in [a, b), is disconnected. So we have

a contradiction. Therefore [a, b) 6∼= [c, d]. �
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Exercises 4.3

1. Deduce from the above that every interval is homeomorphic to one and only

one of the following spaces:

{0}; (0, 1); [0, 1]; [0, 1).

2. Deduce from Proposition 4.3.5 that every countable subspace of R with more

than one point is disconnected. (In particular, Z and Q are disconnected.)

3. Let X be the unit circle in R2; that is, X = {〈x, y〉 : x2 + y2 = 1} and has the

subspace topology.

(i) Show that X \ {〈1, 0〉} is homeomorphic to the open interval (0, 1).

(ii) Deduce that X 6∼= (0, 1) and X 6∼= [0, 1].

– (iii)] Observing that for every point a ∈ X, the subspace X \{a} is connected,

show that X 6∼= [0, 1).

(iv) Deduce that X is not homeomorphic to any interval.

4. Let Y be the subspace of R2 given by

Y = {〈x, y〉 : x2 + y2 = 1} ∪ {〈x, y〉 : (x− 2)2 + y2 = 1}

(i) Is Y homeomorphic to the space X in Exercise 3 above?

(ii) Is Y homeomorphic to an interval?

5. Let Z be the subspace of R2 given by

Z = {〈x, y〉 : x2 + y2 = 1} ∪ {〈x, y〉 : (x− 3/2)2 + y2 = 1}.

Show that

(i) Z is not homeomorphic to any interval, and

(ii) Z is not homeomorphic to X or Y , the spaces described in Exercises 3 and

4 above.
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6. Prove that the Sorgenfrey line is not homeomorphic to R, R 2, or any subspace

of either of these spaces.

7. (i) Prove that the topological space in Exercises 1.1 #5 (i) is not homeomorphic

to the space in Exercises 1.1 #9 (ii).

(ii)* In Exercises 1.1 #5, is (X,τ 1) ∼= (X,τ 2)?

(iii)* In Exercises 1.1 # 9, is (X,τ 2) ∼= (X,τ 9)?

8. Let (X,τ ) be a topological space, where X is an infinite set. Prove each of the

following statements (originally proved by John Ginsburg and Bill Sands).

(i)* (X,τ ) has a subspace homeomorphic to (N,τ 1), where either τ 1 is the

indiscrete topology or (N,τ 1) is a T0-space.

(ii)** Let (X,τ ) be a T1-space. Then (X,τ ) has a subspace homeomorphic to

(N,τ 2), where τ 2 is either the finite-closed topology or the discrete topology.

(iii) Deduce from (ii), that any infinite Hausdorff space contains an infinite

discrete subspace and hence a subspace homeomorphic to N with the

discrete topology.

(iv)** Let (X,τ ) be a T0-space which is not a T1-space. Then the space (X,τ )

has a subspace homeomorphic to (N,τ 1), where τ 3 consists of N, Ø,and all

of the sets {1, 2, . . . , n}, n ∈ N or τ 3 consists of N, Ø, and all of the sets

{n, n+ 1, . . . }, n ∈ N.

(v) Deduce from the above that every infinite topological space has a subspace

homeomorphic to (N,τ 4) where τ 4 is the indiscrete topology, the discrete

topology, the finite-closed topology, or one of the two topologies described

in (iv), known as the initial segment topology and the final segment

topology, respectively. Further, no two of these five topologies on N are

homeomorphic.
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9. Let (X,τ ) and (Y,τ 1) be topological spaces. A map f : X → Y is said to be a

local homeomorphism if each point x ∈ X has an open neighbourhood U such

that f maps U homeomorphically onto an open subspace V of (Y,τ 1); that is,

if the topology induced on U by τ is τ 2 and the topology induced on V = f(U)

by τ 1 is τ 3, then f is a homeomorphism of (U,τ 2) onto (V,τ 3). The topological

space (X,τ ) is said to be locally homeomorphic to (Y,τ 1) if there exists a local

homeomorphism of (X,τ ) into (Y,τ 1).

(i) If (X,τ ) and (Y,τ 1) are homeomorphic topological spaces, verify that (X,τ )

is locally homeomorphic to (Y,τ 1).

(ii) If (X,τ ) is an open subspace of (Y,τ 1), prove that (X,τ ) is locally homeomorphic

to (Y,τ 1).

(iii)* Prove that if f : (X,τ ) → (Y,τ 1) is a local homeomorphism, then f maps

every open subset of (X,τ ) onto an open subset of (Y,τ 1).

4.4 Postscript

There are three important ways of creating new topological spaces from old ones:

forming subspaces, products, and quotient spaces. We examine all three in due

course. Forming subspaces was studied in this chapter. This allowed us to introduce

the important spaces Q, [a, b], (a, b), etc.

We defined the central notion of homeomorphism. We noted that “∼=” is

an equivalence relation. A property is said to be topological if it is preserved by

homeomorphisms; that is, if (X, T ) ∼= (Y,τ 1) and (X,τ ) has the property then (Y, T1)
must also have the property. Connectedness was shown to be a topological property.

So any space homeomorphic to a connected space is connected. (A number of other

topological properties were also identified.) We formally defined the notion of an

interval in R, and showed that the intervals are precisely the connected subspaces of

R.

Given two topological spaces (X,τ ) and (Y,τ 1) it is an interesting task to show

whether they are homeomorphic or not. We proved that every interval in R is
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homeomorphic to one and only one of [0, 1], (0, 1), [0, 1), and {0}. In the next section

we show that R is not homeomorphic to R2. A tougher problem is to show that R2

is not homeomorphic to R3. This will be done later via the Jordan curve theorem.

Still the crème de la crème is the fact that Rn ∼= Rm if and only if n = m. This is best

approached via algebraic topology, which is only touched upon in this book.

Exercises 4.2 #6 introduced the notion of group of homeomorphisms, which is

an interesting and important topic in its own right.



Chapter 5

Continuous Mappings

Introduction

In most branches of pure mathematics we study what in category theory are called

“objects” and “arrows”. In linear algebra the objects are vector spaces and the

arrows are linear transformations. In group theory the objects are groups and the

arrows are homomorphisms, while in set theory the objects are sets and the arrows

are functions. In topology the objects are the topological spaces. We now introduce

the arrows . . . the continuous mappings.

5.1 Continuous Mappings

Of course we are already familiar1 with the notion of a continuous function from R
into R.

A function f : R→ R is said to be continuous if for each a ∈ R and each positive

real number ε, there exists a positive real number δ such that | x − a |< δ implies

| f(x)− f(a) |< ε.

It is not at all obvious how to generalize this definition to general topological

spaces where we do not have “absolute value” or “subtraction”. So we shall seek

another (equivalent) definition of continuity which lends itself more to generalization.

1The early part of this section assumes that you have some knowledge of real analysis and, in
particular, the ε–δ definition of continuity. If this is not the case, then proceed directly to Definition
5.1.3.

93
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It is easily seen that f : R→ R is continuous if and only if for each a ∈ R and each

interval (f(a)−ε, f(a)+ε), for ε > 0, there exists a δ > 0 such that f(x) ∈ (f(a)−ε , f(a)+ε)

for all x ∈ (a− δ , a+ δ).

This definition is an improvement since it does not involve the concept “absolute

value” but it still involves “subtraction”. The next lemma shows how to avoid

subtraction.

5.1.1 Lemma. Let f be a function mapping R into itself. Then f is

continuous if and only if for each a ∈ R and each open set U containing f(a),

there exists an open set V containing a such that f(V ) ⊆ U .

Proof. Assume that f is continuous. Let a ∈ R and let U be any open set

containing f(a). Then there exist real numbers c and d such that f(a) ∈ (c, d) ⊆ U .

Put ε equal to the smaller of the two numbers d− f(a) and f(a)− c, so that

(f(a)− ε , f(a) + ε) ⊆ U.

As the mapping f is continuous there exists a δ > 0 such that f(x) ∈ (f(a)− ε , f(a) + ε)

for all x ∈ (a− δ , a+ δ). Let V be the open set (a− δ , a+ δ). Then a ∈ V and f(V ) ⊆ U ,

as required.

Conversely assume that for each a ∈ R and each open set U containing f(a) there

exists an open set V containing a such that f(V ) ⊆ U . We have to show that f is

continuous. Let a ∈ R and ε be any positive real number. Put U = (f(a)− ε , f(a) + ε).

So U is an open set containing f(a). Therefore there exists an open set V containing

a such that f(V ) ⊆ U . As V is an open set containing a, there exist real numbers c

and d such that a ∈ (c, d) ⊆ V . Put δ equal to the smaller of the two numbers d − a
and a− c, so that (a− δ , a + δ) ⊆ V . Then for all x ∈ (a− δ , a + δ), f(x) ∈ f(V ) ⊆ U , as

required. So f is continuous. �

We could use the property described in Lemma 5.1.1 to define continuity,

however the following lemma allows us to make a more elegant definition.
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5.1.2 Lemma. Let f be a mapping of a topological space (X,τ ) into a

topological space (Y,τ ′). Then the following two conditions are equivalent:

(i) for each U ∈ τ ′, f−1(U) ∈ τ ,

(ii) for each a ∈ X and each U ∈ τ ′ with f(a) ∈ U , there exists a V ∈ τ such that

a ∈ V and f(V ) ⊆ U .

Proof. Assume that condition (i) is satisfied. Let a ∈ X and U ∈ τ ′ with f(a) ∈ U .

Then f−1(U) ∈ τ . Put V = f−1(U), and we have that a ∈ V, V ∈ τ , and f(V ) ⊆ U . So

condition (ii) is satisfied.

Conversely, assume that condition (ii) is satisfied. Let U ∈ τ ′. If f−1(U) = Ø

then clearly f−1(U) ∈ τ . If f−1(U) 6= Ø, let a ∈ f−1(U). Then f(a) ∈ U . Therefore there

exists a V ∈ τ such that a ∈ V and f(V ) ⊆ U . So for each a ∈ f−1(U) there exists a

V ∈ τ such that a ∈ V ⊆ f−1(U). By Corollary 3.2.9 this implies that f−1(U) ∈ τ . So

condition (i) is satisfied. �

Putting together Lemmas 5.1.1 and 5.1.2 we see that f : R→ R is continuous if

and only if for each open subset U of R, f−1(U) is an open set.

This leads us to define the notion of a continuous function between two

topological spaces as follows:

5.1.3 Definition. Let (X,τ ) and (Y,τ 1) be topological spaces and f a function

from X into Y . Then f : (X,τ ) → (Y,τ 1) is said to be a continuous mapping if

for each U ∈ τ 1, f
−1(U) ∈ τ .

From the above remarks we see that this definition of continuity coincides with

the usual definition when (X,τ ) = (Y,τ 1) = R.
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Let us go through a few easy examples to see how nice this definition of

continuity is to apply in practice.

5.1.4 Example. Consider f : R → R given by f(x) = x, for all x ∈ R; that is, f

is the identity function. Then for any open set U in R, f−1(U) = U and so is open.

Hence f is continuous. �

5.1.5 Example. Let f : R→ R be given by f(x) = c, for c a constant, and all x ∈ R.

Then let U be any open set in R. Clearly f−1(U) = R if c ∈ U and Ø if c 6∈ U . In both

cases, f−1(U) is open. So f is continuous. �

5.1.6 Example. Consider f : R→ R defined by

f(x) =

{
x− 1, if x ≤ 3
1
2
(x+ 5), if x > 3.
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Recall that a mapping is continuous if and only if the inverse image of every

open set is an open set.

Therefore, to show f is not continuous we have to find only one set U

such that f−1(U) is not open.

Then f−1((1, 3)) = (2, 3], which is not an open set. Therefore f is not continuous.�
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Note that Lemma 5.1.2 can now be restated in the following way.2

5.1.7 Proposition. Let f be a mapping of a topological space (X,τ ) into a

space (Y,τ ′). Then f is continuous if and only if for each x ∈ X and each U ∈ τ ′

with f(x) ∈ U , there exists a V ∈ τ such that x ∈ V and f(V ) ⊆ U . �

5.1.8 Proposition. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces. If

f : (X,τ ) → (Y,τ 1) and g : (Y, T1) → (Z,τ 2) are continuous mappings, then the

composite function g ◦ f : (X,τ )→ (Z,τ 2) is continuous.

Proof.

To prove that the composite function g ◦ f : (X, τ ) → (Z, τ 2) is continuous,

we have to show that if U ∈ τ 2, then (g ◦ f)−1(U) ∈ τ .

But (g ◦ f)−1(U) = f−1(g−1(U)).

Let U be open in (Z,τ 2). Since g is continuous, g−1(U) is open in τ 1. Then

f−1(g−1(U)) is open in τ as f is continuous. But f−1(g−1(U)) = (g ◦ f)−1(U). Thus g ◦ f
is continuous. �

The next result shows that continuity can be described in terms of closed sets

instead of open sets if we wish.

5.1.9 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces. Then

f : (X,τ ) → (Y,τ 1) is continuous if and only if for every closed subset S of

Y, f−1(S) is a closed subset of X.

Proof. This results follows immediately once you recognize that

f−1(complement of S) = complement of f−1(S). �

2If you have not read Lemma 5.1.2 and its proof you should do so now.
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5.1.10 Remark. There is a relationship between continuous maps and homeomorphisms:

if f : (X,τ ) → (Y,τ 1) is a homeomorphism then it is a continuous map. Of course

not every continuous map is a homeomorphism.

However the following proposition, whose proof follows from the definitions of

“continuous” and “homeomorphism” tells the full story.

5.1.11 Proposition. Let (X,τ ) and (Y,τ ′) be topological spaces and f a

function from X into Y . Then f is a homeomorphism if and only if

(i) f is continuous,

(ii) f is one-to-one and onto; that is, the inverse function f−1 : Y → X exists,

and

(iii) f−1 is continuous. �

A useful result is the following proposition which tells us that the restriction of

a continuous map is a continuous map. Its routine proof is left to the reader – see

also Exercise Set 5.1 #8.

5.1.12 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces, f : (X,τ )→
(Y,τ 1) a continuous mapping, A a subset of X, and τ 2 the induced topology on

A. Further let g : (A,τ 2)→ (Y,τ 1) be the restriction of f to A; that is, g(x) = f(x),

for all x ∈ A. Then g is continuous.

Exercises 5.1

1. (i) Let f : (X,τ )→ (Y,τ 1) be a constant function. Show that f is continuous.

(ii) Let f : (X,τ )→ (X,τ ) be the identity function. Show that f is continuous.

2. Let f : R→ R be given by

f(x) =

{
−1, x ≤ 0

1, x > 0.

(i) Prove that f is not continuous using the method of Example 5.1.6.

(ii) Find f−1{1} and, using Proposition 5.1.9, deduce that f is not continuous.
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3. Let f : R→ R be given by

f(x) =

{
x, x ≤ 1

x+ 2, x > 1.

Is f continuous? (Justify your answer.)

4. Let (X,τ ) be the subspace of R given by X = [0, 1] ∪ [2, 4]. Define f : (X,τ ) → R
by

f(x) =

{
1, if x ∈ [0, 1]

2, if x ∈ [2, 4].

Prove that f is continuous. (Does this surprise you?)

5. Let (X,τ ) and (Y,τ 1) be topological spaces and B1 a basis for the topology τ 1.

Show that a map f : (X,τ ) → (Y,τ 1) is continuous if and only if f−1(U) ∈ τ , for

every U ∈ B1.

6. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping of X into Y . If

(X,τ ) is a discrete space, prove that f is continuous.

7. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping of X into Y . If

(Y,τ 1) is an indiscrete space, prove that f is continuous.

8. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ )→ (Y,τ 1) a continuous

mapping. Let A be a subset of X, τ 2 the induced topology on A, B = f(A),

τ 3 the induced topology on B and g : (A,τ 2)→ (B, T3) the restriction of f to A.

Prove that g is continuous.

9. Let f be a mapping of a space (X,τ ) into a space (Y,τ ′). Prove that f is

continuous if and only if for each x ∈ X and each neighbourhood N of f(x) there

exists a neighbourhood M of x such that f(M) ⊆ N .

10. Let τ 1 and τ 2 be two topologies on a set X. Then τ 1 is said to be a finer

topology than T2 (and τ 2 is said to be a coarser topology than τ 1) if τ 1 ⊇ τ 2.

Prove that

(i) the Euclidean topology R is finer than the finite-closed topology on R;

(ii) the identity function f : (X,τ 1)→ (X,τ 2) is continuous if and only if τ 1 is a

finer topology than τ 2.
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11. Let f : R → R be a continuous function such that f(q) = 0 for every rational

number q. Prove that f(x) = 0 for every x ∈ R.

12. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ )→ (Y,τ 1) a continuous

map. If f is one-to-one, prove that

(i) (Y,τ 1) Hausdorff implies (X,τ ) Hausdorff.

(ii) (Y,τ 1) a T1-space implies (X,τ ) is a T1-space.

13. Let (X,τ ) and (Y,τ 1) be topological spaces and let f be a mapping of (X,τ )

into (Y,τ 1). Prove that f is continuous if and only if for every subset A of X,

f(A) ⊆ f(A).

[Hint: Use Proposition 5.1.9.]

5.2 Intermediate Value Theorem

5.2.1 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces and f :

(X,τ ) → (Y,τ 1) surjective and continuous. If (X,τ ) is connected, then (Y,τ 1)

is connected.

Proof. Suppose (Y,τ 1) is not connected. Then it has a clopen subset U such that

U 6= Ø and U 6= Y . Then f−1(U) is an open set, since f is continuous, and also a closed

set, by Proposition 5.1.9; that is, f−1(U) is a clopen subset of X. Now f−1(U) 6= Ø as

f is surjective and U 6= Ø. Also f−1(U) 6= X, since if it were U would equal Y , by the

surjectivity of f . Thus (X,τ ) is not connected. This is a contradiction. Therefore

(Y,τ 1) is connected. �

5.2.2 Remarks. (i) The above proposition would be false if the condition

“surjective” were dropped. (Find an example of this.)

(ii) Simply put, Proposition 5.2.1 says: any continuous image of a connected set

is connected.
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(iii) Proposition 5.2.1 tells us that if (X,τ ) is a connected space and (Y,τ ′) is

not connected (i.e. disconnected) then there exists no mapping of (X,τ ) onto

(Y,τ ′) which is continuous. For example, while there are an infinite number of

mappings of R onto Q (or onto Z), none of them are continuous. Indeed in

Exercise Set 5.2 # 10 we observe that the only continuous mappings of R into

Q (or into Z) are the constant mappings. �

The following strengthened version of the notion of connectedness is often

useful.

5.2.3 Definition. A topological space (X,τ ) is said to be path-connected (or

pathwise connected if for each pair of distinct points a and b of X there exists

a continuous mapping f : [0, 1] → (X,τ ), such that f(0) = a and f(1) = b. The

mapping f is said to be a path joining a to b.

5.2.4 Example. It is readily seen that every interval is path-connected. �

5.2.5 Example. For each n ≥ 1, Rn is path-connected. �

5.2.6 Proposition. Every path-connected space is connected.

Proof. Let (X,τ ) be a path-connected space and suppose that it is not connected.

Then it has a proper non-empty clopen subset U . So there exist a and b such

that a ∈ U and b ∈ X \ U . As (X,τ ) is path-connected there exists a continuous

function f : [0, 1]→ (X,τ ) such that f(0) = a and f(1) = b.

However, f−1(U) is a clopen subset of [0, 1]. As a ∈ U, 0 ∈ f−1(U) and so f−1(U) 6= Ø.

As b 6∈ U, 1 6∈ f−1(U) and thus f−1(U) 6= [0, 1]. Hence f−1(U) is a proper non-empty clopen

subset of [0, 1], which contradicts the connectedness of [0, 1].

Consequently (X,τ ) is connected. �
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5.2.7 Remark. The converse of Proposition 5.2.6 is false; that is, not every

connected space is path-connected. An example of such a space is the following

subspace of R2:

X = {〈x, y〉 : y = sin(1/x), 0 < x ≤ 1} ∪ {〈0, y〉 : −1 ≤ y ≤ 1}.

[Exercise Set 5.2 #6 shows that X is connected. That X is not path-connected

can be seen by showing that there is no path joining 〈0, 0〉 to, say, the point 〈1/π, 0〉.
Draw a picture and try to convince yourself of this.] �

We can now show that R 6∼= R2.

5.2.8 Example. Clearly R2 \ {〈0, 0〉} is path-connected and hence, by Proposition

5.2.6, is connected. However, by Proposition 4.2.5, R \ {a}, for any a ∈ R, is

disconnected. Hence R 6∼= R2. �

We now present the Weierstrass Intermediate Value Theorem which is a beautiful

application of topology to the theory of functions of a real variable. The topological

concept crucial to the result is that of connectedness.

5.2.9 Theorem. (Weierstrass Intermediate Value Theorem) Let f : [a, b]→ R
be continuous and let f(a) 6= f(b). Then for every number p between f(a) and

f(b) there is a point c ∈ [a, b] such that f(c) = p.

Proof. As [a, b] is connected and f is continuous, Proposition 5.2.1 says that

f([a, b]) is connected. By Proposition 4.3.5 this implies that f([a, b]) is an interval.

Now f(a) and f(b) are in f([a, b]). So if p is between f(a) and f(b), p ∈ f([a, b]), that is,

p = f(c), for some c ∈ [a, b]. �

5.2.10 Corollary. If f : [a, b] → R is continuous and such that f(a) > 0 and

f(b) < 0, then there exists an x ∈ [a, b] such that f(x) = 0. �
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5.2.11 Corollary. (Fixed Point Theorem) Let f be a continuous mapping

of [0, 1] into [0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z. (The point z

is called a fixed point.)

Proof. If f(0) = 0 or f(1) = 1, the result is obviously true. Thus it suffices to

consider the case when f(0) > 0 and f(1) < 1.

Let g : [0, 1] → R be defined by g(x) = x − f(x). Clearly g is continuous,

g(0) = −f(0) < 0, and g(1) = 1 − f(1) > 0. Consequently, by Corollary 5.2.10, there

exists a z ∈ [0, 1] such that g(z) = 0; that is, z − f(z) = 0 or f(z) = z. �

5.2.12 Remark. Corollary 5.2.11 is a special case of a very important theorem

called the Brouwer Fixed Point Theorem which says that if you map an n-dimensional

cube continuously into itself then there is a fixed point. [There are many proofs of

this theorem, but most depend on methods of algebraic topology. An unsophisticated

proof is given on pp. 238–239 of the book “Introduction to Set Theory and

Topology”, by K. Kuratowski (Pergamon Press, 1961).]

Exercises 5.2

1. Prove that a continuous image of a path-connected space is path-connected.

2. Let f be a continuous mapping of the interval [a, b] into itself, where a and b ∈ R
and a < b. Prove that there is a fixed point.

3. (i) Give an example which shows that Corollary 5.2.11 would be false if we

replaced [0, 1] everywhere by (0, 1).

(ii) A topological space (X,τ ) is said to have the fixed point property if every

continuous mapping of (X,τ ) into itself has a fixed point. Show that the

only intervals having the fixed point property are the closed intervals.

(iii) Let X be a set with at least two points. Prove that the discrete space

(X,τ ) and the indiscrete space (X,τ ′) do not have the fixed-point property.

(iv) Does a space which has the finite-closed topology have the fixed-point

property?

(v) Prove that if the space (X,τ ) has the fixed-point property and (Y,τ 1) is a

space homeomorphic to (X,τ ), then (Y,τ 1) has the fixed-point property.
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4. Let {Aj : j ∈ J} be a family of connected subspaces of a topological space (X,τ ).

If
⋂
j∈J

Aj 6= Ø, show that
⋃
j∈J

Aj is connected.

5. Let A be a connected subspace of a topological space (X,τ ). Prove that A is

also connected. Indeed, show that if A ⊆ B ⊆ A, then B is connected.

6. (i) Show that the subspace Y = {〈x, y〉 : y = sin (1/x) , 0 < x ≤ 1} of R2 is

connected.

[Hint: Use Proposition 5.2.1.]

(ii) Verify that Y = Y ∪ {〈0, y〉 : −1 ≤ y ≤ 1}

(iii) Using Exercise 5, observe that Y is connected.

7. Let E be the set of all points in R2 having both coordinates rational. Prove

that the space R2 \ E is path-connected.

8.* Let C be any countable subset of R2. Prove that the space R2 \ C is path-

connected.

9. Let (X,τ ) be a topological space and a any point in X. The component in X of

a, CX(a), is defined to be the union of all connected subsets of X which contain

a. Show that

(i) CX(a) is connected. (Use Exercise 4 above.)

(ii) CX(a) is the largest connected set containing a.

(iii) CX(a) is closed in X. (Use Exercise 5 above.)

10. A topological space (X,τ ) is said to be totally disconnected if every non-empty

connected subset is a singleton set. Prove the following statements.

(i) (X,τ ) is totally disconnected if and only if for each a ∈ X, CX(a) = {a}. (See

the notation in Exercise 9.)

(ii) The set Q of all rational numbers with the usual topology is totally

disconnected.

(iii) If f is a continuous mapping of R into Q, prove that there exists a c ∈ Q
such that f(x) = c, for all x ∈ R.

(iv) Every subspace of a totally disconnected space is totally disconnected.

(v) Every countable subspace of R2 is totally disconnected.

(vi) The Sorgenfrey line is totally disconnected.
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11. (i) Using Exercise 9, define, in the natural way, the “path-component” of a

point in a topological space.

(ii) Prove that, in any topological space, every path-component is a path-

connected space.

(iii) If (X,τ ) is a topological space with the property that every point in X has a

neighbourhood which is path-connected, prove that every path-component

is an open set. Deduce that every path-component is also a closed set.

(iv) Using (iii), show that an open subset of R2 is connected if and only if it is

path-connected.

12.* Let A and B be subsets of a topological space (X,τ ). If A and B are both open

or both closed, and A∪B and A∩B are both connected, show that A and B are

connected.

13. A topological space (X,τ ) is said to be zero-dimensional if there is a basis for

the topology consisting of clopen sets. Prove the following statements.

(i) Q and P are zero-dimensional spaces.

(ii) A subspace of a zero-dimensional space is zero-dimensional.

(iii) A zero-dimensional Hausdorff space is totally disconnected. (See Exercise

10 above.)

(iv) Every indiscrete space is zero-dimensional.

(v) Every discrete space is zero-dimensional.

(vi) Indiscrete spaces with more than one point are not totally disconnected.

(vii) A zero-dimensional T0-space is Hausdorff.

(viii)* A subspace of R is zero-dimensional if and only if it is totally disconnectd.

14. Show that every local homeomorphism is a continuous mapping. (See Exercises

4.3#9.)
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5.3 Postscript

In this chapter we said that a mapping3 between topological spaces is called

“continuous” if it has the property that the inverse image of every open set is

an open set. This is an elegant definition and easy to understand. It contrasts

with the one we meet in real analysis which was mentioned at the beginning of

this section. We have generalized the real analysis definition, not for the sake of

generalization, but rather to see what is really going on.

The Weierstrass Intermediate Value Theorem seems intuitively obvious, but we

now see it follows from the fact that R is connected and that any continuous image

of a connected space is connected.

We introduced a stronger property than connected, namely path-connected.

In many cases it is not sufficient to insist that a space be connected, it must be

path-connected. This property plays an important role in algebraic topology.

We shall return to the Brouwer Fixed Point Theorem in due course. It is a

powerful theorem. Fixed point theorems play important roles in various branches

of mathematics including topology, functional analysis, and differential equations.

They are still a topic of research activity today.

In Exercises 5.2 #9 and #10 we met the notions of “component” and “totally

disconnected”. Both of these are important for an understanding of connectedness.

3Warning: Some books use the terms “mapping” and “map” to mean continuous mapping. We
do not.



Chapter 6

Metric Spaces

Introduction

The most important class of topological spaces is the class of metric spaces. Metric

spaces provide a rich source of examples in topology. But more than this, most of

the applications of topology to analysis are via metric spaces.

The notion of metric space was introduced in 1906 by Maurice Fréchet and

developed and named by Felix Hausdorff in 1914 (Hausdorff [101]).

6.1 Metric Spaces

6.1.1 Definition. Let X be a non-empty set and d a real-valued function

defined on X ×X such that for a, b ∈ X:

(i) d(a, b) ≥ 0 and d(a, b) = 0 if and only if a = b;

(ii) d(a, b) = d(b, a); and

(iii) d(a, c) ≤ d(a, b) + d(b, c), [the triangle inequality] for all a, b and c in X.

Then d is said to be a metric on X, (X, d) is called a metric space and d(a, b) is

referred to as the distance between a and b.

107
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6.1.2 Example. The function d : R× R→ R given by

d(a, b) = |a− b|, a, b ∈ R

is a metric on the set R since

(i) |a− b| ≥ 0, for all a and b in R, and |a− b| = 0 if and only if a = b,

(ii) |a− b| = |b− a|, and

(iii) |a− c| ≤ |a− b|+ |b− c|. (Deduce this from |x+ y| ≤ |x|+ |y|.)

We call d the euclidean metric on R. �

6.1.3 Example. The function d : R2 × R2 → R given by

d(〈a1, a2〉, 〈b1, b2〉) =
√

(a1 − b1)2 + (a2 − b2)2

is a metric on R2 called the euclidean metric on R2.
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6.1.4 Example. Let X be a non-empty set and d the function from X ×X into

R defined by

d(a, b) =

{
0, if a = b

1, if a 6= b.

Then d is a metric on X and is called the discrete metric. �
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Many important examples of metric spaces are “function spaces”. For these the

set X on which we put a metric is a set of functions.

6.1.5 Example. Let C[0, 1] denote the set of continuous functions from [0, 1] into

R. A metric is defined on this set by

d(f, g) =

∫ 1

0

|f(x)− g(x)| dx

where f and g are in C[0, 1].

A moment’s thought should tell you that d(f, g) is precisely the area of the

region which lies between the graphs of the functions and the lines x = 0 and x = 1,

as illustrated below.

�
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6.1.6 Example. Again let C[0, 1] be the set of all continuous functions from [0, 1]

into R. Another metric is defined on C[0, 1] as follows:

d∗(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}.

Clearly d∗(f, g) is just the largest vertical gap between the graphs of the functions

f and g.

�

6.1.7 Example. We can define another metric on R2 by putting

d∗(〈a1, a2〉, 〈b1, b2〉) = max{|a1 − b1|, |a2 − b2|}

where max{x, y} equals the larger of the two numbers x and y. �

6.1.8 Example. Yet another metric on R2 is given by

d1(〈a1, a2〉, 〈b1, b2〉) = |a1 − b1|+ |a2 − b2|. �
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A rich source of examples of metric spaces is the family of normed vector spaces.

6.1.9 Example. Let V be a vector space over the field of real or complex

numbers. A norm ‖ ‖ on V is a map : V → R such that for all a, b ∈ V and λ in

the field

(i) ‖ a ‖≥ 0 and ‖ a ‖= 0 if and only if a = 0,

(ii) ‖ a+ b ‖≤‖ a ‖ + ‖ b ‖, and

(iii) ‖ λa ‖= |λ| ‖ a ‖.

A normed vector space (V, ‖ ‖) is a vector space V with a norm ‖ ‖.

Let (V, ‖ ‖) be any normed vector space. Then there is a corresponding metric,

d, on the set V given by d(a, b) =‖ a− b ‖, for a and b in V .

It is easily checked that d is indeed a metric. So every normed vector space is

also a metric space in a natural way.

For example, R3 is a normed vector space if we put

‖ 〈x1, x2, x3〉 ‖=
√
x21 + x22 + x23 , for x1, x2, and x3 in R.

So R3 becomes a metric space if we put

d(〈a1, b1, c1〉, 〈a2, b2, c2〉) = ‖ (a1 − a2, b1 − b2, c1 − c2) ‖

=
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 .

Indeed Rn, for any positive integer n, is a normed vector space if we put

‖ 〈x1, x2, . . . , xn〉 ‖=
√
x21 + x22 + · · ·+ x2n .

So Rn becomes a metric space if we put

d(〈a1, a2, . . . , an〉, 〈b1, b2, . . . , bn〉) = ‖ 〈a1 − b1, a2 − b2, . . . , an − bn〉 ‖

=
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2 . �
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In a normed vector space (N, ‖ ‖) the open ball with centre a and radius r is

defined to be the set

Br(a) = {x : x ∈ N and ‖ x− a ‖< r}.

This suggests the following definition for metric spaces:

6.1.10 Definition. Let (X, d) be a metric space and r any positive real

number. Then the open ball about a ∈ X of radius r is the set Br(a) = {x : x ∈ X
and d(a, x) < r}.

6.1.11 Example. In R with the euclidean metric Br(a) is the open interval

(a− r, a+ r). �

6.1.12 Example. In R2 with the euclidean metric, Br(a) is the open disc with

centre a and radius r.

�
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6.1.13 Example. In R2 with the metric d∗ given by

d∗(〈a1, a2〉, 〈b1, b2〉) = max{|a1 − b1|, |a2 − b2|},

the open ball B1(〈0, 0〉) looks like

�

6.1.14 Example. In R2 with the metric d1 given by

d1(〈a1, a2〉, 〈b1, b2〉) = |a1 − b1|+ |a2 − b2|,

the open ball B1(〈0, 0〉) looks like

�
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The proof of the following Lemma is quite easy (especially if you draw a diagram)

and so is left for you to supply.

6.1.15 Lemma. Let (X, d) be a metric space and a and b points of X. Further,

let δ1 and δ2 be positive real numbers. If c ∈ Bδ1(a) ∩ Bδ2(b), then there exists a

δ > 0 such that Bδ(c) ⊆ Bδ1(a) ∩Bδ2(b). �

The next Corollary follows in a now routine way from Lemma 6.1.15.

6.1.16 Corollary. Let (X, d) be a metric space and B1 and B2 open balls in

(X, d). Then B1 ∩B2 is a union of open balls in (X, d). �

Finally we are able to link metric spaces with topological spaces.

6.1.17 Proposition. Let (X, d) be a metric space. Then the collection of

open balls in (X, d) is a basis for a topology τ on X.

[The topology τ is referred to as the topology induced by the metric d, and (X,τ ) is

called the induced topological space or the corresponding topological space or the

associated topological space.]

Proof. This follows from Proposition 2.2.8 and Corollary 6.1.16. �

6.1.18 Example. If d is the euclidean metric on R then a basis for the topology

τ induced by the metric d is the set of all open balls. But Bδ(a) = (a− δ , a+ δ). From

this it is readily seen that τ is the euclidean topology on R. So the euclidean metric

on R induces the euclidean topology on R. �
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6.1.19 Example. From Exercises 2.3 #1 (ii) and Example 6.1.12, it follows that

the euclidean metric on the set R2 induces the euclidean topology on R2. �

6.1.20 Example. From Exercises 2.3 #1 (i) and Example 6.1.13 it follows that

the metric d∗ also induces the euclidean topology on the set R2. �

It is left as an exercise for you to prove that the metric d1 of Example 6.1.14

also induces the euclidean topology on R2.

6.1.21 Example. If d is the discrete metric on a set X then for each x ∈ X,B 1
2
(x) =

{x}. So all the singleton sets are open in the topology τ induced on X by d.

Consequently, τ is the discrete topology. �

We saw in Examples 6.1.19, 6.1.20, and 6.1.14 three different metrics on the

same set which induce the same topology.

6.1.22 Definition. Metrics on a set X are said to be equivalent if they induce

the same topology on X.

So the metrics d, d∗, and d1, of Examples 6.1.3, 6.1.13, and 6.1.14 on R2 are

equivalent.

6.1.23 Proposition. Let (X, d) be a metric space and τ the topology induced

on X by the metric d. Then a subset U of X is open in (X,τ ) if and only if for

each a ∈ U there exists an ε > 0 such that the open ball Bε(a) ⊆ U .

Proof. Assume that U ∈ τ . Then, by Propositions 2.3.2 and 6.1.17, for any a ∈ U
there exists a point b ∈ X and a δ > 0 such that a ∈ Bδ(b) ⊆ U.

Let ε = δ − d(a, b). Then it is readily seen that

a ∈ Bε(a) ⊆ U.

Conversely, assume that U is a subset of X with the property that for each a ∈ U
there exists an εa > 0 such that Bεa(a) ⊆ U . Then, by Propositions 2.3.3 and 6.1.17,

U is an open set. �
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We have seen that every metric on a set X induces a topology on the set X.

However, we shall now show that not every topology on a set is induced by a metric.

First, a definition which you have already met in the exercises. (See Exercises 4.1

#13. )

6.1.24 Definition. A topological space (X,τ ) is said to be a Hausdorff space

(or a T2-space) if for each pair of distinct points a and b in X, there exist open

sets U and V such that a ∈ U, b ∈ V , and U ∩ V = Ø.

Of course R, R2 and all discrete spaces are examples of Hausdorff spaces, while

any set with at least 2 elements and which has the indiscrete topology is not a

Hausdorff space. With a little thought we see that Z with the finite-closed topology

is also not a Hausdorff space. (Convince yourself of all of these facts.)

6.1.25 Proposition. Let (X, d) be any metric space and τ the topology

induced on X by d. Then (X,τ ) is a Hausdorff space.

Proof. Let a and b be any points of X, with a 6= b. Then d(a, b) > 0. Put ε = d(a, b).

Consider the open balls Bε/2(a) and Bε/2(b). Then these are open sets in (X,τ ) with

a ∈ Bε/2(a) and b ∈ Bε/2(b). So to show τ is Hausdorff we have to prove only that

Bε/2(a) ∩Bε/2(b) = Ø.

Suppose x ∈ Bε/2(a) ∩Bε/2(b). Then d(x, a) < ε
2

and d(x, b) < ε
2
. Hence

d(a, b) ≤ d(a, x) + d(x, b)

<
ε

2
+
ε

2
= ε.

This says d(a, b) < ε, which is false. Consequently there exists no x in Bε/2(a)∩Bε/2(b);

that is, Bε/2(a) ∩Bε/2(b) = Ø, as required. �

6.1.26 Remark. Putting Proposition 6.1.25 together with the comments which

preceded it, we see that an indiscrete space with at least two points has a topology

which is not induced by any metric. Also Z with the finite-closed topology τ is such

that τ is not induced by any metric on Z. �
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6.1.27 Definition. A space (X,τ ) is said to be metrizable if there exists a

metric d on the set X with the property that τ is the topology induced by d.

So, for example, the set Z with the finite-closed topology is not a metrizable

space.

Warning. One should not be misled by Proposition 6.1.25 into thinking that every

Hausdorff space is metrizable. Later on we shall be able to produce (using infinite

products) examples of Hausdorff spaces which are not metrizable. [Metrizability of

topological spaces is quite a technical topic. For necessary and sufficient conditions

for metrizability see Theorem 9.1, page 195, of the book Dugundji [70].]

Exercises 6.1

1. Prove that the metric d1 of Example 6.1.8 induces the euclidean topology on

R2.

2. Let d be a metric on a non-empty set X.

(i) Show that the function e defined by e(a, b) = min{1, d(a, b)} where a, b ∈ X, is

also a metric on X.

(ii) Prove that d and e are equivalent metrics.

(iii) A metric space (X, d) is said to be bounded, and d is said to be a bounded

metric, if there exists a positive real number M such that d(x, y) < M, for

all x, y ∈ X. Using (ii) deduce that every metric is equivalent to a bounded

metric.

3. (i) Let d be a metric on a non-empty set X. Show that the function e defined

by

e(a, b) =
d(a, b)

1 + d(a, b)

where a, b ∈ X, is also a metric on X.

(ii) Prove that d and e are equivalent metrics.
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4. Let d1 and d2 be metrics on sets X and Y respectively. Prove that

(i) d is a metric on X × Y , where

d(〈x1, y1〉, 〈x2, y2〉) = max{d1(x1, x2), d2(y1, y2)}.

(ii) e is a metric on X × Y , where

e(〈x1, y1〉, 〈x2, y2〉) = d1(x1, x2) + d2(y1, y2).

(iii) d and e are equivalent metrics.

5. Let (X, d) be a metric space and τ the corresponding topology on X. Fix a ∈ X.

Prove that the map f : (X,τ )→ R defined by f(x) = d(a, x) is continuous.

6. Let (X, d) be a metric space and τ the topology induced on X by d. Let Y

be a subset of X and d1 the metric on Y obtained by restricting d; that is,

d1(a, b) = d(a, b) for all a and b in Y . If τ 1 is the topology induced on Y by d1 and

τ 2 is the subspace topology on Y (induced by τ on X), prove that τ 1 = τ 2.

[This shows that every subspace of a metrizable space is metrizable.]
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7. (i) Let `1 be the set of all sequences of real numbers

x = (x1, x2, . . . , xn, . . . )

with the property that the series
∑∞

n=1 |xn| is convergent. If we define

d1(x, y) =
∞∑
n=1

|xn − yn|

for all x and y in `1, prove that (`1, d1) is a metric space.

(ii) Let `2 be the set of all sequences of real numbers

x = (x1, x2, . . . , xn, . . . )

with the property that the series
∑∞

n=1 x
2
n is convergent. If we define

d2(x, y) =

(
∞∑
n=1

|xn − yn|2
) 1

2

for all x and y in `2, prove that (`2, d2) is a metric space.

(iii) Let `∞ denote the set of bounded sequences of real numbers

x = (x1, x2, . . . , xn, . . . ). If we define

d∞(x, y) = sup{|xn − yn| : n ∈ N}

where x, y ∈ `∞, prove that (`∞, d∞) is a metric space.

(iv) Let c0 be the subset of `∞ consisting of all those sequences which converge

to zero and let d0 be the metric on c0 obtained by restricting the metric d∞

on `∞ as in Exercise 6. Prove that c0 is a closed subset of (`∞, d∞).

(v) Prove that each of the spaces (`1, d1), (`2, d2), and (c0, d0) is a separable space.

(vi)* Is (`∞, d∞) a separable space?

(vii) Show that each of the above metric spaces is a normed vector space in a

natural way.

8. Let f be a continuous mapping of a metrizable space (X,τ ) onto a topological

space (Y,τ 1). Is (Y,τ 1) necessarily metrizable? (Justify your answer.)
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9. A topological space (X,τ ) is said to be a normal space if for each pair of disjoint

closed sets A and B, there exist open sets U and V such that A ⊆ U , B ⊆ V , and

U ∩ V = Ø. Prove that

(i) Every metrizable space is a normal space.

(ii) Every space which is both a T1-space and a normal space is a Hausdorff

space. [A normal space which is also Hausdorff is called a T4-space.]

10. Let (X, d) and (Y, d1) be metric spaces. Then (X, d) is said to be isometric to

(Y, d1) if there exists a surjective mapping f : (X, d) → (Y, d1) such that for all x1

and x2 in X,

d(x1, x2) = d1(f(x1), f(x2)).

Such a mapping f is said to be an isometry. Prove that every isometry is a

homeomorphism of the corresponding topological spaces. (So isometric metric

spaces are homeomorphic!)

11. A topological space (X,τ ) is said to satisfy the first axiom of countability or be

first countable if for each x ∈ X there exists a countable family {Ui(x)} of open

sets containing x with the property that every open set V containing x has (at

least) one of the Ui(x) as a subset. The countable family {Ui(x)} is said to be a

countable base at x. Prove the following:

(i) Every metrizable space satisfies the first axiom of countability.

(ii) Every topological space satisfying the second axiom of countability also

satisfies the first axiom of countability.
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12. Let X be the set (R \ N) ∪ {1}. Define a function f : R→ X by

f(x) =

{
x, if x ∈ R \ N
1, if x ∈ N.

Further, define a topology τ on X by

τ = {U : U ⊆ X and f−1(U) is open in the euclidean topology on R.}

Prove the following:

(i) f is continuous.

(ii) Every open neighbourhood of 1 in (X,τ ) is of the form (U \ N) ∪ {1}, where

U is open in R.

(iii) (X,τ ) is not first countable.

[Hint. Suppose (U1 \N)∪ {1}, (U2 \N)∪ {1}, . . . , (Un \N)∪ {1}, . . . is a countable

base at 1. Show that for each positive integer n, we can choose xn ∈ Un \N
such that xn > n. Verify that the set U = R \

∞⋃
n=1

{xn} is open in R. Deduce

that V = (U \ N) ∪ {1} is an open neighbourhood of 1 which contains none

of the sets (Un \ N) ∪ {1}, which is a contradiction. So (X,τ ) is not first

countable.]

(iv) (X,τ ) is a Hausdorff space.

(v) A Hausdorff continuous image of R is not necessarily first countable.
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13. A subset S of a metric space (X, d) is said to be totally bounded if for each ε > 0,

there exist x1, x2, . . . , xn in X, such that S ⊆
n⋃
i=1

Bε(xi); that is, S can be covered

by a finite number of open balls of radius ε.

(i) Show that every totally bounded metric space is a bounded metric space.

(See Exercise 2 above.)

(ii) Prove that R with the euclidean metric is not totally bounded, but for each

a, b ∈ R with a < b, the closed interval [a, b] is totally bounded.

(iii) Let (Y, d) be a subspace of the metric space (X, d1) with the induced metric.

If (X, d1) is totally bounded, then (Y, d) is totally bounded; that is, every

subspace of a totally bounded metric space is totally bounded.
[Hint. Assume X =

n⋃
i=1

Bε(xi). If yi ∈ Bε(xi)∩Y , then by the triangle inequality

Bε(xi) ⊆ B2ε(yi).]

(iv) From (iii) and (ii) deduce that the totally bounded metric space (0, 1) is

homeomorphic to R which is not totally bounded. Thus “totally bounded”

is not a topological property.

(v) From (iii) and (ii) deduce that for each n > 1, Rn with the euclidean metric

is not totally bounded.

(vi) Noting that for each a, b ∈ R, the closed interval is totally bounded, show

that a metric subspace of R is bounded if and only if it is totally bounded.

(vii) Show that for each n > 1, a metric subspace of Rn is bounded if and only if

it is totally bounded.

14. Show that every totally bounded metric space is separable. (See Exercise 13

above and Exercises 3.2#4.)
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15. A topological space (X,τ ) is said to be locally euclidean if there exists a positive

integer n such that each point x ∈ X has an open neighbourhood homeomorphic

to an open ball about 0 in Rn with the euclidean metric. A Hausdorff locally

euclidean space is said to be a topological manifold.1

(i) Prove that every non-trivial interval (a, b), a, b ∈ R, is locally euclidean.

(ii) Let T be the subset of the complex plane consisting of those complex

numbers of modulus one. Identify the complex plane with R2 and let T
have the subspace topology. Show that the space T is locally euclidean.

(iii) Show that every topological space locally homeomorphic to Rn, for any

positive integer n, is locally euclidean. (See Exercises 4.3 #9.)

(iv)* Find an example of a locally euclidean space which is not a topological

manifold.

1There are different definitions of topological manifold in the literature (cf. Kunen and Vaughan
[143]; Lee [147]). In particular some definitions require the space to be connected – what we call a
connected manifold – and older definitions require the space to be metrizable. A Hausdorff space in
which each point has an open neighbourhood homeomorphic either to Rn or to the closed half-space
{< x1, x2, . . . , xn >: xi ≥ 0, i = 1, 2, . . . , n} of Rn, for some positive integer n, is said to be a topological
manifold with boundary. There is a large literature on manifolds with more structure, especially
differentiable manifolds (Gadea and Masque [89]; Barden and Thomas [21]), smooth manifolds (Lee
[148]) and Riemannian manifolds or Cauchy-Riemann manifolds or CR-manifolds.
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6.2 Convergence of Sequences

You are familiar with the notion of a convergent sequence of real numbers. It is

defined as follows. The sequence x1, x2, . . . , xn, . . . of real numbers is said to converge

to the real number x if given any ε > 0 there exists an integer n0 such that for all

n ≥ n0, |xn − x| < ε.

It is obvious how this definition can be extended from R with the euclidean

metric to any metric space.

6.2.1 Definitions. Let (X, d) be a metric space and x1, . . . , xn, . . . a sequence

of points in X. Then the sequence is said to converge to x ∈ X if given any ε > 0

there exists an integer n0 such that for all n ≥ n0, d(x, xn) < ε. This is denoted by

xn → x.

The sequence y1, y2, . . . , yn, . . . of points in (X, d) is said to be convergent if there

exist a point y ∈ X such that yn → y.

The next Proposition is easily proved, so its proof is left as an exercise.

6.2.2 Proposition. Let x1, x2, . . . , xn, . . . be a sequence of points in a metric

space (X, d). Further, let x and y be points in (X, d) such that xn → x and xn → y.

Then x = y. �

For convenience we say that a subset A of a metric space (X, d) is closed

(respectively, open) in the metric space (X, d) if it is closed (respectively, open)

in the topology τ induced on X by the metric d.
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The following proposition tells us the surprising fact that the topology of a

metric space can be described entirely in terms of its convergent sequences.

6.2.3 Proposition. Let (X, d) be a metric space. A subset A of X is closed

in (X, d) if and only if every convergent sequence of points in A converges to a

point in A. (In other words, A is closed in (X, d) if and only if an → x, where x ∈ X
and an ∈ A for all n, implies x ∈ A.)

Proof. Assume that A is closed in (X, d) and let an → x, where an ∈ A for all positive

integers n. Suppose that x ∈ X \ A. Then, as X \ A is an open set containing x,

there exists an open ball Bε(x) such that x ∈ Bε(x) ⊆ X \ A. Noting that each an ∈ A,

this implies that d(x, an) > ε for each n. Hence the sequence a1, a2, . . . , an, . . . does not

converge to x. This is a contradiction. So x ∈ A, as required.

Conversely, assume that every convergent sequence of points in A converges to

a point of A. Suppose that X \ A is not open. Then there exists a point y ∈ X \ A
such that for each ε > 0, Bε(y) ∩ A 6= Ø. For each positive integer n, let xn be any

point in B1/n(y)∩A. Then we claim that xn → y. To see this let ε be any positive real

number, and n0 any integer greater than 1/ε. Then for each n ≥ n0,

xn ∈ B1/n(y) ⊆ B1/n0(y) ⊆ Bε(y).

So xn → y and, by our assumption, y /∈ A. This is a contradiction and so X \ A is

open and thus A is closed in (X, d). �
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Having seen that the topology of a metric space can be described in terms of

convergent sequences, we should not be surprised that continuous functions can also

be so described.

6.2.4 Proposition. Let (X, d) and (Y, d1) be metric spaces and f a mapping of

X into Y . Let τ and τ 1 be the topologies determined by d and d1, respectively.

Then f : (X,τ ) → (Y,τ 1) is continuous if and only if xn → x ⇒ f(xn) → f(x); that

is, if x1, x2, . . . , xn, . . . is a sequence of points in (X, d) converging to x, then the

sequence of points f(x1), f(x2), . . . , f(xn), . . . in (Y, d1) converges to f(x).

Proof. Assume that xn → x ⇒ f(xn) → f(x). To verify that f is continuous it

suffices to show that the inverse image of every closed set in (Y,τ 1) is closed in

(X,τ ). So let A be closed in (Y,τ 1). Let x1, x2, . . . , xn, . . . be a sequence of points in

f−1(A) convergent to a point x ∈ X. As xn → x, f(xn)→ f(x). But since each f(xn) ∈ A
and A is closed, Proposition 6.2.3 then implies that f(x) ∈ A. Thus x ∈ f−1(A). So

we have shown that every convergent sequence of points from f−1(A) converges to

a point of f−1(A). Thus f−1(A) is closed, and hence f is continuous.

Conversely, let f be continuous and xn → x. Let ε be any positive real number.

Then the open ball Bε(f(x)) is an open set in (Y,τ 1). As f is continuous, f−1(Bε(f(x))

is an open set in (X,τ ) and it contains x. Therefore there exists a δ > 0 such that

x ∈ Bδ(x) ⊆ f−1(Bε(f(x))).

As xn → x, there exists a positive integer n0 such that for all n ≥ n0, xn ∈ Bδ(x).

Therefore

f(xn) ∈ f(Bδ(x)) ⊆ Bε(f(x)), for all n ≥ n0.

Thus f(xn)→ f(x). �

The Corollary below is easily deduced from Proposition 6.2.4.
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6.2.5 Corollary. Let (X, d) and (Y, d1) be metric spaces, f a mapping of X

into Y , and τ and τ 1 the topologies determined by d and d1, respectively. Then

f : (X,τ ) → (Y,τ 1) is continuous if and only if for each x0 ∈ X and ε > 0, there

exists a δ > 0 such that x ∈ X and d(x, x0) < δ ⇒ d1(f(x), f(x0)) < ε. �

Exercises 6.2

1. Let C[0, 1] and d be as in Example 6.1.5. Define a sequence of functions

f1, f2, . . . , fn, . . . in (C[0, 1], d) by

fn(x) =
sin(nx)

n
, n = 1, 2, . . . , x ∈ [0, 1].

Verify that fn → f0, where f0(x) = 0, for all x ∈ [0, 1].

2. Let (X, d) be a metric space and x1, x2, . . . , xn, . . . a sequence such that xn → x

and xn → y. Prove that x = y.

3. (i) Let (X, d) be a metric space, τ the induced topology on X, and x1, x2, . . . , xn, . . .

a sequence of points in X. Prove that xn → x if and only if for every open

set U 3 x, there exists a positive integer n0 such that xn ∈ U for all n ≥ n0.

(ii) Let X be a set and d and d1 equivalent metrics on X. Deduce from (i) that

if xn → x in (X, d), then xn → x in (X, d1).

4. Write a proof of Corollary 6.2.5.

5. Let (X,τ ) be a topological space and let x1, x2, . . . , xn, . . . be a sequence of points

in X. We say that xn → x if for each open set U 3 x there exists a positive integer

n0, such that xn ∈ U for all n ≥ n0. Find an example of a topological space and

a sequence such that xn → x and xn → y but x 6= y.

6. (i) Let (X, d) be a metric space and xn → x where each xn ∈ X and x ∈ X. Let

A be the subset of X which consists of x and all of the points xn. Prove

that A is closed in (X, d).

(ii) Deduce from (i) that the set {2} ∪ {2− 1
n

: n = 1, 2, . . . } is closed in R.

(iii) Verify that the set {2− 1
n

: n = 1, 2, . . . } is not closed in R.
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7. (i) Let d1, d2, . . . , dm be metrics on a set X and a1, a2, . . . am positive real numbers.

Prove that d is a metric on X, where d is defined by

d(x, y) =
m∑
i=1

aidi(x, y), for all x, y ∈ X.

(ii) If x ∈ X and x1, x2, . . . , xn, . . . is a sequence of points in X such that xn → x

in each metric space (X, di) prove that xn → x in the metric space (X, d).

8. Let X, Y, d1, d2 and d be as in Exercises 6.1 #4. If xn → x in (X, d1) and yn → y in

(Y, d2), prove that

〈xn, yn〉 → 〈x, y〉 in (X × Y, d).

9. Let A and B be non-empty sets in a metric space (X, d). Define

ρ(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

[ρ(A,B) is referred to as the distance between the sets A and B.]

(i) If S is any non-empty subset of (X, d), prove that S = {x : x ∈ X and

ρ({x}, S) = 0}.

(ii) If S is any non-empty subset of (X, d) prove that the function f : (X, d)→ R
defined by

f(x) = ρ({x}, S), x ∈ X

is continuous.

10. (i) For each positive integer n let fn be a continuous function of [0, 1] into

itself and let a ∈ [0, 1] be such that fn(a) = a, for all n. Further let f be a

continuous function of [0, 1] into itself. If fn → f in (C[0, 1], d∗) where d∗ is

the metric of Example 6.1.6, prove that a is also a fixed point of f .

(ii) Show that (i) would be false if d∗ were replaced by the metric d, of Example

6.1.5.
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6.3 Completeness

6.3.1 Definition. A sequence x1, x2, . . . , xn, . . . of points in a metric space (X, d)

is said to be a Cauchy sequence if given any real number ε > 0, there exists a

positive integer n0, such that for all integers m ≥ n0 and n ≥ n0, d(xm, xn) < ε.

6.3.2 Proposition. Let (X, d) be a metric space and x1, x2, . . . , xn, . . . a

sequence of points in (X, d). If there exists a point a ∈ X, such that the sequence

converges to a, that is, xn → a, then the sequence is a Cauchy sequence.

Proof. Let ε be any positive real number. Put δ = ε/2. As xn → a, there exists a

positive integer n0, such that for all n > n0, d(xn, a) < δ.

So let m > n0 and n > n0. Then d(xn, a) < δ and d(xm, a) < δ.

By the triangle inequality for metrics,

d(xm, xn) ≤ d(xm, a) + d(xn, a)

< δ + δ

= ε

and so the sequence is indeed a Cauchy sequence. �

This naturally leads us to think about the converse statement and to ask if every

Cauchy sequence is a convergent sequence. The following example shows that this

is not true.

6.3.3 Example. Consider the open interval (0, 1) with the euclidean metric d. It

is clear that the sequence 0.1, 0.01, 0.001, 0.0001, . . . is a Cauchy sequence but it does

not converge to any point in (0, 1). �
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6.3.4 Definition. A metric space (X, d) is said to be complete if every Cauchy

sequence in (X, d) converges to a point in (X, d).

We immediately see from Example 6.3.3 that the unit interval (0,1) with the

euclidean metric is not a complete metric space. On the other hand, if X is any

finite set and d is the discrete metric on X, then obviously (X, d) is a complete metric

space.

We shall show that R with the euclidean metric is a complete metric space. First

we need to do some preparation.

As a shorthand, we shall denote the sequence x1, x2, . . . , xn, . . . , by {xn}.

6.3.5 Definition. If {xn} is any sequence, then the sequence xn1 , xn2 , . . . is

said to be a subsequence if n1 < n2 < n3 < . . . .

6.3.6 Definitions. Let {xn} be a sequence in R. Then it is said to be an

increasing sequence if xn ≤ xn+1, for all n ∈ N. It is said to be a decreasing

sequence if xn ≥ xn+1, for all n ∈ N. A sequence which is either increasing or

decreasing is said to be monotonic.

Most sequences are of course neither increasing nor decreasing.

6.3.7 Definition. Let {xn} be a sequence in R. Then n0 ∈ N is said to be a

peak point if xn ≤ xn0, for every n ≥ n0.
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6.3.8 Lemma. Let {xn} be any sequence in R. Then {xn} has a monotonic

subsequence.

Proof. Assume firstly that the sequence {xn} has an infinite number of peak

points. Then choose a subsequence {xnk
}, where each nk is a peak point. This

implies, in particular, that xnk
≥ xnk+1

, for each k ∈ N; that is, {xnk
} is a decreasing

subsequence of {xn}; so it is a monotonic subsequence.

Assume then that there are only a finite number of peak points. So there exists

an integer N , such that there are no peak points n > N. Choose any n1 > N . Then

n1 is not a peak point. So there is an n2 > n1 with xn2 > xn1. Now n2 > N and so

it too is not a peak point. Hence there is an n3 > n2, with xn3 > xn2. Continuing in

this way (by mathematical induction), we produce a subsequence {xnk
} of {xn} with

xnk
< xnk+1

, for all k ∈ N; that is, {xnk
} is an increasing subsequence of {xn}. This

completes the proof of the Lemma. �

6.3.9 Proposition. Let {xn} be a monotonic sequence in R with the euclidean

metric. Then {xn} converges to a point in R if and only if {xn} is bounded.

Proof. Recall that “bounded” was defined in Remark 3.3.1.

Clearly if {xn} is unbounded, then it does not converge.

Assume then that {xn} is an increasing sequence which is bounded. By the Least

Upper Bound Axiom, there is a least upper bound L of the set {xn : n ∈ N}. If ε is any

positive real number, then there exists a positive integer N such that d(xN , L) < ε;

indeed, xN > L− ε.

But as {xn} is an increasing sequence and L is an upper bound, we have

L− ε < xn < L, for all n > N.

That is xn → L.

The case that {xn} is a decreasing sequence which is bounded is proved in an

analogous fashion, which completes the proof. �
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As a corollary to Lemma 6.3.8 and Proposition 6.3.9, we obtain immediately

the following:

6.3.10 Theorem. (Bolzano-Weierstrass Theorem) Every bounded

sequence in R with the euclidean metric has a convergent subsequence. �

At long last we are able to prove that R with the euclidean metric is a complete

metric space.
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6.3.11 Corollary. The metric space R with the euclidean metric is a complete

metric space.

Proof. Let {xn} be any Cauchy sequence in (R, d).

If we show that this arbitrary Cauchy sequence converges in R, we shall have

shown that the metric space is complete. The first step will be to show

that this sequence is bounded.

As {xn} is a Cauchy sequence, there exists a positive integer N , such that for any

n ≥ N and m ≥ N , d(xn, xm) < 1; that is, |xn − xm| < 1. Put M = |x1|+ |x2|+ · · ·+ |xN |+ 1.

Then |xn| < M, for all n ∈ N; that is, the sequence {xn} is bounded.

So by the Bolzano-Weierstrass Theorem 6.3.10, this sequence has a convergent

subsequence; that is, there is an a ∈ R and a subsequence {xnk
} with xnk

→ a.

We shall show that not only does the subsequence converge to a, but also

that the sequence {xn} itself converges to a.

Let ε be any positive real number. As {xn} is a Cauchy sequence, there exists a

positive integer N0 such that

|xn − xm| <
ε

2
, for all m ≥ N0 and n ≥ N0.

Since xnk
→ a, there exists a positive integer N1, such that

|xnk
− a| < ε

2
, for all nk ≥ N1.

So if we choose N2 = max{N0, N1}, combining the above two inequalities yields

|xn − a| ≤ |xn − xnk
|+ |xnk

− a|

<
ε

2
+
ε

2
, for n > N2 and nk > N2

= ε.

Hence xn → a, which completes the proof of the Corollary. �
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6.3.12 Corollary. For each positive integer m, the metric space Rm with the

euclidean metric is a complete metric space.

Proof. See Exercises 6.3#4. �

6.3.13 Proposition. Let (X, d) be a metric space, Y a subset of X, and d1

the metric induced on Y by d.

(i) If (X, d) is a complete metric space and Y is a closed subspace of (X, d),

then (Y, d1) is a complete metric space.

(ii) If (Y, d1) is a complete metric space, then Y is a closed subspace of (X, d).

.
Proof. See Exercises 6.3#5. �

6.3.14 Remark. Example 6.3.3 showed that (0, 1) with the euclidean metric is not

a complete metric space. However, Corollary 6.3.11 showed that R with the euclidean

metric is a complete metric space. And we know that the topological spaces (0, 1)

and R are homeomorphic. So completeness is not preserved by homeomorphism and

so is not a topological property.

6.3.15 Definition. A topological space (X,τ ) is said to be completely

metrizable if there exists a metric d on X such that τ is the topology on X

determined by d and (X, d) is a complete metric space.

6.3.16 Remark. Note that being completely metrizable is indeed a topological

property. Further, it is easy to verify (see Exercises 6.3#7) that every discrete

space and every interval of R with the induced topology is completely metrizable.

So for a, b ∈ R with a < b, the topological spaces R, [a, b], (a, b), [a, b), (a, b], (−∞, a),

(−∞, a], (a,∞), [a,∞), and {a} with their induced topologies are all completely

metrizable. Somewhat surprisingly we shall see later that even the space P of all

irrational numbers with its induced topology is completely metrizable. Also as (0, 1)

is a completely metrizable subspace of R which is not a closed subset, we see

that Proposition 6.3.13(ii) would not be true if complete metric were replaced by

completely metrizable. �
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6.3.17 Definition. A topological space is said to be separable if it has a

countable dense subset.

It was seen in Exercises 3.2#4 that R and every countable topological space is

a separable space. Other examples are given in Exercises 6.1#7.

6.3.18 Definition. A topological space (X,τ ) is said to be a Polish space if

it is separable and completely metrizable.

It is clear that R is a Polish space. By Exercises 6.3#6, Rn is a Polish space, for

each positive integer n.

6.3.19 Definition. A topological space (X,τ ) is said to be a Souslin space

if it is Hausdorff and a continuous image of a Polish space. If A is a subset of

a topological space (Y,τ 1) such that with the induced topology τ 2, the space

(A,τ 2) is a Souslin space, then A is said to be an analytic set in (Y,τ 1).

Obviously every Polish space is a Souslin space. Exercises 6.1#12 and #11

show that the converse is false as a Souslin space need not be metrizable. However,

we shall see that even a metrizable Souslin space is not necessarily a Polish space.

To see this we note that every countable topological space is a Souslin space as it is

a continuous image of the discrete space N; one such space is the metrizable space

Q which we shall see in Example 6.5.8 is not a Polish space.

We know that two topological spaces are equivalent if they are homeomorphic.

It is natural to ask when are two metric spaces equivalent (as metric spaces)? The

relevant concept was introduced in Exercises 6.1#10, namely that of isometric.

6.3.20 Definition. Let (X, d) and (Y, d1) be metric spaces. Then (X, d) is said

to be isometric to (Y, d1) if there exists a surjective mapping f : X → Y such that

for all x1 and x2 in X, d(x1, x2) = d1(f(x1), f(x2)). Such a mapping f is said to be

an isometry.
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Let d be any metric on R and a any positive real number. If d1 is defined by

d1(x, y) = a.d(x, y), for all x, y ∈ R, then it is easily shown that (R, d1) is a metric space

isometric to (R, d).

It is also easy to verify that any two isometric metric spaces have their associated

topological spaces homeomorphic and every isometry is also a homeomorphism of

the associated topological spaces.

6.3.21 Definition. Let (X, d) and (Y, d1) be metric spaces and f a mapping

of X into Y . Let Z = f(X), and d2 be the metric induced on Z by d1. If

f : (X, d)→ (Z, d2) is an isometry, then f is said to be an isometric embedding of

(X, d) in (Y, d1).

Of course the natural embedding of Q with the euclidean metric in R with the

euclidean metric is an isometric embedding. It is also the case that N with the

euclidean metric has a natural isometric embedding into both R and Q with the

euclidean metric.

6.3.22 Definition. Let (X, d) and (Y, d1) be metric spaces and f a mapping of

X into Y . If (Y, d1) is a complete metric space, f : (X, d) → (Y, d1) is an isometric

embedding and f(X) is a dense subset of Y in the associated topological space,

then (Y, d1) is said to be a completion of (X, d).

Clearly R with the euclidean metric is a completion of Q, the set of rationals

with the euclidean metric. Also R with the euclidean metric is a completion of P, the

set of irrationals with the euclidean metric.7.5 Two questions immediately jump to

mind: (1) Does every metric space have a completion? (2) Is the completion of a

metric space unique in some sense? We shall see that the answer to both questions

is “yes”.
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6.3.23 Proposition. Let (X, d) be any metric space. Then (X, d) has a

completion.

Outline Proof. We begin by saying that two Cauchy sequences {yn} and {zn} in

(X, d) are equivalent if d(yn, zn)→ 0 in R. This is indeed an equivalence relation; that

is, it is reflexive, symmetric and transitive. Now let X̃ be the set of all equivalence

classes of equivalent Cauchy sequences in (X, d). We wish to put a metric on X̃.

Let ỹ and z̃ be any two points in X̃. Let Cauchy sequences {yn} ∈ ỹ and {zn} ∈ z̃.
Now the sequence {d(yn, zn)} is a Cauchy sequence in R. (See Exercises 6.3#8.) As

R is a complete metric space, this Cauchy sequence in R converges to some number,

which we shall denote by d1(ỹ, z̃). It is straightforward to show that d1(ỹ, z̃) is not

dependent on the choice of the sequence {yn} in ỹ and {zn} in z̃.

For each x ∈ X, the constant sequence x, x, . . . , x, . . . is a Cauchy sequence in

(X, d) converging to x. Let x̃ denote the equivalence class of all Cauchy sequences

converging to x ∈ X. Define the subset Y of X̃ to be {x̃ : x ∈ X}. If d2 is the metric on

Y induced by the metric d1 on X̃, then it is clear that the mapping f : (X, d)→ (Y, d2),

given by f(x) = x̃, is an isometry.

Now we show that Y is dense in X̃. To do this we show that for any given

real number ε > 0, and z ∈ X̃, there is an x̃ ∈ Y , such that d1(z, x̃) < ε. Note that

z is an equivalence class of Cauchy sequences. Let {xn} be a Cauchy sequence in

this equivalence class z. There exists a positive integer n0, such that for all n > n0,

d1(xn, xn0) < ε. We now consider the constant sequence xn0 , xn0 , . . . , xn0 , . . . . This lies in

the equivalence class x̃n0, which is in Y . Further, d1(x̃n0 , z) < ε. So Y is indeed dense

in X̃.

Finally, we show that (X̃, d1) is a complete metric space. Let {zn} be a Cauchy

sequence in this space. We are required to show that it converges in X̃. As Y is

dense, for each positive integer n, there exists x̃n ∈ Y , such that d1(x̃n, zn) < 1/n. We

show that {x̃n} is a Cauchy sequence in Y .

Consider a real number ε > 0. There exists a positive integer N , such that

d1(zn, zm) < ε/2 for n,m > N. Now take a positive integer n1, with 1/n1 < ε/4. For

n,m > n1 +N , we have

d1(x̃n, x̃m) < d1(x̃n, zn) + d1(zn, zm) + d1(zm, x̃m) < 1/n+ ε/2 + 1/m < ε.

So {x̃n} is a Cauchy sequence in Y . This implies that {xn} is a Cauchy sequence in

(X, d). Hence {xn} ∈ z, for some z ∈ X̃. It is now straightforward to show first that

x̃n → z and then that zn → z, which completes the proof. �
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6.3.24 Proposition. Let (A, d1) and (B, d2) be complete metric spaces. Let X

be a subset of (A, d1) with induced metric d3, and Y a subset of (B, d2) with induced

metric d4. Further, let X be dense in (A, d1) and Y dense in (B, d2). If there is

an isometry f : (X, d3) → (Y, d4), then there exists an isometry g : (A, d1) → (B, d2),

such that g(x) = f(x), for all x ∈ X.

Outline Proof. Let a ∈ A. As X is dense in (A, d1), there exists a sequence xn → a,

where each xn ∈ X. So {xn} is a Cauchy sequence. As f is an isometry, {f(xn)} is a

Cauchy sequence in (Y, d4) and hence also a Cauchy sequence in (B, d2). Since (B, d2)

is a complete metric space, there exists a b ∈ B, such that f(xn) → b. So we define

g(a) = b.

To show that g is a well-defined map of A into B, it is necessary to verify that

if {zn} is any other sequence in X converging to a, then f(zn)→ b. This follows from

the fact that d1(xn, zn)→ 0 and thus d2(f(xn), f(zn)) = d4(f(xn), f(zn))→ 0.

Next we need to show that g : A→ B is one-to-one and onto. This is left as an

exercise as it is routine.

Finally, let a1, a2 ∈ A and a1n → a1 and a2n → a2, where each a1n and each a2n is in

X. Then

d1(a1, a2) = lim
n→∞

d3(a1n, a2n) = lim
n→∞

d4(f(a1n), f(a2n)) = d2(g(a1), g(a2))

and so g is indeed an isometry, as required. �

Proposition 6.3.24 says that, up to isometry, the completion of a metric spaces

is unique.

We conclude this section with another concept. Recall that in Example 6.1.9 we

introduced the concept of a normed vector space. We now define a very important

class of normed vector spaces.

6.3.25 Definition. Let (N, || ||) be a normed vector space and d the associated

metric on the set N . Then (N, || ||) is said to be a Banach space if (N, d) is a

complete metric space.
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From Proposition 6.3.23 we know that every normed vector space has a

completion. However, the rather pleasant feature is that this completion is in fact

also a normed vector space and so is a Banach space. (See Exercises 6.3#12.)

Exercises 6.3

1. Verify that the sequence {xn =
n∑
i=0

1
i!
} is a Cauchy sequence in Q with the euclidean

metric. [This sequence does not converge in Q. In R it converges to the number

e, which is known to be irrational. For a proof that e is irrational, indeed

transcendental, see Jones et al. [132].]

2. Prove that every subsequence of a Cauchy sequence is a Cauchy sequence.

3. Give an example of a sequence in R with the euclidean metric which has no

subsequence which is a Cauchy sequence.

4. Using Corollary 6.3.11, prove that, for each positive integer m, the metric space

Rm with the euclidean metric is a complete metric space.

[Hint. Let {< x1n, x2n, . . . , xmn >: n = 1, 2, . . . } be a Cauchy sequence in Rm. Prove

that, for each i = 1, 2, . . . ,m, the sequence {xin : n = 1, 2, . . . } in R with the

euclidean metric is a Cauchy sequence and so converges to a point ai. Then

show that the sequence {< x1n, x2n, . . . , xmn >: n = 1, 2, . . . } converges to the point

< a1, a2, . . . , am >.]

5. Prove that every closed subspace of a complete metric space is complete and

that every complete metric subspace of a metric space is closed.

6. Prove that for each positive integer n, Rn is a Polish space.

7. Let a, b ∈ R, with a < b. Prove that each discrete space and each of the spaces

[a, b], (a, b), [a, b), (a, b], (−∞, a), (−∞, a], (a,∞), [a,∞), and {a}, with its induced

topology is a Polish Space.
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8. If (X, d) is a metric space and {xn} and {yn} are Cauchy sequences, prove that

{d(xn, yn)} is a Cauchy sequence in R.

9. Fill in the missing details in the proof of Proposition 6.3.23.

10. Fill in the missing details in the proof of Proposition 6.3.24.

11*. Show that each of the spaces (`1, d1), (`2, d2), (c0, d0), and (`∞, d∞) of Exercises

6.1#7 is a complete metric space. Indeed, show that each of these spaces is a

Banach space in a natural way.

12*. Let X be any normed vector space. Prove that it is possible to put a

normed vector space structure on X̃, the complete metric space constructed in

Proposition 6.3.23. So every normed vector space has a completion which is a

Banach space.

13. Let (X, d) be a metric space and S a subset of X. Then the set S is said to be

bounded if there exists a positive integer M such that d(x, y) < M, for all x, y ∈ S.

(i) Show that if S is a bounded set in (X, d) and S = X, then (X, d) is a bounded

metric space. (See Exercises 6.1# 2.)

(ii) Let a1, a2, . . . , an, . . . be a convergent sequence in a metric space (X, d). If

the set S consists of the (distinct) points in this sequence, show that S is

a bounded set.

(iii) Let b1, b2, . . . , bn, . . . be a Cauchy sequence in a complete metric space (X, d).

If T is the set of points in this sequence, show that T is a bounded set.

(iv) Is (iii) above still true if we do not insist that (X, d) is complete?

14. Prove that a metric space (X, d) is separable if and only if the associated

topological space (X,τ ) satisfies the second axiom of countability. (See

Exercises 2.2 #4.)
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15. Deduce from Exercise 14 above that if (X, d) is a separable metric space, and d1

is the metric induced on a subset Y of X by d, then (Y, d1) is separable; in other

words every subspace of a separable metric space is separable. (It should be

noted that it is not necessarily true that a subspace of a separable topological

space is separable.)

6.4 Contraction Mappings

In Chapter 5 we had our first glimpse of a fixed point theorem. In this section we shall

meet another type of fixed point theorem. This section is very much part of metric

space theory rather than general topology. Nevertheless the topic is important for

applications.

6.4.1 Definition. Let f be a mapping of a set X into itself. Then a point

x ∈ X is said to be a fixed point of f if f(x) = x.

6.4.2 Definition. Let (X, d) be a metric space and f a mapping of X into

itself. Then f is said to be a contraction mapping if there exists an r ∈ (0, 1),

such that

d(f(x1), f(x2)) ≤ r.d(x1, x2), for all x1, x2 ∈ X.

6.4.3 Proposition. Let f be a contraction mapping of the metric space

(X, d). Then f is a continuous mapping.

Proof. See Exercises 6.4#1. �
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6.4.4 Theorem. (Contraction Mapping Theorem or Banach Fixed Point

Theorem) Let (X, d) be a complete metric space and f a contraction mapping

of (X, d) into itself. Then f has precisely one fixed point.

Proof. Let x be any point in X and consider the sequence

x, f(x), f 2(x) = f(f(x)), f 3(x) = f(f(f(x))), . . . , fn(x), . . . .

We shall show this is a Cauchy sequence. Put a = d(x, f(x)). As f is a contraction

mapping, there exists r ∈ (0, 1), such that d(f(x1), f(x2)) ≤ r.d(x1, x2), for all x1, x2 ∈ X.

Clearly d(f(x), f 2(x)) ≤ r.d(x, f(x)) = r.a, d(f 2(x), f 3(x)) ≤ r2.d(x, f(x)) = r2.a, and by

induction we obtain that, for each k ∈ N, d(fk(x), fk+1(x)) ≤ rk.d(x, f(x)) = rk.a.

Let m and n be any positive integers, with n > m. Then

d(fm(x), fn(x)) = d(fm(x), fm(fn−m(x)))

≤ rm.d(x, fn−m(x))

≤ rm.[d(x, f(x)) + d(f(x), f 2(x)) + · · ·+ d(fn−m−1(x), fn−m(x))]

≤ rm.d(x, f(x))[1 + r + r2 + · · ·+ rn−m−1]

≤ rm.a

1− r
.

As r < 1, it is clear that {fn(x)} is a Cauchy sequence. Since (X, d) is complete, there

is a z ∈ X, such that fn(x)→ z.

By Proposition 6.4.3, f is continuous and so

f(z) = f
(

lim
n→∞

fn(x)
)

= lim
n→∞

fn+1(x) = z (6.1)

and so z is indeed a fixed point of f .

Finally, let t be any fixed point of f . Then

d(t, z) = d(f(t), f(z)) ≤ r.d(t, z). (6.2)

As r < 1, this implies d(t, z) = 0 and thus t = z and f has only one fixed point. �



6.4. CONTRACTION MAPPINGS 143

It is worth mentioning that the Contraction Mapping Theorem provides not only

an existence proof of a fixed point but also a construction for finding it; namely,

let x be any point in X and find the limit of the sequence {fn(x)}. This method

allows us to write a computer program to approximate the limit point to any desired

accuracy.

Exercises 6.4

1. Prove Proposition 6.4.3.

2. Extend the Contraction Mapping Theorem by showing that if f is a mapping

of a complete metric space (X, d) into itself and fN is a contraction mapping

for some positive integer N , then f has precisely one fixed point.

3. The Mean Value Theorem says: Let f be a real-valued function on a closed

unit interval [a, b] which is continuous on [a, b] and differentiable on (a, b). Then

there exists a point c ∈ [a, b] such that f(b) − f(a) = f ′(c)(b − a). (Recall that f is

said to be differentiable at a point s if lim
x→s

f(x)−f(s)
x−s = f ′(s) exists.)

Using the Mean Value Theorem prove the following:

Let f : [a, b]→ [a, b] be differentiable. Then f is a contraction if and only if there

exists r ∈ (0, 1) such that |f ′(x)| ≤ r, for all x ∈ [a, b].

4. Using Exercises 3 and 2 above, show that while f : R → R given by f(x) = cosx

does not satisfy the conditions of the Contraction Mapping Theorem, it

nevertheless has a unique fixed point.
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6.5 Baire Spaces

6.5.1 Theorem. (Baire Category Theorem) Let (X, d) be a complete metric

space. If X1, X2, . . . , Xn, . . . is a sequence of open dense subsets of X, then the

set
⋂∞
n=1Xn is also dense in X.

Proof. It suffices to show that if U is any open subset of (X, d), then U∩
⋂∞
n=1Xn 6= Ø.

As X1 is open and dense in X, the set U ∩ X1 is a non-empty open subset of

(X, d). Let U1 be an open ball of radius at most 1, such that U1 ⊂ U ∩X1.

Inductively define for each positive integer n > 1, an open ball Un of radius at

most 1/n such that Un ⊂ Un−1 ∩Xn.

For each positive integer n, let xn be any point in Un. Clearly the sequence {xn}
is a Cauchy sequence. As (X, d) is a complete metric space, this sequence converges

to a point x ∈ X.

Observe that for every positive integer m, every member of the sequence {xn} is

in the closed set Um, and so the limit point x is also in the set Um.

Then x ∈ Un, for all n ∈ N. Thus x ∈
⋂∞
n=1 Un.

But as U∩
⋂∞
n=1Xn ⊃

⋂∞
n=1 Un 3 x, this implies that U∩

⋂∞
n=1Xn 6= Ø, which completes

the proof of the theorem. �

In Exercises 3.2 #5 we introduced the notion of interior of a subset of a

topological space.

6.5.2 Definition. Let (X,τ ) be any topological space and A any subset of X.

The largest open set contained in A is called the interior of A and is denoted

by Int(A).

6.5.3 Definition. A subset A of a topological space (X,τ ) is said to be

nowhere dense if the set A has empty interior.
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These definitions allow us to rephrase Theorem 6.5.1.

6.5.4 Corollary. (Baire Category Theorem) Let (X, d) be a complete metric

space. If X1, X2, . . . , Xn, . . . is a sequence of subsets of X such that X =
⋃∞
n=1Xn,

then for at least one n ∈ N, the set Xn has non-empty interior; that is, Xn is not

nowhere dense.

Proof. Exercises 6.5 #2. �

6.5.5 Definition. A topological space (X, d) is said to be a Baire space if for

every sequence {Xn} of open dense subsets of X, the set
⋂∞
n=1Xn is also dense

in X.

6.5.6 Corollary. Every complete metrizable space is a Baire space. �

6.5.7 Remarks. It is important to note that Corollary 6.5.6 is a result in topology,

rather than a result in metric space theory.

Note also that there are Baire spaces which are not completely metrizable. (See

Exercises 6.5 #4(iv).) �

6.5.8 Example. The topological space Q is not a Baire space and so is not

completely metrizable. To see this, note that the set of rational numbers is countable

and let

Q = {x1, x2, . . . , xn, . . . }. Each of the sets Xn = Q\{xn} is open and dense in Q, however⋂∞
n=1Xn = Ø. Thus Q does not have the Baire space property. �
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6.5.9 Remark. You should note that (once we had the Baire Category Theorem)

it was harder to prove that Q is not completely metrizable than the more general

result that Q is not a Baire space.

It is a surprising and important feature not only of topology, but of mathematics

generally, that a more general result is sometimes easier to prove. �

6.5.10 Definitions. Let Y be a subset of a topological space (X,τ ). If Y is

a union of a countable number of nowhere dense subsets of X, then Y is said

to be a set of the first category or meager in (X,τ ). If Y is not first category,

it is said to be a set of the second category in (X,τ ).

The Baire Category Theorem has many applications in analysis, but these lie

outside our study of Topology. However, we shall conclude this section with an

important theorem in Banach space theory, namely the Open Mapping Theorem.

This theorem is a consequence of the Baire Category Theorem.

6.5.11 Proposition. If Y is a first category subset of a Baire space (X,τ ),

then the interior of Y is empty.

Proof. As Y is first category, Y =
∞⋃
n=1

Yn, where each Yn, n ∈ N, is nowhere dense.

Let U ∈ τ be such that U ⊆ Y . Then U ⊆
∞⋃
n=1

Yn ⊆
∞⋃
n=1

Yn.

So X \ U ⊇
∞⋂
n=1

(X \ Yn), and each of the sets X \ Yn is open and dense in (X,τ ).

As (X,τ ) is Baire,
∞⋂
n=1

(X \ Yn) is dense in (X,τ ). So the closed set X \ U is dense in

(X,τ ). This implies X \ U = X. Hence U = Ø. This completes the proof. �

6.5.12 Corollary. If Y is a first category subset of a Baire space (X,τ ), then

X \ Y is a second category set.
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Proof. If this were not the case, then the Baire space (X,τ ) would be a countable

union of nowhere dense sets. �

6.5.13 Remark. As Q is a first category subset of R, it follows from Corollary

6.5.12 that the set P of irrationals is a second category set. �

6.5.14 Definition. Let S be a subset of a real vector space V . The set S is

said to be convex if for each x, y ∈ S and every real number 0 < λ < 1, the point

λx+ (1− λ)y is in S.

Clearly every subspace of a vector space is convex. Also in any normed vector

space, every open ball and every closed ball is convex.
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6.5.15 Theorem. (Open Mapping Theorem) Let (B, || ||) and ((B1, || ||1) be

Banach spaces and L : B → B1 a continuous linear (in the vector space sense)

mapping of B onto B1. Then L is an open mapping.

Proof. By Exercises 6.5#1(iv), it suffices to show that there exists an N ∈ N such

that L(BN(0)) ⊃ Bs(0), for some s > 0.

Clearly B =
∞⋃
n=1

Bn(0) and as L is surjective we have B1 = L(B) =
∞⋃
n=1

L(Bn(0)).

As B1 is a Banach space, by Corollary 6.5.4 of the Baire Category Theorem,

there is an N ∈ N, such that L(BN(0)) has non-empty interior.

So there is a z ∈ B1 and t > 0, such that Bt(z)) ⊆ L(BN(0)).

By Exercises 6.5#3 there is no loss of generality in assuming that z ∈ L(BN(0)).

But Bt(z) = Bt(0) + z, and so

Bt(0) ⊆ L(BN(0))− z = L(BN(0))− z ⊆ L(BN(0))− L(BN(0)) ⊆ L(B2N(0)).

which, by the linearity of L, implies that Bt/2(0) ⊆ L(BN(0)).

We shall show that this implies that Bt/4(0) ⊆ L(BN(0)).

Let w ∈ Bt/2(0). Then there is an x1 ∈ BN(0), such that ||w − L(x1)||1 < t
4
.

Note that by linearity of the mapping L, for each integer k > 0

Bt/2(0) ⊆ L(BN(0)) =⇒ Bt/(2k)(0) ⊆ L(BN/k(0)).

So there is an x2 ∈ BN/2(0), such that

||(w − L(x1))− L(x2)||1 = ||w − L(x1)− L(x2)||1 <
t

8
.

Continuing in this way, we obtain by induction a sequence {xm} such that

||xm|| < N
2m−1 and

||w − L(x1 + x2 + · · ·+ xm)||1 = ||w − L(x1)− L(x2)− · · · − L(xm)||1 <
t

2m
.

Since B is complete, the series
∑∞

m=1 xm converges to a limit a.

Clearly ||a|| < 2N and by continuity of L, we have w = L(a) ∈ L(B2N(0)).

So Bt/2(0) ⊆ L(B2N(0)) and thus Bt/4(0) ⊆ L(BN(0)) which completes the proof. �
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The following Corollary of the Open Mapping Theorem follows immediately and

is a very important special case.

6.5.16 Corollary. A one-to-one continuous linear map of one Banach space

onto another Banach space is a homeomorphism. In particular, a one-to-one

continuous linear map of a Banach space onto itself is a homeomorphism. �

Exercises 6.5

1. Let (X,τ ) and (Y,τ 1) be topological spaces. A mapping f : (X,τ ) → (Y,τ 1) is

said to be an open mapping if for every open subset A of (X,τ ), the set f(A) is

open in (Y,τ 1).

(i) Show that f is an open mapping if and only if for each U ∈ τ and each

x ∈ U , the set f(U) is a neighbourhood of f(x).

(ii) Let (X, d) and (Y, d1) be metric spaces and f a mapping of X into Y . Prove

that f is an open mapping if and only if for each n ∈ N and each x ∈ X,

f(B1/n(x)) ⊇ Br(f(x)), for some r > 0.

(iii) Let (N, || ||) and (N1, || ||1) be normed vector spaces and f a linear mapping

of N into N1. Prove that f is an open mapping if and only if for each n ∈ N,

f(B1/n(0)) ⊇ Br(0), for some r > 0.

(iv) Let (N, || ||) and (N1, || ||1) be normed vector spaces and f a linear mapping

of N into N1. Prove that f is an open mapping if and only if there exists an

s > 0 such that f(Bs(0)) ⊇ Br(0), for some r > 0.

2. Using the Baire Category Theorem, prove Corollary 6.5.4.
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3. Let A be a subset of a Banach space B. Prove the following are equivalent:

(i) the set A has non-empty interior;

(ii) there exists a z ∈ A and t > 0 such that Bt(z) ⊆ A;

(ii) there exists a y ∈ A and r > 0 such that Br(y) ⊆ A.

4. A point x in a topological space (X,τ ) is said to be an isolated point if {x} ∈ τ .

Prove that if (X,τ ) is a countable T1-space with no isolated points, then it is

not a Baire space.

5. (i) Using the version of the Baire Category Theorem in Corollary 6.5.4, prove

that P is not an Fσ-set and Q is not a Gδ-set in R.

[Hint. Suppose that P =
⋃∞
n=1 Fn, where each Fn is a closed subset of R.

Then apply Corollary 6.5.4 to R =
∞⋃
n=1

Fn ∪
⋃
q∈Q
{q}.]

(ii) Let f : R → R be a function mapping R into itself. Then f is said to be

continuous at a point a ∈ R if for each open set U containing f(a), there

exists an open set V containing a such that f(V ) ⊆ U . Prove that the set

of points in R at which f is continuous is a Gδ-set.

(iii) Deduce from (i) and (ii) that there is no function f : R → R which is

continuous precisely at the set of all rational numbers.
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6. (i) Let (X,τ ) be any topological space, and Y and S dense subsets of X. If S

is also open in (X,τ ), prove that S ∩ Y is dense in both X and Y .

(ii) Let τ 1 be the topology induced on Y by τ on X. Let {Xn} be a sequence

of open dense subsets of Y . Using (i), show that {Xn ∩ Y } is a sequence of

open dense subsets of (Y,τ 1).

(iii) Deduce from Definition 6.5.5 and (ii) above, that if (Y,τ 1) is a Baire space,

then (X,τ ) is also a Baire space. [So the closure of a Baire space is a Baire

space.]

(iv) Using (iii), show that the subspace (Z,τ 2) of R2 given by

Z = {〈x, y〉 : x, y ∈ R, y > 0} ∪ {〈x, 0〉 : x ∈ Q},

is a Baire space, but is not completely metrizable as the closed subspace

{〈x, 0〉 : x ∈ Q} is homeomorphic to Q which is not completely metrizable.

This also shows that a closed subspace of a Baire space is not necessarily

a Baire space.

7. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) be a

continuous open mapping. If (X,τ ) is a Baire space, prove that (X,τ 1) is a

Baire space. [So an open continuous image of a Baire space is a Baire space.]

8. Let (Y,τ 1) be an open subspace of the Baire space (X,τ ). Prove that (Y,τ ) is

a Baire space. [So an open subspace of a Baire space is a Baire space.]
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9. Let (X,τ ) be a topological space. A function f : (X,τ ) → R is said to be lower

semicontinuous if for each r ∈ R, the set f−1((−∞, r]) is closed in (X,τ ). A

function f : (X,τ )→ R is said to be upper semicontinuous if for each r ∈ R, the

set f−1((−∞, r)) is open in (X,τ ).

(i) Prove that f is continuous if and only if it is lower semicontinuous and

upper semicontinuous.

(ii) Let (X,τ ) be a Baire space, I an index set and for each x ∈ X, let the set

{fi(x) : i ∈ I} be bounded above, where each mapping fi : (X,τ )→ R is lower

semicontinuous. Using the Baire Category Theorem prove that there exists

an open subset O of (X,τ ) such that the set {fi(x) : x ∈ O, i ∈ I} is bounded

above.

[Hint. Let Xn =
⋂
i∈I
f−1i ((−∞, n]).]

10. Let B be a Banach space where the dimension of the underlying vector space

is countable. Using the Baire Category Theorem, prove that the dimension of

the underlying vector space is, in fact, finite.

11. Let (N, || ||) be a normed vector space and (X, τ) a convex subset of (N, || ||)
with its induced topology. Show that (X, τ) is path-connected, and hence also

connected. Deduce that every open ball in (N, || ||) is path-connected as is

(N, || ||) itself.

6.6 Postscript

Metric space theory is an important topic in its own right. As well, metric spaces

hold an important position in the study of topology. Indeed many books on topology

begin with metric spaces, and motivate the study of topology via them.

We saw that different metrics on the same set can give rise to the same topology.

Such metrics are called equivalent metrics. We were introduced to the study of

function spaces, and in particular, C[0, 1]. En route we met normed vector spaces, a

central topic in functional analysis.
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Not all topological spaces arise from metric spaces. We saw this by observing

that topologies induced by metrics are Hausdorff.

We saw that the topology of a metric space can be described entirely in terms

of its convergent sequences and that continuous functions between metric spaces

can also be so described.

Exercises 6.2 #9 introduced the interesting concept of distance between sets in

a metric space.

We met the concepts of Cauchy sequence, complete metric space, completely

metrizable space, Banach space, Polish space, and Souslin space. Completeness is

an important topic in metric space theory because of the central role it plays in

applications in analysis. Banach spaces are complete normed vector spaces and are

used in many contexts in analysis and have a rich structure theory. We saw that

every metric space has a completion, that is can be embedded isometrically in a

complete metric space. For example every normed vector space has a completion

which is a Banach space.

Contraction mappings were introduced in the concept of fixed points and we saw

the proof of the Contraction Mapping Theorem which is also known as the Banach

Fixed Point Theorem. This is a very useful theorem in applications for example in

the proof of existence of solutions of differential equations.

Another powerful theorem proved in this chapter was the Baire Category

Theorem. We introduced the topological notion of a Baire space and saw that every

completely metrizable space is a Baire space. En route the notion of first category

or meager was introduced. And then we proved the Open Mapping Theorem which

says that a continuous linear map from a Banach space onto another Banach space

must be an open mapping.



Chapter 7

Compactness

Introduction

The most important topological property is compactness. It plays a key role in

many branches of mathematics. It would be fair to say that until you understand

compactness you do not understand topology!

So what is compactness? It could be described as the topologists generalization

of finiteness. The formal definition says that a topological space is compact if

whenever it is a subset of a union of an infinite number of open sets then it is also a

subset of a union of a finite number of these open sets. Obviously every finite subset

of a topological space is compact. And we quickly see that in a discrete space a set

is compact if and only if it is finite. When we move to topological spaces with richer

topological structures, such as R, we discover that infinite sets can be compact.

Indeed all closed intervals [a, b] in R are compact. But intervals of this type are the

only ones which are compact.

So we are led to ask: precisely which subsets of R are compact? The Heine-Borel

Theorem will tell us that the compact subsets of R are precisely the sets which are

both closed and bounded.

As we go farther into our study of topology, we shall see that compactness plays

a crucial role. This is especially so of applications of topology to analysis.

154
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7.1 Compact Spaces

7.1.1 Definition. Let A be a subset of a topological space (X,τ ). Then

A is said to be compact if for every set I and every family of open sets, Oi,

i ∈ I, such that A ⊆
⋃
i∈I Oi there exists a finite subfamily Oi1 , Oi2 . . . . , Oin such that

A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin.

7.1.2 Example. If (X,τ ) = R and A = (0,∞), then A is not compact.

Proof. For each positive integer i, let Oi be the open interval (0, i). Then, clearly,

A ⊆
⋃∞
i=1Oi. But there do not exist i1, i2, . . . in such that A ⊆ (0, i1) ∪ (0, i2) ∪ · · · ∪ (0, in).

Therefore A is not compact. �

7.1.3 Example. Let (X,τ ) be any topological space and A = {x1, x2, . . . , xn} any

finite subset of (X,τ ). Then A is compact.

Proof. Let Oi, i ∈ I, be any family of open sets such that A ⊆
⋃
i∈I Oi. Then for

each xj ∈ A, there exists an Oij , such that xj ∈ Oij . Thus A ⊆ Oi1 ∪ Oi2 ∪ · · · ∪ Oin. So

A is compact. �

7.1.4 Remark. So we see from Example 7.1.3 that every finite set (in a

topological space) is compact. Indeed “compactness” can be thought of as a

topological generalization of “finiteness”. �

7.1.5 Example. A subset A of a discrete space (X,τ ) is compact if and only if it

is finite.

Proof. If A is finite then Example 7.1.3 shows that it is compact.

Conversely, let A be compact. Then the family of singleton sets Ox = {x},
x ∈ A is such that each Ox is open and A ⊆

⋃
x∈AOx. As A is compact, there exist

Ox1 , Ox2 , . . . , Oxn such that A ⊆ Ox1 ∪Ox2 ∪ · · · ∪Oxn; that is, A ⊆ {x1, . . . , xn}. Hence A is

a finite set. �
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Of course if all compact sets were finite then the study of “compactness” would

not be interesting. However we shall see shortly that, for example, every closed

interval [a, b] is compact Firstly, we introduce a little terminology.

7.1.6 Definitions. Let I be a set and Oi, i ∈ I, a family of open sets in a

topological space (X,τ ). Let A be a subset of (X,τ ). Then Oi, i ∈ I, is said to

be an open covering of A if A ⊆
⋃
i∈I Oi. A finite subfamily, Oi1 , Oi2 , . . . , Oin, of Oi,

i ∈ I is called a finite subcovering (of A) if A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin.

So we can rephrase the definition of compactness as follows:

7.1.7 Definitions. A subset A of a topological space (X,τ ) is said to be

compact if every open covering of A has a finite subcovering. If the compact

subset A equals X, then (X,τ ) is said to be a compact space.

7.1.8 Remark. We leave as an exercise the verification of the following

statement:

Let A be a subset of (X,τ ) and τ 1 the topology induced on A by τ . Then A is a

compact subset of (X,τ ) if and only if (A,τ 1) is a compact space.

[This statement is not as trivial as it may appear at first sight.] �
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7.1.9 Proposition. The closed interval [0, 1] is compact.

Proof. Let Oi, i ∈ I be any open covering of [0, 1]. Then for each x ∈ [0, 1], there

is an Oi such that x ∈ Oi. As Oi is open about x, there exists an interval Ux, open in

[0, 1] such that x ∈ Ux ⊆ Oi.

Now define a subset S of [0, 1] as follows:

S = {z : [0, z] can be covered by a finite number of the sets Ux}.

[So z ∈ S ⇒ [0, z] ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn, for some x1, x2, . . . , xn.]

Now let x ∈ S and y ∈ Ux. Then as Ux is an interval containing x and y, [x, y] ⊆ Ux.

(Here we are assuming, without loss of generality that x ≤ y.) So

[0, y] ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn ∪ Ux

and hence y ∈ S.

So for each x ∈ [0, 1], Ux ∩ S = Ux or Ø.

This implies that

S =
⋃
x∈S

Ux

and

[0, 1] \ S =
⋃
x/∈S

Ux.

Thus we have that S is open in [0, 1] and S is closed in [0, 1]. But [0, 1] is connected.

Therefore S = [0, 1] or Ø.

However 0 ∈ S and so S = [0, 1]; that is, [0, 1] can be covered by a finite number

of Ux. So [0, 1] ⊆ Ux1 ∪ Ux2 ∪ . . . Uxm. But each Uxi is contained in an Oi, i ∈ I. Hence

[0, 1] ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oim and we have shown that [0, 1] is compact. �
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Exercises 7.1

1. Let (X,τ ) be an indiscrete space. Prove that every subset of X is compact.

2. Let τ be the finite-closed topology on any set X. Prove that every subset of

(X,τ ) is compact.

3. Prove that each of the following spaces is not compact.

(i) (0, 1);

(ii) [0, 1);

(iii) Q;

(iv) P;

(v) R2;

(vi) the open disc D = {〈x, y〉 : x2 + y2 < 1} considered as a subspace of R2;

(vii) the Sorgenfrey line;

(viii) C[0, 1] with the topology induced by the metric d of Example 6.1.5:

(ix) `1, `2, `∞, c0 with the topologies induced respectively by the metrics d1, d2,

d∞, and d0 of Exercises 6.1 #7.

4. Is [0, 1] a compact subset of the Sorgenfrey line?

5. Is [0, 1] ∩Q a compact subset of Q?

6. Verify that S = {0} ∪
∞⋃
n=1

{ 1
n
} is a compact subset of R while

∞⋃
n=1

{ 1
n
} is not.
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7.2 The Heine-Borel Theorem

The next proposition says that “a continuous image of a compact space is compact”.

7.2.1 Proposition. Let f : (X,τ )→ (Y,τ 1) be a continuous surjective map. If

(X,τ ) is compact, then (Y,τ 1) is compact.

Proof. Let Oi, i ∈ I, be any open covering of Y ; that is Y ⊆
⋃
i∈I Oi.

Then f−1(Y ) ⊆ f−1(
⋃
i∈I Oi); that is, X ⊆

⋃
i∈I f

−1(Oi).

So f−1(Oi), i ∈ I, is an open covering of X.

As X is compact, there exist i1, i2, . . . , in in I such that

X ⊆ f−1(Oi1) ∪ f−1(Oi2) ∪ · · · ∪ f−1(Oin).

So Y = f(X)

⊆ f(f−1(Oi1) ∪ f−1(Oi2) ∪ · · · ∪ f−1(Oin))

= f(f−1(Oi1) ∪ f(f−1(Oi2)) ∪ · · · ∪ f(f−1(Oin))

= Oi1 ∪Oi2 ∪ · · · ∪Oin , since f is surjective.

So we have Y ⊆ Oi1

⋃
Oi2

⋃
· · ·
⋃
Oin; that is, Y is covered by a finite number of

Oi.

Hence Y is compact. �

7.2.2 Corollary. Let (X,τ ) and (Y,τ 1) be homeomorphic topological spaces.

If (X,τ ) is compact, then (Y,τ 1) is compact. �
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7.2.3 Corollary. For a and b in R with a < b, [a, b] is compact while (a, b) is

not compact.

Proof. The space [a, b] is homeomorphic to the compact space [0, 1] and so, by

Proposition 7.2.1, is compact.

The space (a, b) is homeomorphic to (0,∞). If (a, b) were compact, then (0,∞)

would be compact, but we saw in Example 7.1.2 that (0,∞) is not compact. Hence

(a, b) is not compact. �

7.2.4 Proposition. Every closed subset of a compact space is compact.

Proof. Let A be a closed subset of a compact space (X,τ ). Let Ui ∈ τ , i ∈ I, be

any open covering of A. Then

X ⊆ (
⋃
i∈I

Ui) ∪ (X \ A);

that is, Ui, i ∈ I, together with the open set X \A is an open covering of X. Therefore

there exists a finite subcovering Ui1 , Ui2 , . . . , Uik, X \ A. [If X \ A is not in the finite

subcovering then we can include it and still have a finite subcovering of X.]

So

X ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik ∪ (X \ A).

Therefore,

A ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik ∪ (X \ A)

which clearly implies

A ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik

since A ∩ (X \ A) = Ø. Hence A has a finite subcovering and so is compact. �
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7.2.5 Proposition. A compact subset of a Hausdorff topological space is

closed.

Proof. Let A be a compact subset of the Hausdorff space (X,τ ). We shall show

that A contains all its limit points and hence is closed. Let p ∈ X \A. Then for each

a ∈ A, there exist open sets Ua and Va such that a ∈ Ua, p ∈ Va and Ua ∩ Va = Ø.

Then A ⊆
⋃
a∈A Ua. As A is compact, there exist a1, a2, . . . , an in A such that

A ⊆ Ua1 ∪ Ua2 ∪ · · · ∪ Uan .

Put U = Ua1
⋃
Ua2

⋃
· · ·
⋃
Uan and V = Va1 ∩ Va2 ∩ · · · ∩ Van . Then p ∈ V and Va ∩ Ua = Ø

implies V ∩U = Ø which in turn implies V ∩A = Ø. So p is not a limit point of A, and

V is an open set containing p which does not intersect A.

Hence A contains all of its limit points and is therefore closed. �

7.2.6 Corollary. A compact subset of a metrizable space is closed. �

7.2.7 Example. For a and b in R with a < b, the intervals [a, b) and (a, b] are not

compact as they are not closed subsets of the metrizable space R. �

7.2.8 Proposition. A compact subset of R is bounded.

Proof. Let A ⊆ R be unbounded. Then A ⊆
⋃∞
n=1(−n, n), but {(−n, n) : n = 1, 2, 3, . . . }

does not have any finite subcovering of A as A is unbounded. Therefore A is not

compact. Hence all compact subsets of R are bounded. �

7.2.9 Theorem. (Heine-Borel Theorem) Every closed bounded subset of

R is compact.

Proof. If A is a closed bounded subset of R, then A ⊆ [a, b], for some a and b in R.

As [a, b] is compact and A is a closed subset, A is compact. �
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The Heine-Borel Theorem is an important result. The proof above is short only

because we extracted and proved Proposition 7.1.9 first.

7.2.10 Proposition. (Converse of Heine-Borel Theorem) Every compact

subset of R is closed and bounded.

Proof. This follows immediately from Propositions 7.2.8 and 7.2.5. �

7.2.11 Definition. A subset A of a metric space (X, d) is said to be bounded

if there exists a real number r such that d(a1, a2) ≤ r, for all a1 and a2 in A.

7.2.12 Proposition. Let A be a compact subset of a metric space (X, d).

Then A is closed and bounded.

Proof. By Corollary 7.2.6, A is a closed set. Now fix x0 ∈ X and define the

mapping f : (A,τ )→ R by

f(a) = d(a, x0), for every a ∈ A,

where τ is the induced topology on A. Then f is continuous and so, by Proposition

7.2.1, f(A) is compact. Thus, by Proposition 7.2.10, f(A) is bounded; that is, there

exists a real number M such that

f(a) ≤M, for all a ∈ A.

Thus d(a, x0) ≤ M , for all a ∈ A. Putting r = 2M , we see by the triangle inequality

that d(a1, a2) ≤ r, for all a1 and a2 in A. �

Recalling that Rn denotes the n-dimensional euclidean space with the topology

induced by the euclidean metric, it is possible to generalize the Heine-Borel Theorem

and its converse from R to Rn, n > 1. We state the result here but delay its proof

until the next chapter.
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7.2.13 Theorem. (Generalized Heine-Borel Theorem) A subset of Rn,

n ≥ 1, is compact if and only if it is closed and bounded.

Warning. Although Theorem 7.2.13 says that every closed bounded subset of Rn

is compact, closed bounded subsets of other metric spaces need not be compact.

(See Exercises 7.2 #9.)

7.2.14 Proposition. Let (X,τ ) be a compact space and f a continuous

mapping from (X,τ ) into R. Then the set f(X) has a greatest element and a

least element.

Proof. As f is continuous, f(X) is compact. Therefore f(X) is a closed bounded

subset of R. As f(X) is bounded, it has a supremum. Since f(X) is closed, Lemma

3.3.2 implies that the supremum is in f(X). Thus f(X) has a greatest element –

namely its supremum. Similarly it can be shown that f(X) has a least element. �

7.2.15 Proposition. Let a and b be in R and f a continuous function from

[a, b] into R. Then f([a, b]) = [c, d], for some c and d in R.

Proof. As [a, b] is connected, f([a, b]) is a connected subset of R and hence is an

interval. As [a, b] is compact, f([a, b]) is compact. So f([a, b]) is a closed bounded

interval. Hence

f([a, b]) = [c, d]

for some c and d in R. �
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Exercises 7.2

1. Which of the following subsets of R are compact? (Justify your answers.)

(i) Z;

(ii) {
√
2
n

: n = 1, 2, 3, . . . };

(iii) {x : x = cos y, y ∈ [0, 1]};

(iv) {x : x = tan y, y ∈ [0, π/2)}.

2. Which of the following subsets of R2 are compact? (Justify your answers.)

(i) {〈x, y〉 : x2 + y2 = 4}

(ii) {〈x, y〉 : x ≥ y + 1}

(iii) {〈x, y〉 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 4}

(iv) {〈x, y〉 : 0 < x < 2, 0 ≤ y ≤ 4}

3. Let (X,τ ) be a compact space. If {Fi : i ∈ I} is a family of closed subsets of X

such that
⋂
i∈I Fi = Ø, prove that there is a finite subfamily

Fi1 , Fi2 , . . . , Fim such that Fi1 ∩ Fi2 ∩ · · · ∩ Fim = Ø.

4. Corollary 4.3.7 says that for real numbers a, b, c and d with a < b and c < d,

(i) (a, b) 6∼= [c, d]

(ii) [a, b) 6∼= [c, d].

Prove each of these using a compactness argument (rather than a connectedness

argument as was done in Corollary 4.3.7).
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5. Let (X,τ ) and (Y,τ 1) be topological spaces. A mapping f : (X,τ ) → (Y,τ 1) is

said to be a closed mapping if for every closed subset A of (X,τ ), f(A) is closed

in (Y,τ 1). A function f : (X,τ ) → (Y,τ 1) is said to be an open mapping if for

every open subset A of (X,τ ), f(A) is open in (Y,τ 1).

(a) Find examples of mappings f which are

(i) open but not closed

(ii) closed but not open

(iii) open but not continuous

(iv) closed but not continuous

(v) continuous but not open

(vi) continuous but not closed.

(b) If (X,τ ) and (Y,τ 1) are compact Hausdorff spaces and f : (X,τ )→ (Y,τ 1) is

a continuous mapping, prove that f is a closed mapping.

6. Let f : (X,τ )→ (Y,τ 1) be a continuous bijection. If (X,τ ) is compact and (Y,τ 1)

is Hausdorff, prove that f is a homeomorphism.

7. Let {Cj : j ∈ J} be a family of closed compact subsets of a topological space

(X,τ ). Prove that
⋂
j∈J Cj is compact.

8. Let n be a positive integer, d the euclidean metric on Rn, and X a subset of

Rn. Prove that X is bounded in (Rn, d) if and only if there exists a positive real

number M such that for all 〈x1, x2, . . . , xn〉 ∈ X, −M ≤ xi ≤M , i = 1, 2, . . . , n.
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9. Let (C[0, 1], d∗) be the metric space defined in Example 6.1.6. Let B = {f : f ∈
C[0, 1] and d∗(f, 0) ≤ 1} where 0 denotes the constant function from [0, 1] into R
which maps every element to zero. (The set B is called the closed unit ball.)

(i) Verify that B is closed and bounded in (C[0, 1], d∗).

(ii) Prove that B is not compact. [Hint: Let {Bi : i ∈ I} be the family of all

open balls of radius 1
2

in (C[0, 1], d∗). Then {Bi : i ∈ I} is an open covering

of B. Suppose there exists a finite subcovering B1, B2, . . . BN . Consider the

(N + 1) functions fα : [0, 1]→ R given by fα(x) = sin(2N−α.π.x), α = 1, 2, . . . N + 1.

(a) Verify that each fα ∈ B.

(b) Observing that fN+1(1) = 1 and fm(1) = 0, for all m ≤ N , deduce that if

fN+1 ∈ B1 then fm 6∈ B1, m = 1, . . . , N .

(c) Observing that fN(1
2
) = 1 and fm(1

2
) = 0, for all m ≤ N − 1, deduce that if

fN ∈ B2 then fm 6∈ B2, m = 1, . . . , N − 1.

(d) Continuing this process, show that f1, f2, . . . , fN+1 lie in distinct Bi – a

contradiction.]

10. Prove that every compact Hausdorff space is a normal space.

11.* Let A and B be disjoint compact subsets of a Hausdorff space (X,τ ). Prove

that there exist disjoint open sets G and H such that A ⊆ G and B ⊆ H.

12. Let (X,τ ) be an infinite topological space with the property that every subspace

is compact. Prove that (X,τ ) is not a Hausdorff space.

13. Prove that every uncountable topological space which is not compact has an

uncountable number of subsets which are compact and an uncountable number

which are not compact.

14. If (X,τ ) is a Hausdorff space such that every proper closed subspace is compact,

prove that (X,τ ) is compact.
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7.3 Postscript

Compactness plays a key role in applications of topology to all branches of analysis.

As noted in Remark 7.1.4 it can be thought as a topological generalization of

finiteness.

The Generalized Heine-Borel Theorem characterizes the compact subsets of Rn

as those which are closed and bounded.

Compactness is a topological property. Indeed any continuous image of a

compact space is compact.

Closed subsets of compact spaces are compact and compact subspaces of

Hausdorff spaces are closed.

Exercises 7.2 # 5 introduces the notions of open mappings and closed mappings.

Exercises 7.2 #10 notes that a compact Hausdorff space is a normal space (indeed a

T4-space). That the closed unit ball in each Rn is compact contrasts with Exercises

7.2 #9. This exercise points out that the closed unit ball in the metric space

(C[0, 1], d∗) is not compact. Though we shall not prove it here, it can be shown that a

normed vector space is finite-dimensional if and only if its closed unit ball is compact.

Warning. It is unfortunate that “compact” is defined in different ways in different

books and some of these are not equivalent to the definition presented here. Firstly

some books include Hausdorff in the definition of compact. Some books, particularly

older ones, use “compact” to mean a weaker property than ours—what is often called

sequentially compact. Finally the term “bikompakt” is often used to mean compact

or compact Hausdorff in our sense.



Chapter 8

Finite Products

Introduction

There are three important ways of creating new topological spaces from old ones.

They are by forming “subspaces”, “quotient spaces”, and “product spaces”. The

next three chapters are devoted to the study of product spaces. In this chapter

we investigate finite products and prove Tychonoff’s Theorem. This seemingly

innocuous theorem says that any product of compact spaces is compact. So we are

led to ask: precisely which subsets of R are compact? The Heine-Borel Theorem

will tell us that the compact subsets of R are precisely the sets which are both closed

and bounded.

As we go farther into our study of topology, we shall see that compactness plays

a crucial role. This is especially so of applications of topology to analysis.

168
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8.1 The Product Topology

If X1, X2, . . . , Xn are sets then the product X1×X2× · · · ×Xn is the set consisting of all

the ordered n-tuples 〈x1, x2 . . . , xn〉, where xi ∈ Xi, i = 1, . . . , n.

The problem we now discuss is:

Given topological spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) how do we define a reasonable

topology τ on the product set X1 ×X2 × · · · ×Xn?

An obvious (but incorrect!) candidate for τ is the set of all sets O1 × O2 × · · · × On,

where Oi ∈ τ i, i = 1, . . . , n. Unfortunately this is not a topology.

For example, if n = 2 and (X, T1) = (X,τ 2) = R then τ would contain the rectangles

(0, 1)× (0, 1) and (2, 3)× (2, 3) but not the set [(0, 1)× (0, 1)] ∪ [(2, 3)× (2, 3)], since this is

not O1 ×O2 for any choice of O1 and O2.

[If it were O1 × O2 for some O1 and O2, then 1
2
∈ (0, 1) ⊆ O1 and 21

2
∈ (2, 3) ⊆ O2 and so

the ordered pair 〈1
2
, 21

2
〉 ∈ O1 × O2 but 〈1

2
, 21

2
〉 /∈ [(0, 1)× (0, 1)] ∪ [(2, 3)× (2, 3)].] Thus τ is

not closed under unions and so is not a topology.

However we have already seen how to put a topology (the euclidean topology)

on R2 = R× R. This was done in Example 2.2.9. Indeed this example suggests how

to define the product topology in general.

8.1.1 Definitions. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces.

Then the product topology τ on the set X1 × X2 × · · · × Xn is the topology

having the family {O1 × O2 × . . . On, Oi ∈ τ i, i = 1, . . . , n} as a basis. The

set X1 × X2 × · · · × Xn with the topology τ is said to be the product of the

spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) and is denoted by (X1 × X2 × . . . Xn,τ ) or

(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n).

Of course it must be verified that the family {O1×O2×· · ·×On : Oi ∈ τ i, i = 1, . . . , n}
is a basis for a topology; that is, it satisfies the conditions of Proposition 2.2.8. (This

is left as an exercise for you.)
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8.1.2 Proposition. Let B1, B2, . . . ,Bn be bases for topological spaces (X1,τ 1),

(X2,τ 2), . . . , (Xn,τ n), respectively. Then the family {O1 ×O2 × · · · ×On : Oi ∈ Bi, i =

1, . . . , n} is a basis for the product topology on X1 ×X2 × · · · ×Xn.

The proof of Proposition 8.1.2 is straightforward and is also left as an exercise

for you.

8.1.3 Observations (i) We now see that the euclidean topology on Rn, n ≥ 2, is

just the product topology on the set R × R × · · · × R = Rn. (See Example 2.2.9 and

Remark 2.2.10.)

(ii) It is clear from Definitions 8.1.1 that any product of open sets is an

open set or more precisely: if O1, O2, . . . , On are open subsets of topological spaces

(X1,τ 1), (X2,τ 2), . . . , (Xn,τ n), respectively, then O1 × O2 × . . . On is an open subset of

(X1,τ 1)× (X2,τ 2)×· · ·× (Xn,τ n). The next proposition says that any product of closed

sets is a closed set.

8.1.4 Proposition. Let C1, C2, . . . , Cn be closed subsets of the topological

spaces (X1,τ 1), (X2,τ 2),. . . , (Xn,τ n), respectively. Then C1×C2×· · ·×Cn is a closed

subset of the product space (X1 ×X2 × · · · ×Xn,τ ).

Proof. Observe that

(X1 ×X2 × · · · ×Xn) \ (C1 × C2 × · · · × Cn)

= [(X1 \ C1)×X2 × · · · ×Xn] ∪ [X1 × (X2 \ C2)×X3 × · · · ×Xn] ∪

· · · ∪ [X1 ×X2 × · · · ×Xn−1 × (Xn \ Cn)]

which is a union of open sets (as a product of open sets is open) and so is an open

set in (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n). Therefore its complement, C1 × C2 × . . . Cn, is

a closed set, as required. �
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Exercises 8.1

1. Prove Proposition 8.1.2.

2. If (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) are discrete spaces, prove that the product space

(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n) is also a discrete space.

3. Let X1 and X2 be infinite sets and τ 1 and τ 2 the finite-closed topology on X1

and X2, respectively. Show that the product topology, τ , on X1 ×X2 is not the

finite-closed topology.

4. Prove that the product of any finite number of indiscrete spaces is an indiscrete

space.

5. Prove that the product of any finite number of Hausdorff spaces is Hausdorff.

6. Let (X,τ ) be a topological space and D = {(x, x) : x ∈ X} the diagonal in the

product space (X,τ )× (X,τ ) = (X×X,τ 1). Prove that (X,τ ) is a Hausdorff space

if and only if D is closed in (X ×X,τ 1).

7. Let (X1,τ 1), (X2,τ 2) and (X3,τ 3) be topological spaces. Prove that

[(X1,τ 1)× (X2,τ 2)]× (X3, T3) ∼= (X1,τ 1)× (X2,τ 2)× (X3,τ 3).

8. (i) Let (X1,τ 1) and (X2,τ 2) be topological spaces. Prove that

(X1,τ 1)× (X2,τ 2) ∼= (X2,τ 2)× (X1,τ 1).

(ii) Generalize the above result to products of any finite number of topological

spaces.
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9. Let C1, C2, . . . , Cn be subsets of the topological spaces (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn),

respectively, so that C1×C2×· · ·×Cn is a subset of (X1,τ 1)×(X2,τ 2)×· · ·×(Xn,τ n).

Prove each of the following statements.

(i) (C1 × C2 × · · · × Cn)′ ⊇ C ′1 × C ′2 × · · · × C ′n ;

(ii) C1 × C2 × · · · × Cn = C1 × C2 × · · · × Cn ;

(iii) if C1, C2, . . . , Cn are dense in (X1,τ 1), (X2,τ 2) , . . . , (Xn,τ n), respectively, then

C1×C2×· · ·×Cn is dense in the product space (X1,τ 1)×(X2,τ 2)×· · ·×(Xn,τ n) ;

(iv) if (X1,τ 1), (X2, T2), . . . , (Xn,τ n) are separable spaces, then (X1,τ 1)× (X2, T2)×
· · · × (Xn,τ n) is a separable space;

(v) for each n ≥ 1, Rn is a separable space.

10. Show that the product of a finite number of T1-spaces is a T1-space.

11. If (X1,τ 1), . . . , (Xn,τ n) satisfy the second axiom of countability, show that

(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n) satisfies the second axiom of countability also.

12. Let (R,τ 1) be the Sorgenfrey line, defined in Exercises 3.2 #11, and (R2,τ 2) be

the product space (R,τ 1)× (R,τ 1). Prove the following statements.

(i) {〈x, y〉 : a ≤ x < b, c ≤ y < d, a, b, c, d ∈ R} is a basis for the topology τ 2.

(ii) (R2,τ 2) is a regular separable totally disconnected Hausdorff space.

(iii) Let L = {〈x, y〉 : x, y ∈ R and x + y = 0}. Then the line L is closed in the

euclidean topology on the plane and hence also in (R2,τ 2).

(iv) If τ 3 is the subspace topology induced on the line L by τ 2, then τ 3 is the

discrete topology, and hence (L,τ 3) is not a separable space. [As (L,τ 3) is a

closed subspace of the separable space (R2,τ 2), we now know that a closed

subspace of a separable space is not necessarily separable.]

[Hint: show that L∩{〈x, y〉 : a ≤ x < a+1, −a ≤ y < −a+1, a ∈ R} is a singleton

set.]
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8.2 Projections onto Factors of a Product

Before proceeding to our next result we need a couple of definitions.

8.2.1 Definitions. Let τ 1 and τ 2 be topologies on a set X. Then τ 1 is said

to be a finer topology than τ 2 (and τ 2 is said to be a coarser topology than τ 1)

if τ 1 ⊇ τ 2.

8.2.2 Example. The discrete topology on a set X is finer than any other topology

on X. The indiscrete topology on X is coarser than any other topology on X. [See

also Exercises 5.1 #10.] �

8.2.3 Definitions. Let (X,τ ) and (Y,τ 1) be topological spaces and f a

mapping from X into Y . Then f is said to be an open mapping if for every

A ∈ T , f(A) ∈ τ 1. The mapping f is said to be a closed mapping if for every

closed set B in (X,τ ), f(B) is closed in (Y,τ 1).

8.2.4 Remark. In Exercises 7.2 #5, you were asked to show that none of

the conditions “continuous mapping”, “open mapping”, “closed mapping”, implies

either of the other two conditions. Indeed no two of these conditions taken together

implies the third. (Find examples to verify this.) �
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8.2.5 Proposition. Let (X,τ 1, ), (X2,τ 2), . . . , (Xn,τ n) be topological spaces

and (X1 ×X2 × · · · ×Xn,τ ) their product space.

For each i ∈ {1, . . . , n}, let pi : X1 ×X2 × · · · ×Xn → Xi be the projection mapping;

that is, pi(〈x1, x2, . . . , xi, . . . , xn〉) = xi, for each 〈x1, x2, . . . , xi, . . . , xn〉 ∈ X1×X2×· · ·×Xn.

Then

(i) each pi is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set X1 ×X2 × · · · ×Xn such that each pi is

continuous.

Proof. Clearly each pi is surjective. To see that each pi is continuous, let U be

any open set in (X1,τ i). Then

p−1i (U) = X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn

which is a product of open sets and so is open in (X1 ×X2 × · · · ×Xn,τ ). Hence each

pi is continuous.

To show that pi is an open mapping it suffices to verify that for each basic open

set

U1×U2×· · ·×Un, where Uj is open in (Xj,τ j), for j = 1, . . . , n, the set pi(U1×U2×· · ·×Un)

is open in (Xi,τ i). But pi(U1 × U2 × · · · × Un) = Ui which is, of course, open in (Xi,τ i).
So each pi is an open mapping. We have now verified part (i) of the proposition.

Now let τ ′ be any topology on the set X1×X2×· · ·×Xn such that each projection

mapping pi : (X1 × X2 × · · · × Xn,τ ′) → (Xi,τ i) is continuous. We have to show that

τ ′ ⊇ T .

Recalling the definition of the basis for the topology τ (given in Definition 8.1.1)

it suffices to show that if O1, O2, . . . , On are open sets in (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n)

respectively, then O1×O2×· · ·×On ∈ τ ′. To show this, observe that as pi is continuous,

p−1i (Oi) ∈ τ ′, for each i = 1, . . . , n. Now

p−1i (Oi) = X1 ×X2 × · · · ×Xi−1 ×Oi ×Xi+1 × · · · ×Xn,

so that
n⋂
i=1

p−1i (Oi) = O1 ×O2 × · · · ×On.

Then p−1i (Oi) ∈ τ ′ for i = 1, . . . , n, implies
⋂n
i=1 p

−1
i (Oi) ∈ τ ′ ; that is, O1×O2×· · ·×On ∈ τ ′,

as required. �
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8.2.6 Remark. Proposition 8.2.5 (ii) gives us another way of defining the product

topology. Given topological spaces (X1, T1), (X2,τ 2), . . . , (Xn,τ n) the product topology

can be defined as the coarsest topology on X1×X2×· · ·×Xn such that each projection

pi : X1×X2× . . . Xn → Xi is continuous. This observation will be of greater significance

in the next section when we proceed to a discussion of products of an infinite number

of topological spaces. �

8.2.7 Corollary. For n ≥ 2, the projection mappings of Rn onto R are

continuous open mappings. �
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8.2.8 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn) be topological spaces and

(X1 ×X2 × · · · ×Xn,τ ) the product space. Then each (Xi,τ i) is homeomorphic to

a subspace of (X1 ×X2 × · · · ×Xn,τ ).

Proof. For each j, let aj be any (fixed) element in Xj. For each i, define a mapping

fi : (Xi,τ i)→ (X1 ×X2 × · · · ×Xn,τ ) by

fi(x) = 〈a1, a2, . . . , ai−1, x, ai+1, . . . , an〉.

We claim that fi : (Xi,τ i)→ (fi(Xi),τ ′) is a homeomorphism, where τ ′ is the topology

induced on fi(Xi) by τ . Clearly this mapping is one-to-one and onto. Let U ∈ τ i.
Then

fi(U) = {a1} × {a2} × · · · × {ai−1} × U × {ai+1} × · · · × {an}

= (X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn) ∩

({a1} × {a2} × · · · × {ai−1} ×Xi × {ai+1} × · · · × {an})

= (X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn) ∩ fi(Xi)

∈ τ ′

since X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn ∈ τ . So U ∈ τ i implies that fi(U) ∈ τ ′.
Finally, observe that the family

{(U1 × U2 × · · · × Un) ∩ fi(Xi) : Ui ∈ Ti, i = 1, . . . , n}

is a basis for τ ′, so to prove that fi is continuous it suffices to verify that the inverse
image under fi of every member of this family is open in (Xi,τ i). But

f−1i [(U1 × U2 × . . . Un) ∩ fi(Xi)] = f−1i (U1 × U2 × · · · × Un) ∩ f−1i (fi(Xi))

=

{
Ui ∩Xi, if aj ∈ Uj, j 6= i

Ø, if aj /∈ Uj, for some j 6= i.

As Ui ∩Xi = Ui ∈ τ i and Ø ∈ τ i we infer that fi is continuous, and so we have the

required result. �

Notation. If X1, X2, . . . , Xn are sets then the product X1×X2× · · · ×Xn is denoted by∏n
i=1Xi. If (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) are topological spaces, then the product space

(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τ n) is denoted by
∏n

i=1(Xi,τ i). �
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Exercises 8.2

1. Prove that the euclidean topology on R is finer than the finite-closed topology.

2. Let (Xi,τ i) be a topological space, for i = 1, . . . , n. Prove that

(i) if
∏n

i=1(Xi,τ i) is connected, then each (Xi,τ i) is connected;

(ii) if
∏n

i=1(Xi,τ i) is compact, then each (Xi,τ i) is compact;

(iii) if
∏n

i=1(Xi,τ i) is path-connected, then each (Xi,τ i) is path-connected;

(iv) if
∏n

i=1(Xi,τ i) is Hausdorff, then each (Xi,τ i) is Hausdorff;

(v) if
∏n

i=1(Xi,τ i) is a T1-space, then each (Xi,τ i) is a T1-space.

3. Let (Y,τ ) and (Xi,τ i), i = 1, 2, ..., n be topological spaces. Further for each i,

let fi be a mapping of (Y,τ ) into (Xi,τ i). Prove that the mapping f : (Y,τ ) →∏n
i=1(Xi,τ i), given by

f(y) = 〈f1(y), f2(y), . . . , fn(y)〉,

is continuous if and only if every fi is continuous.

[Hint: Observe that fi = pi ◦f , where pi is the projection mapping of
∏n

j=1(Xj,τ j)
onto (Xi, Ti).]

4. Let (X, d1) and (Y, d2) be metric spaces. Further let e be the metric on X × Y
defined in Exercises 6.1 #4. Also let τ be the topology induced on X × Y by

e. If d1 and d2 induce the topologies τ 1 and τ 2 on X and Y , respectively, and

τ 3 is the product topology of (X,τ 1) × (Y,τ 2), prove that τ = τ 3. [This shows

that the product of any two metrizable spaces is metrizable.]

5. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Prove that
∏n

i=1(Xi,τ i)
is a metrizable space if and only if each (Xi,τ i) is metrizable.

[Hint: Use Exercises 6.1 #6, which says that every subspace of a metrizable

space is metrizable, and Exercise 4 above.]
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8.3 Tychonoff’s Theorem for Finite Products

8.3.1 Theorem. (Tychonoff’s Theorem for Finite Products) If (X1, T1),
(X2, T2), . . . , (Xn,τ n) are compact spaces, then

∏n
i=1(Xi,τ i) is a compact space.

Proof. Consider first the product of two compact spaces (X,τ 1) and (Y,τ 2). Let

Ui, i ∈ I be any open covering of X × Y . Then for each x ∈ X and y ∈ Y , there exists

an i ∈ I such that 〈x, y〉 ∈ Ui. So there is a basic open set V (x, y)×W (x, y), such that

V 〈x, y〉 ∈ τ 1, W (x, y) ∈ τ 2 and 〈x, y〉 ∈ V (x, y)×W (x, y) ⊆ Ui.

As 〈x, y〉 ranges over all points of X×Y we obtain an open covering V (x, y)×W (x, y),

x ∈ X, y ∈ Y , of X × Y such that each V (x, y) ×W (x, y) is a subset of some Ui, i ∈ I.

Thus to prove (X,τ 1) × (Y,τ 2) is compact it suffices to find a finite subcovering of

the open covering V (x, y)×W (x, y), x ∈ X, y ∈ Y .

Now fix x0 ∈ X and consider the subspace {x0} × Y of X × Y . As seen in

Proposition 8.2.8 this subspace is homeomorphic to (Y,τ 2) and so is compact. As

V (x0, y)×W (x0, y), y ∈ Y , is an open covering of {x0} × Y it has a finite subcovering:

V (x0, y1)×W (x0, y1), V (x0, y2)×W (x0, y2), . . . , V (x0, ym)×W (x0, ym).

Put V (x0) = V (x0, y1)∩V (x0, y2)∩· · ·∩V (x0, ym). Then we see that the set V (x0)×Y is

contained in the union of a finite number of sets of the form V (x0, y)×W (x0, y), y ∈ Y.

Thus to prove X × Y is compact it suffices to show that X × Y is contained

in a finite union of sets of the form V (x) × Y . As each V (x) is an open set

containing x ∈ X, the family V (x), x ∈ X, is an open covering of the compact space

(X,τ 1). Therefore there exist x1, x2, . . . , xk such that X ⊆ V (x1)∪V (x2)∪ . . . V (xk). Thus

X × Y ⊆ (V (x1)× Y ) ∪ (V (x2)× Y ) ∪ · · · ∪ (V (xk)× Y ), as required. Hence (X,τ 1)× (Y,τ 2)

is compact.

The proof is completed by induction. Suppose that the product of any N

compact spaces is compact. Consider the product (X1,τ 1)×(X2,τ 2)×· · ·×(XN+1,τN+1)

of compact spaces (Xi,τ i), i = 1, . . . , N + 1. Then

(X1,τ 1)× (X2,τ 2)× · · · × (XN + 1,τN + 1) ∼= [(X1,τ 1)× · · · × (XN , TN)]× (XN + 1,τN + 1).

By our inductive hypothesis (X1,τ 1)×· · ·×(XN ,τN) is compact, so the right-hand side

is the product of two compact spaces and thus is compact. Therefore the left-hand

side is also compact. This completes the induction and the proof of the theorem.�
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Using Proposition 7.2.1 and 8.2.5 (i) we immediately obtain:

8.3.2 Proposition. (Converse of Tychonoff’s Theorem) Let (X1,τ 1), (X2,τ 2),

. . . , (Xn,τ n) be topological spaces. If
∏n

i=1(Xi,τ i) is compact, then each (Xi,τ i)
is compact. �

We can now prove the previously stated Theorem 7.2.13.

8.3.3 Theorem. (Generalized Heine-Borel Theorem) A subset of Rn, n ≥ 1

is compact if and only if it is closed and bounded.

Proof. That any compact subset of Rn is bounded can be proved in an analogous

fashion to Proposition 7.2.8. Thus by Proposition 7.2.5 any compact subset of Rn

is closed and bounded.

Conversely let S be any closed bounded subset of Rn. Then, by Exercises 7.2

#8, S is a closed subset of the product

n terms︷ ︸︸ ︷
[−M,M ]× [−M,M ]× · · · × [−M,M ]

for some positive real number M. As each closed interval [−M,M ] is compact, by

Corollary 7.2.3, Tychonoff’s Theorem implies that the product space

[−M,M ]× [−M,M ]× · · · × [−M,M ]

is also compact. As S is a closed subset of a compact set, it too is compact. �

8.3.4 Example. Define the subspace S1 of R2 by

S1 = {〈x, y〉 : x2 + y2 = 1}.

Then S1 is a closed bounded subset of R2 and thus is compact.

Similarly we define the n-sphere Sn as the subspace of Rn+1 given by

Sn = {〈x1, x2, . . . , xn+1〉 : x21 + x22 + · · ·+ x2n+1 = 1}.

Then Sn is a closed bounded subset of Rn+1 and so is compact. �
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8.3.5 Example. The subspace S1 × [0, 1] of R3 is the product of two compact

spaces and so is compact. (Convince yourself that S1 × [0, 1] is the surface of a

cylinder.) �

Exercises 8.3

1. A topological space (X,τ ) is said to be locally compact if each point x ∈ X has

at least one neighbourhood which is compact. Prove that

(i) Every compact space is locally compact.

(ii) R and Z are locally compact (but not compact).

(iii) Every discrete space is locally compact.

(iv) If (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) are locally compact spaces, then
∏n

i=1(Xi,τ i)
is locally compact.

(v) Every closed subspace of a locally compact space is locally compact.

(vi) A continuous image of a locally compact space is not necessarily locally

compact.

(vii) If f is a continuous open mapping of a locally compact space (X,τ ) onto a

topological space (Y,τ 1), then (Y,τ 1) is locally compact.

(viii) If (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn) are topological spaces such that
∏n

i=1(Xiτ i) is

locally compact, then each (Xi,τ i) is locally compact.

2.* Let (Y,τ 1) be a locally compact subspace of the Hausdorff space (X,τ ). If Y is

dense in (X,τ ), prove that Y is open in (X,τ ).

[Hint: Use Exercises 3.2 #9]
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8.4 Products and Connectedness

8.4.1 Definition. Let (X,τ ) be a topological space and let x be any point in

X. The component in X of x, CX(x), is defined to be the union of all connected

subsets of X which contain x.

8.4.2 Proposition. Let x be any point in a topological space (X,τ ). Then

CX(x) is connected.

Proof. Let {Ci : i ∈ I} be the family of all connected subsets of (X,τ ) which

contain x. (Observe that {x} ∈ {Ci : i ∈ I}.) Then CX(x) =
⋃
i∈I Ci.

Let O be a subset of CX(x) which is clopen in the topology induced on CX(x) by

τ . Then O ∩ Ci is clopen in the induced topology on Ci, for each i.

But as each Ci is connected, O ∩ Ci = Ci or Ø, for each i. If O ∩ Cj = Cj for some

j ∈ I, then x ∈ O. So, in this case, O ∩ Ci 6= Ø, for all i ∈ I as each Ci contains x.

Therefore O ∩ Ci = Ci, for all i ∈ I or O ∩ Ci = Ø, for all i ∈ I; that is, O = CX(x) or

O = Ø.

So CX(x) has no proper non-empty clopen subset and hence is connected. �

8.4.3 Remark. We see from Definition 8.4.1 and Proposition 8.4.2 that CX(x) is

the largest connected subset of X which contains x. �

8.4.4 Lemma. Let a and b be points in a topological space (X,τ ). If there

exists a connected set C containing both a and b then CX(a) = CX(b).

Proof. By Definition 8.4.1, CX(a) ⊇ C and CX(b) ⊇ C. Therefore a ∈ CX(b).

By Proposition 8.4.2, CX(b) is connected and so is a connected set containing

a. Thus, by Definition 8.4.1, CX(a) ⊇ CX(b).

Similarly CX(b) ⊇ CX(a), and we have shown that CX(a) = CX(b). �
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8.4.5 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces.

Then
∏n

i=1(Xi,τ i) is connected if and only if each (Xi,τ i) is connected.

Proof. To show that the product of a finite number of connected spaces is

connected, it suffices to prove that the product of any two connected spaces is

connected, as the result then follows by induction.

So let (X,τ ) and (Y,τ 1) be connected spaces and 〈x0, y0〉 any point in the product

space (X×Y,τ 2). Let 〈x1, y1〉 be any other point in X×Y . Then the subspace {x0}×Y
of (X × Y,τ ) is homeomorphic to the connected space (Y,τ 1) and so is connected.

Similarly the subspace X × {y1} is connected. Furthermore, 〈x0, y1〉 lies in the

connected space {x0}×Y , so CX×Y (〈x0, y1〉) ⊇ {x0}×Y 3 〈x0, y0〉, while 〈x0, y1〉 ∈ X ×{y1},
and so CX×Y ((x0, y1)) ⊇ X × {y1} 3 (x1, y1).

Thus 〈x0, y0〉 and 〈x1, y1〉 lie in the connected set CX×Y (〈x0, y1〉), and so by Lemma

8.4.4, CX×Y (〈x0, y0〉) = CX×Y (〈x1, y1〉). In particular, 〈x1, y1〉 ∈ CX×Y (〈x0, y0〉). As 〈x1, y1〉
was an arbitrary point in X ×Y , we have that CX×Y (〈x0, y0〉) = X ×Y. Hence (X ×Y,τ 2)

is connected.

Conversely if
∏n

i=1(Xi,τ i) is connected then Propositions 8.2.5 and 5.2.1 imply

that each (Xi,τ i) is connected. �

8.4.6 Remark. In Exercises 5.2 #9 the following result appears: For any point

x in any topological space (X,τ ), the component CX(x) is a closed set. �

8.4.7 Definition. A topological space is said to be a continuum if it is

compact and connected.

As an immediate consequence of Theorem 8.3.1 and Propositions 8.4.5 and

8.3.2 we have the following proposition.

8.4.8 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces.

Then
∏n

i=1(Xi,τ i) is a continuum if and only if each (Xi,τ i) is a continuum. �
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Exercises 8.4

1. A topological space (X,τ ) is said to be a compactum if it is compact and

metrizable. Let (X1,τ 1), (X2, T2), . . . , (Xn,τ n) be topological spaces. Using

Exercises 8.2#5, prove that
∏n

i=1(Xi,τ i) is a compactum if and only if each

(Xi,τ i) is a compactum.

2. Let (X, d) be a metric space and τ the topology induced on X by d.

(i) Prove that the function d from the product space (X, T ) × (X,τ ) into R is

continuous.

(ii) Using (i) show that if the metrizable space (X,τ ) is connected and X has

at least 2 points, then X has the uncountable number of points.

3. If (X,τ ) and (Y,τ 1) are path-connected spaces, prove that the product space

(X,τ )× (Y,τ 1) is path-connected.

4. (i) Let x = (x1, x2, . . . , xn) be any point in the product space (Y,τ ) =
∏n

i=1(Xi,τ i).
Prove

that CY (x) = CX1(x1)× CX2(x2)× · · · × CXn(xn).

(ii) Deduce from (i) and Exercises 5.2 #10 that
∏n

i=1(Xi,τ i) is totally disconnected

if and only if each (Xi, Ti) is totally disconnected.

5. A topological space (X,τ ) is said to be locally connected if it has a basis B

consisting of connected (open) sets.

(i) Verify that Z is a locally connected space which is not connected.

(ii) Show that Rn and Sn are locally connected, for all n ≥ 1.

(iii) Let (X,τ ) be the subspace of R2 consisting of the points in the line segments

joining 〈0, 1〉 to 〈0, 0〉 and to all the points 〈 1
n
, 0〉, n = 1, 2, 3, . . . . Show that

(X,τ ) is connected but not locally connected.

(iv) Prove that every open subset of a locally connected space is locally

connected.

(v) Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n) be topological spaces. Prove that
∏n

i=1(Xi,τ i)
is locally connected if and only if each (Xi,τ i) is locally connected.
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8.5 Fundamental Theorem of Algebra

In this section we give an application of topology to another branch of mathematics.

We show how to use compactness and the Generalized Heine-Borel Theorem to

prove the Fundamental Theorem of Algebra.

8.5.1 Theorem. (The Fundamental Theorem of Algebra) Every

polynomial f(z) = anz
n+an−1z

n−1+ · · ·+a1z+a0, where each ai is a complex number,

an 6= 0, and n ≥ 1, has a root; that is, there exists a complex number z0 such that

f(z0) = 0.

Proof.

|f(z)| = |anzn + an−1z
n−1 + · · ·+ a0|

≥ |an||z|n − |z|n−1
[
|an−1|+

|an−2|
|z|

+ · · ·+ |a0|
|z|n−1

]
≥ |an||z|n − |z|n−1 [|an−1|+ |an−2|+ · · ·+ |a0|] , for |z| ≥ 1

= |z|n−1[|an||z| −R], for |z| ≥ 1 and R = |an−1|+ · · ·+ |a0|

≥ |z|n−1, for |z| ≥ max

{
1,
R + 1

|an|

}
. (1)

If we put p0=|f(0)| = |a0| then, by inequality (1), there exists a T > 0 such that

|f(z)| > p0, for all |z| > T (2)

Consider the set D = {z : z ∈ complex plane and |z| ≤ T}. This is a closed bounded

subset of the complex plane C = R2 and so, by the Generalized Heine-Borel Theorem,

is compact. Therefore, by Proposition 7.2.14, the continuous function |f | : D → R
has a least value at some point z0. So

|f(z0)| ≤ |f(z)|, for all z ∈ D.

By (2), for all z /∈ D, |f(z)| > p0 = |f(0)| ≥ |f(z0)|. Therefore

|f(z0)| ≤ |f(z)|, for all z ∈ C (3)

So we are required to prove that f(z0) = 0. To do this it is convenient to perform

a ‘translation’. Put P (z) = f(z + z0). Then, by (2),

|P (0)| ≤ |P (z)|, for all z ∈ C (4)
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The problem of showing that f(z0) = 0 is now converted to the equivalent one of

proving that P (0) = 0.

Now P (z) = bnz
n + bn−1z

n−1 · · ·+ b0, bi ∈ C. So P (0) = b0. We shall show that b0 = 0.

Suppose b0 6= 0. Then

P (z) = b0 + bkz
k + zk+1Q(z), (5)

where Q(z) is a polynomial and bk is the smallest bi 6= 0, i > 0.

e.g. if P (z) = 10z7 + 6z5 + 3z4 + 4z3 + 2z2 + 1, then b0 = 1, bk = 2, (b1 = 0), and

P (z) = 1 + 2z2 + z3

Q(z)︷ ︸︸ ︷
(4 + 3z + 6z2 + 10z4) .

Let w ∈ C be a kth root of the number −b0/bk; that is, wk = −b0/bk.

As Q(z) is a polynomial, for t a real number,

t |Q(tw)| → 0, as t→ 0

This implies that t |wk+1Q(tw)| → 0 as t→ 0.

So there exists a real number t0 with 0 < t0 < 1 such that

t0 |wk+1Q(t0w)| < |b0| (6)

So, by (5), P (t0w) = b0 + bk(t0w)k + (t0w)k+1Q(t0w)

= b0 + bk

[
t0
k

(
−b0
bk

)]
+ (t0w)k+1Q(t0w)

= b0(1− t0k) + (t0w)k+1Q(t0w)

Therefore |P (t0w)| ≤ (1− t0k)|b0|+ t0
k+1|wk+1Q(t0w)|

< (1− t0k) |b0|+ t0
k |b0|, by (6)

= |b0|

= |P (0)| (7)

But (7) contradicts (4). Therefore the supposition that b0 6= 0 is false; that is,

P (0) = 0, as required. �
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8.6 Postscript

As mentioned in the Introduction, this is one of three chapters devoted to product

spaces. The easiest case is that of finite products. In the next chapter we

study countably infinite products and in Chapter 10, the general case. The most

important result proved in this section is Tychonoff’s Theorem1. In Chapter 10 this

is generalized to arbitrary sized products.

The second result we called a theorem here is the Generalized Heine-Borel

Theorem which characterizes the compact subsets of Rn as those which are closed

and bounded.

Exercises 8.3 #1 introduced the notion of locally compact topological space.

Such spaces play a central role in topological group theory.

Our study of connectedness has been furthered in this section by defining the

component of a point. This allows us to partition any topological space into

connected sets. In a connected space like Rn the component of any point is the whole

space. At the other end of the scale, the components in any totally disconnected

space, for example, Q, are all singleton sets.

As mentioned above, compactness has a local version. So too does connectedness.

Exercises 8.4 #5 defined locally connected. However, while every compact space

is locally compact, not every connected space is locally connected. Indeed many

properties P have local versions called locally P, and P usually does not imply locally

P and locally P usually does not imply P.

Towards the end of the chapter we gave a topological proof of the Fundamental

Theorem of Algebra. The fact that a theorem in one branch of mathematics can be

proved using methods from another branch is but one indication of why mathematics

should not be compartmentalized. While you may have separate courses on algebra,

complex analysis, and number theory these topics are, in fact, interrelated.

In Appendix 5 we introduce the notion of a topological group, that is a set with

the structure of both a topological space and a group, and with the two structures

related in an appropriate manner. Topological group theory is a rich and interesting

1You should have noticed how sparingly we use the word “theorem”, so when we do use that
term it is because the result is important.
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branch of mathematics. Appendix 5 can be studied using the prerequisite knowledge

in this chapter.

For those who know some category theory, we observe that the category of

topological spaces and continuous mappings has both products and coproducts.

The products in the category are indeed the products of the topological spaces.

You may care to identify the coproducts.



Chapter 9

Countable Products

Introduction

Intuition tells us that a curve has zero area. Thus you should be astonished to learn

of the existence of space-filling curves. We attack this topic using the curious space

known as the Cantor Space. It is surprising that an examination of this space leads

us to a better understanding of the properties of the unit interval [0, 1].

Previously we have studied finite products of topological spaces. In this chapter

we extend our study to countably infinite products of topological spaces. This leads

us into wonderfully rich territory of which space-filling curves is but one example.

188
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9.1 The Cantor Set

9.1.1 Remark. We now construct a very curious (but useful) set known as the

Cantor Set. Consider the closed unit interval [0,1] and delete from it the open

interval (1
2
, 2
3
), which is the middle third, and denote the remaining closed set by G1.

So

G1 = [0, 1
3
] ∪ [2

3
, 1].

Next, delete from G1 the open intervals (1
9
, 2
9
) and (7

9
, 8
9
) which are the middle third

of its two pieces and denote the remaining closed set by G2. So

G2 = [0, 1
9
] ∪ [2

9
|, 1

3
] ∪ [2

3
, 7
9
] ∪ [8

9
, 1].

0 1
• •

• • • •
0 11

3
2
3

• • • • • • • •
0 1

3
1
3

2
3

1
9

2
9

7
9

8
9 1

• • • • • • • • • • • •• • • •

G1

G2

G3

If we continue in this way, at each stage deleting the open middle third of each

closed interval remaining from the previous stage we obtain a descending sequence

of closed sets

G1 ⊃ G2 ⊃ G3 ⊃ . . . Gn ⊃ . . . .

The Cantor Set, G, is defined by

G =
∞⋂
n=1

Gn

and, being the intersection of closed sets, is a closed subset of [0,1]. As [0,1]

is compact, the Cantor Space, (G,τ ), (that is, G with the subspace topology) is

compact. [The Cantor Set is named after the famous set theorist, Georg Cantor

(1845–1918).]
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It is useful to represent the Cantor Set in terms of real numbers written to base

3; that is, ternaries. You are familiar with the decimal expansion of real numbers

which uses base 10. Today one cannot avoid computers which use base 2. But for

the Cantor Set, base 3 is what is best.

In the ternary system, 76 5
81

would be written as 2211·0012, since this represents

2.33 + 2.32 + 1.31 + 1.30 + 0.3−1 + 0.3−2 + 1.3−3 + 2.3−4.

So a number x in [0, 1] is represented by the base 3 number ·a1a2a3 . . . an . . . , where

x =
∞∑
n=1

an
3n
, an ∈ {0, 1, 2}, for each n ∈ N.

So as 1
2

=
∑∞

n=1
1
3n

, 1
3

=
∑∞

n=2
2
3n

, and 1 =
∑∞

n=1
2
3n

, we see that their ternary forms are

given by
1

2
= 0·11111 . . . ;

1

3
= 0·02222 . . . ; 1 = 0·2222 . . . .

(Of course another ternary expression for 1
3

is 0·10000 . . . and another for 1 is 1·0000 . . . .

)

Turning again to the Cantor Set, G, it should be clear that an element of [0, 1]

is in G if and only if it can be written in ternary form with an 6= 1, for every n ∈ N.

So 1
2
/∈ G, 5

81
/∈ G, 1

3
∈ G, and 1 ∈ G.

Thus we have a function f from the Cantor Set into the set of all sequences

of the form 〈a1, a2, a3, . . . , an, . . . 〉, where each ai ∈ {0, 2} and f is one-to-one and onto.

Later on we shall make use of this function f . �

Exercises 9.1

1. (a) Write down ternary expansions for the following numbers:

(i) 21 5
243

; (ii) 7
9

; (iii) 1
13

.

(b) Which real numbers have the following ternary expressions:

(i) 0·02 = 0·020202 . . . ; (ii) 0·110 ; (iii) 0·012?

(c) Which of the numbers appearing in (a) and (b) lie in the Cantor Set?
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2. Let x be a point in a topological space (X,τ ). Then x is said to be an isolated

point if x ∈ X \X ′; that is, x is not a limit point of X. The space (X,τ ) is said

to be perfect if it has no isolated points. Prove that the Cantor Space is a

compact totally disconnected perfect space.

[It can be shown that any non-empty compact totally disconnected metrizable

perfect space is homeomorphic to the Cantor Space. See, for example, Exercise

6.2A(c) of Engelking [81].

9.2 The Product Topology

9.2.1 Definition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ ), . . . be a countably infinite

family of topological spaces. Then the product,
∏∞

i=1Xi, of the sets Xi, i ∈ N
consists of all the infinite sequences 〈x1, x2, x3, . . . , xn, . . . 〉, where xi ∈ Xi for all i.

(The infinite sequence 〈x1, x2, . . . , xn, . . . 〉 is sometimes written as
∏∞

i=1 xi.) The

product space,
∏∞

i=1(Xi,τ i), consists of the product
∏∞

i=1Xi with the topology τ
having as its basis the family

B =

{
∞∏
i=1

Oi : Oi ∈ τ i and Oi = Xi for all but a finite number of i.

}

The topology τ is called the product topology.

So a basic open set is of the form

O1 ×O2 × · · · ×On ×Xn+1 ×Xn+2 × . . . .

WARNING. It should be obvious that a product of open sets need not be open

in the product topology τ . In particular, if O1, O2, O3, . . . , On, . . . are such that each

Oi ∈ τ i, and Oi 6= Xi for all i, then
∏∞

i=1Oi cannot be expressed as a union of members

of B and so is not open in the product space (
∏∞

i=1Xi,τ ).

9.2.2 Remark. Why do we choose to define the product topology as in Definition

9.2.1? The answer is that only with this definition do we obtain Tychonoff’s

Theorem (for infinite products), which says that any product of compact spaces

is compact. And this result is extremely important for applications.



192 CHAPTER 9. COUNTABLE PRODUCTS

9.2.3 Example. Let (X1,τ 1), , . . . , (Xn,τ n), . . . be a countably infinite family of

topological spaces. Then the box topology τ ′ on the product
∏∞

i=1Xi, is that topology

having as its basis the family

B′ =
{ ∞∏
i=1

Oi : Oi ∈ τ i
}
.

It is readily seen that if each (Xi,τ i) is a discrete space, then the box product

(
∏∞

i=1Xi,τ ′) is a discrete space. So if each (Xi,τ ) is a finite set with the discrete

topology, then (
∏∞

i=1Xi,τ ′) is an infinite discrete space, which is certainly not

compact. So we have a box product of the compact spaces (Xi,τ i) being a non-

compact space.

Another justification for our choice of definition of the product topology is the

next proposition which is the analogue for countably infinite products of Proposition

8.2.5.

9.2.4 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τ n), . . . be a countably infinite

family of topological spaces and (
∏∞

i=1Xi,τ ) their product space. For each i, let

pi :
∏∞

j=1Xj → Xi be the projection mapping; that is pi(〈x1, x2, . . . , xn, . . . 〉) = xi for

each

〈x1, x2, . . . , xn, . . . 〉 ∈
∏∞

j=1Xj. Then

(i) each pi is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set
∏∞

j=1Xj such that each pi is continuous.

Proof. The proof is analogous to that of Proposition 8.2.5 and so left as an

exercise.
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We shall use the next proposition a little later.

9.2.5 Proposition. Let (Xi,τ i) and (Yi,τ ′i), i ∈ N, be countably infinite

families of topological spaces having product spaces (
∏∞

i=1Xi,τ ) and (
∏∞

i=1 Yi,τ ′),
respectively. If the mapping hi : (Xi,τ i)→ (Yi,τ ′i) is continuous for each i ∈ N, then

so is the mapping h : (
∏∞

i=1Xi,τ ) → (
∏∞

i=1 Yi,τ ′) given by h : (
∏∞

i=1 xi) =
∏∞

i=1 hi(xi);

that is, h(〈x1, x2, . . . , xn, . . . 〉) = 〈h1(x1), h2(x2), . . . , hn(xn), . . . 〉.

Proof. It suffices to show that if O is a basic open set in (
∏∞

i=1 Yi,τ ′), then h−1(O) is

open in (
∏∞

i=1Xi,τ ). Consider the basic open set U1×U2× . . . Un× Yn+1Yn+2× . . . where

Ui ∈ τ ′i, for i = 1, . . . , n. Then

h−1(U1 × · · · × Un × Yn+1 × Yn+2 × . . . ) = h−11 (U1)× · · · × h−1n (Un)×Xn+1 ×Xn+2 × . . .

and the set on the right hand side is in τ , since the continuity of each hi implies

h−1i (Ui) ∈ τ i, for i = 1, . . . , n. So h is continuous. �

Exercises 9.2

1. For each i ∈ N, let Ci be a closed subset of a topological space (Xi,τ i). Prove

that
∏∞

i=1Ci is a closed subset of
∏∞

i=1(Xi,τ i).
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2. If in Proposition 9.2.5 each mapping hi is also

(a) one-to-one,

(b) onto,

(c) onto and open,

(d) a homeomorphism,

prove that h is respectively

(a) one-to-one,

(b) onto,

(c) onto and open,

(d) a homeomorphism.

3. Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces. Prove

that each (Xi,τ i) is homeomorphic to a subspace of
∏∞

i=1(Xi,τ i).
[Hint: See Proposition 8.12].

4. (a) Let (Xi,τ i), i ∈ N, be topological spaces. If each (Xi,τ i) is (i) a Hausdorff

space, (ii)

a T1-space, (iii) a T0-space, prove that
∏∞

i=1(Xi,τ i) is respectively (i) a

Hausdorff space, (ii) a T1-space, (iii) a T0-space.

(b) Using Exercise 3 above, prove the converse of the statements in (a).

5. Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces. Prove

that
∏∞

i=1(Xi,τ i) is a discrete space if and only if each (Xi,τ i) is discrete and all

but a finite number of the Xi, i ∈ N are singleton sets.

6. For each i ∈ N, let (Xi,τ i) be a topological space. Prove that

(i) if
∏∞

i=1(Xi,τ i) is compact, then each (Xi,τ i) is compact;

(ii) if
∏∞

i=1(Xi,τ i) is connected, then each (Xi,τ i) is connected;

(iii) if
∏∞

i=1(Xi,τ i) is locally compact, then each (Xi,τ i) is locally compact and

all but a finite number of (Xi,τ i) are compact.
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9.3 The Cantor Space and the Hilbert Cube

9.3.1 Remark. We now return to the Cantor Space and prove that it is

homeomorphic to a countably infinite product of two-point spaces.

For each i ∈ N we let (Ai,τ i) be the set {0, 2} with the discrete topology, and

consider the product space (
∏∞

i=1Ai,τ ′). We show in the next proposition that it is

homeomorphic to the Cantor Space (G,τ ).

9.3.2 Proposition. Let (G,τ ) be the Cantor Space and (
∏∞

i=1Ai,τ ′) be as

in Remark 9.3.1. Then the map f : (G,τ ) −→ (
∏∞

i=1Ai,τ ′) given by f(
∑∞

n=1
an
3n

) =

〈a1, a2, . . . , an, . . . 〉 is a homeomorphism.

Proof. We have already noted in Remark 9.1.1 that f is one-to-one and onto. As

(G,τ ) is compact and (
∏∞

i=1Ai,τ ′) is Hausdorff (Exercises 9.2 #4) Exercises 7.2 #6

says that f is a homeomorphism if it is continuous.

To prove the continuity of f it suffices to show for any basic open set

U = U1 × U2 × · · · × UN ×AN+1 ×AN+2 × . . . and any point a = 〈a1, a2, . . . , an, . . . 〉 ∈ U there

exists an open set W 3
∑∞

n=1
an
3n

such that f(W ) ⊆ U.

Consider the open interval
(∑∞

n=1
an
3n
− 1

3N+2 ,
∑∞

n=1
an
3n

+ 1
3N+2

)
and let W be the

intersection of this open interval with G. Then W is open in (G,τ ) and if x =∑∞
n=1

xn
3n
∈ W , then xi = ai, for i = 1, 2, . . . , N . So f(x) ∈ U1×U2× . . . UN ×AN+1×AN+2× . . . ,

and thus f(W ) ⊆ U , as required.

As indicated earlier, we shall in due course prove that any product of compact

spaces is compact – that is, Tychonoff’s Theorem. However in view of Proposition

9.3.2 we can show, trivially, that the product of a countable number of homeomorphic

copies of the Cantor Space is homeomorphic to the Cantor Space, and hence is

compact.
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9.3.3 Proposition. Let (Gi,τ i), i ∈ N, be a countably infinite family of

topological spaces each of which is homeomorphic to the Cantor Space (G,τ ).

Then

(G,τ ) ∼=
∞∏
i=1

(Gi,τ i) ∼=
n∏
i=1

(Gi,τ i), for each n ∈ N.

Proof. Firstly we verify that (G,τ ) ∼= (G1,τ 1) × (G2,τ 2). This is, by virtue of

Proposition 9.3.2, equivalent to showing that
∞∏
i=1

(Ai,τ i) ∼=
∞∏
i=1

(Ai,τ i)×
∞∏
i=1

(Ai,τ i)

where each (Ai,τ i) is the set {0, 2} with the discrete topology.

Now we define a function θ from the set
∏∞

i=1(Ai,τ i) ×
∏∞

i=1(Ai,τ i) to the set∏∞
i=1(Ai,τ i) by

θ(〈a1, a2, a3, . . . 〉, 〈b1, b2, b3, . . . 〉) −→ 〈a1, b1, a2, b2, a3, b3, . . . 〉
It is readily verified that θ is a homeomorphism and so (G1,τ 1)× (G2,τ 2) ∼= (G,τ ). By

induction, then, (G,τ ) ∼=
∏n

i=1(Gi,τ i), for every positive integer n.

Turning to the infinite product case, define the mapping

φ :

[
∞∏
i=1

(Ai,τ i)×
∞∏
i=1

(Ai,τ i)×
∞∏
i=1

(Ai,τ i)× . . .
]
−→

∞∏
i=1

(Ai,τ i)

by

φ(〈a1, a2, . . . 〉, 〈b1, b2, . . . 〉, 〈c1, c2, . . . 〉, 〈d1, d2, . . . 〉, 〈e1, e2, . . . 〉, . . . )

= 〈a1, a2, b1, a3, b2, c1, a4, b3, c2, d1, a5, b4, c3, d2, e1, . . . 〉.

Again it is easily verified that φ is a homeomorphism, and the proof is complete.

9.3.4 Remark. It should be observed that the statement

(G,τ ) ∼=
∞∏
i=1

(Gi,τ i)

in Proposition 9.3.3 is perhaps more transparent if we write it as

(A,τ )× (A,τ )× . . . ∼= [(A,τ )× (A,τ )× . . . ]× [(A,τ )× (A,τ )× . . . ]× . . .

where (A,τ ) is the set {0, 2} with the discrete topology.
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9.3.5 Proposition. The topological space [0, 1] is a continuous image of the

Cantor Space (G,τ ).

Proof. In view of Proposition 9.3.2 it suffices to find a continuous mapping φ of∏∞
i=1(Ai,τ i) onto [0, 1]. Such a mapping is given by

φ(〈a1, a2, . . . , ai, . . . 〉) =
∞∑
i=1

ai
2i+1

.

Recalling that each ai ∈ {0, 2} and that each number x ∈ [0, 1] has a dyadic expansion

of the form
∑∞

j=1
bj
2j

, where bj ∈ {0, 1}, we see that φ is an onto mapping. To show

that φ is continuous it suffices, by Proposition 5.1.7, to verify that if U is the open

interval (
∞∑
i=1

ai
2i+1
− ε,

∞∑
i=1

ai
2i+1

+ ε

)
3
∞∑
i=1

ai
2i+1

, for any ε > 0.

then there exists an open set W 3 〈a1, a2, . . . , ai, . . . 〉 such that φ(W ) ⊆ U . Choose N

sufficiently large that
∑∞

i=N
ai

2i+1 < ε, and put

W = {a1} × {a2} × · · · × {aN} × AN+1 × AN+2 × . . . .

Then W is open in
∏∞

i=1(Ai,τ i), W 3 〈a1, a2, . . . , ai, . . . 〉, and φ(W ) ⊆ U , as required.

9.3.6 Remark. You should be somewhat surprised by Proposition 9.3.5 as it says

that the “nice” space [0,1] is a continuous image of the very curious Cantor Space.

However, we shall see in due course that every compact metric space is a continuous

image of the Cantor Space.

9.3.7 Definition. For each positive integer n, let the topological space (In,τ n)

be homeomorphic to [0, 1]. Then the product space
∏∞

n=1(In,τ n) is called the

Hilbert cube and is denoted by I∞. The product space
∏n

i=1(Ii,τ i) is called the

n-cube and is denoted by In, for each n ∈ N.

We know from Tychonoff’s Theorem for finite products that In is compact for

each n. We now prove that I∞ is compact. (Of course this result can also be

deduced from Tychonoff’s Theorem for infinite products, which is proved in Chapter

10.)
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9.3.8 Theorem. The Hilbert cube is compact.

Proof. By Proposition 9.3.5, there is a continuous mapping φn of (Gn,τ n) onto

(In,τ ′n) where, for each n ∈ N, (Gn,τ n) and (In,τ ′n) are homeomorphic to the Cantor

Space and [0,1], respectively. Therefore by Proposition 9.2.5 and Exercises 9.2

#2 (b), there is a continuous mapping ψ of
∏∞

n=1(Gn,τ n) onto
∏∞

n=1(In,τ ′n) = I∞.

But Proposition 9.3.3 says that
∏∞

n=1(Gn,τ n) is homeomorphic to the Cantor Space

(G,τ ). Therefore I∞ is a continuous image of the compact space (G,τ ), and hence

is compact.
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9.3.9 Proposition. Let (Xi,τ i), i ∈ N, be a countably infinite family of

metrizable spaces. Then
∏∞

i=1(Xi,τ i) is metrizable.

Proof. For each i ∈ N, let di be a metric on Xi which induces the topology τ i.
Exercises 6.1 #2 says that if we put ei(a, b) = min(1, d(a, b)), for all a and b in X1, then

ei is a metric and it induces the topology τ i on Xi. So we can, without loss of

generality, assume that di(a, b) ≤ 1, for all a and b in Xi, i ∈ N.

Define d :
∏∞

i=1Xi ×
∏∞

i=1Xi −→ R by

d

(
∞∏
i=1

ai,
∞∏
i=1

bi

)
=
∞∑
i=1

di(ai, bi)

2i
for all ai and bi in Xi.

Observe that the series on the right hand side converges because each di(ai, bi) ≤ 1

and so it is bounded above by
∑∞

i=1
1
2i

= 1.

It is easily verified that d is a metric on
∏∞

i=1Xi. Observe that d′i, defined by

d′i(a, b) = di(a,b)
2i

, is a metric on Xi, which induces the same topology τ i as di. We claim

that d induces the product topology on
∏∞

i=1Xi.

To see this consider the following. Since

d

(
∞∏
i=1

ai ,
∞∏
i=1

bi

)
≥ di(ai, bi)

2i
= d′i(ai, bi)

it follows that the projection pi : (
∏∞

i=1Xi, d) −→ (Xi, d
′
i) is continuous, for each i. As

d′i induces the topology τ ′i, Proposition 9.2.4 (ii) implies that the topology induced

on
∏∞

i=1Xi by d is finer than the product topology.

To prove that the topology induced by d is also coarser than the product

topology, let Bε(a) be any open ball of radius ε > 0 about a point a =
∏∞

i=1 ai. So Bε(a)

is a basic open set in the topology induced by d. We have to show that there is a

set W 3 a such that W ⊆ Bε(a), and W is open in the product topology. Let N be a

positive integer such that
∑∞

i=N
1
2i
< ε

2
. Let Oi be the open ball in (Xi, di) of radius ε

2N

about the point ai, i = 1, . . . , N . Define

W = O1 ×O2 × · · · ×ON ×XN+1 ×XN+2 × . . . .

Then W is an open set in the product topology, a ∈ W , and clearly W ⊆ Bε(a), as

required.
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9.3.10 Corollary. The Hilbert Cube is metrizable.

The proof of Proposition 9.3.9 can be refined to obtain the following result:

9.3.11 Proposition. Let (Xi,τ i), i ∈ N, be a countably infinite family of

completely metrizable spaces. Then
∏∞

i=1(Xi,τ i) is completely metrizable.

Proof. Exercises 9.3 #10.

9.3.12 Remark. From Proposition 9.3.11 we see that a countably infinite

product of discrete spaces is completely metrizable. The most interesting example

of this is Nℵ0, that is a countably infinite product of topological spaces each

homeomorphic to the discrete space N. What is much more surprising is the fact,

as mentioned in Chapter 6, that N∞ is homeomorphic to P, the topological space

of all irrational numbers with the euclidean topology. See Engelking [81] Exercise

4.3.G and Exercise 6.2.A.

9.3.13 Remark. Another important example of a completely metrizable countable

product is R∞. This is the countably infinite product of topological spaces each

homeomorphic to R. Corollary 4.3.25 of Engelking [81] shows that: a separable

metrizable space is completely metrizable if and only if it is homeomorphic to a

closed subspace of R∞. In particular we see that every separable Banach space is

homeomorphic to a closed subspace of R∞.

A beautiful and deep result says that: every separable infinite-dimensional

Banach space is homeomorphic to R∞, see Bessaga and Pelczynski [26].
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Exercises 9.3

1. Let (Xi, di), i ∈ N, be a countably infinite family of metric spaces with the

property that, for each i, di(a, b) ≤ 1, for all a and b in Xi. Define e :∏∞
i=1Xi ×

∏∞
i=1Xi −→ R by

e

(
∞∏
i=1

ai,

∞∏
i=1

bi

)
= sup{di(ai, bi) : i ∈ N}.

Prove that e is a metric on
∏∞

i=1Xi and is equivalent to the metric d in Proposition

9.3.9. (Recall that “equivalent” means “induces the same topology”.)

2. If (Xi,τ i), i ∈ N, are compact subspaces of [0, 1], deduce from Theorem 9.3.8

and Exercises 9.2 #1, that
∏∞

i=1(Xi,τ i) is compact.

3. Let
∏∞

i=1(Xi,τ i) be the product of a countable infinite family of topological

spaces. Let (Y,τ ) be a topological space and f a mapping of (Y,τ ) into∏∞
i=1(Xi,τ i). Prove that f is continuous if and only if each mapping pi ◦

f : (Y,τ ) −→ (Xi,τ i) is continuous, where pi denotes the projection mapping.

4. (a) Let X be a finite set and τ a Hausdorff topology on X. Prove that

(i) τ is the discrete topology;

(ii) (X,τ ) is homeomorphic to a subspace of [0, 1].

(b) Using (a) and Exercise 3 above, prove that if (Xi,τ i) is a finite Hausdorff

space for i ∈ N, then
∏∞

i=1(Xi,τ i) is compact and metrizable.

(c) Show that every finite topological space is a continuous image of a finite

discrete space.

(d) Using (b) and (c), prove that if (Xi,τ i) is a finite topological space for each

i ∈ N, then
∏∞

i=1(Xi,τ i) is compact.

5. (i) Prove that the Sierpinski Space (Exercises 1.3 #5 (iii)) is a

continuous image of [0,1].

(ii) Using (i) and Proposition 9.2.5, show that if (Xi,τ i), for each i ∈ N, is

homeomorphic to the Sierpinski Space, then
∏∞

i=1(Xi,τ i) is compact.
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6. (i) Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces each

of which satisfies the second axiom of countability. Prove that
∏∞

i=1(Xi,τ i)
satisfies the second axiom of countability.

(ii) Using Exercises 3.2 #4 (viii) and Exercises 4.1 #14, deduce that the Hilbert

cube and all of its subspaces are separable.

7. Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces. Prove

that
∏∞

i=1(Xi,τ i) is a totally disconnected space if and only if each (Xi,τ i) is

totally disconnected. Deduce that the Cantor Space is totally disconnected.

8. Let (X,τ ) be a topological space and (Xij,τ ij), i ∈ N, j ∈ N, a family of

topological spaces each of which is homeomorphic to (X,τ ). Prove that

∞∏
j=1

(
∞∏
i=1

(Xij,τ ij)
)
∼=
∞∏
i=1

(Xi1.τ i1).

[Hint: This result generalizes Proposition 9.3.3 and the proof uses a map

analogous to φ.]

9. (i) Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces each

of which is homeomorphic to the Hilbert cube. Deduce from Exercise 8

above that
∏∞

i=1(Xi,τ i) is homeomorphic to the Hilbert cube.

(ii) Hence show that if (Xi,τ i), i ∈ N, are compact subspaces of the Hilbert

cube, then
∏∞

i=1(Xi,τ i) is compact.

10. Prove Proposition 9.3.11.

[Hint. In the notation of the proof of Proposition 9.3.9, show that if an =∏∞
i=1 ain, n ∈ N, is a Cauchy sequence in (

∏∞
i=1Xi, d), then for each i ∈ N,

{ain : n ∈ N} is a Cauchy sequence in Xi, di.]
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9.4 Urysohn’s Theorem

9.4.1 Definition. A topological space (X,τ ) is said to be separable if it has

a countable dense subset.

See Exercises 3.2 #4 and Exercises 8.1 #9 where separable spaces were

introduced.

9.4.2 Example. Q is dense in R, and so R is separable. �

9.4.3 Example. Every countable topological space is separable. �

9.4.4 Proposition. Let (X,τ ) be a compact metrizable space. Then (X,τ )

is separable.

Proof. Let d be a metric on X which induces the topology τ . For each positive

integer n, let Sn be the family of all open balls having centres in X and radius 1
n
. Then

Sn is an open covering of X and so there is a finite subcovering Un = {Un1 , Un2 , . . . , Unk
},

for some k ∈ N. Let ynj
be the centre of Unj

, j = 1, . . . , k, and Yn = {yn1 , yn2 , . . . , ynk
}.

Put Y =
⋃∞
n=1 Yn. Then Y is a countable subset of X. We now show that Y is dense

in (X,τ ).

If V is any non-empty open set in (X,τ ), then for any v ∈ V , V contains an open

ball, B, of radius 1
n
, about v, for some n ∈ N. As Un is an open cover of X, v ∈ Unj

,

for some j. Thus d(v, ynj
) < 1

n
and so ynj

∈ B ⊆ V . Hence V ∩Y 6= Ø, and so Y is dense

in X. �

9.4.5 Corollary. The Hilbert cube is a separable space. �

Shortly we shall prove the very striking Urysohn Theorem which shows that every

compact metrizable space is homeomorphic to a subspace of the Hilbert cube. En

route we prove the (countable version of the) Embedding Lemma.

First we record the following proposition, which is Exercises 9.3 #3 and so its

proof is not included here.
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9.4.6 Proposition. Let (Xi,τ i), i ∈ N, be a countably infinite family of

topological spaces and f a mapping of a topological space (Y,τ ) into
∏∞

i=1(Xi,τ i).
Then f is continuous if and only if each mapping pi ◦ f : (Y,τ ) −→ (Xi,τ i) is

continuous, where pi denotes the projection mapping of
∏∞

i=1(Xi,τ i) onto (Xi,τ i).
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9.4.7 Lemma. (The Embedding Lemma) Let (Yi,τ i), i ∈ N, be a countably

infinite family of topological spaces and for each i, let fi be a mapping of

a topological space (X,τ ) into (Yi,τ i). Further, let e : (X,τ ) −→
∏∞

i=1(Yi,τ i)
be the evaluation map; that is, e(x) =

∏∞
i=1 fi(x), for all x ∈ X. Then e is a

homeomorphism of (X,τ ) onto the space (e(X),τ ′), where τ ′ is the subspace

topology on e(X), if

(i) each fi is continuous,

(ii) the family {fi : i ∈ N} separates points of X; that is, if x1 and x2 are in X

with x1 6= x2, then for some i, fi(x1) 6= fi(x2), and

(iii) the family {fi : i ∈ N} separates points and closed sets; that is, for x ∈ X

and A any closed subset of (X,τ ) not containing x, fi(x) /∈ fi(A), for some i.

Proof. That the mapping e : (X,τ ) −→ (e(X),τ ′) is onto is obvious, while condition

(ii) clearly implies that it is one-to-one.

As pi ◦e = fi is a continuous mapping of (X,τ ) into (Yi,τ i), for each i, Proposition

9.4.6 implies that the mapping e : (X,τ ) −→
∏∞

i=1(Yi, ti) is continuous. Hence

e : (X,τ ) −→ (e(X),τ ′) is continuous.

To prove that e : (X,τ ) −→ (e(X),τ ′) is an open mapping, it suffices to verify that

for each U ∈ τ and x ∈ U , there exists a set W ∈ τ ′ such that e(x) ∈ W ⊆ e(U). As

the family fi, i ∈ N, separates points and closed sets, there exists a j ∈ N such that

fj(x) /∈ fj(X \ U). Put

W = (Y1 × Y2 × · · · × Yj−1 × [Yj \ fj(X \ U)]× Yj+1 × Yj+2 × . . . ) ∩ e(X).

Then clearly e(x) ∈ W and W ∈ τ ′. It remains to show that W ⊆ e(U). So let e(t) ∈ W .

Then

fj(t) ∈ Yj \ fj(X \ U)

⇒ fj(t) /∈ fj(X \ U)

⇒ fj(t) /∈ fj(X \ U)

⇒ t /∈ X \ U

⇒ t ∈ U.

So e(t) ∈ e(U) and hence W ⊆ e(U). Therefore e is a homeomorphism.
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9.4.8 Definition. A topological space (X,τ ) is said to be a T1-space if every

singleton set {x}, x ∈ X, is a closed set.

9.4.9 Remark. It is easily verified that every Hausdorff space (i.e. T2-space) is

a T1-space. The converse, however, is false. (See Exercises 4.1 #13 and Exercises

1.3 #3.) In particular, every metrizable space is a T1-space.

9.4.10 Corollary. If (X,τ ) in Lemma 9.4.7 is a T1-space, then condition (ii)

is implied by condition (iii) (and so is superfluous).

Proof. Let x1 and x2 be any distinct points in X. Putting A equal to the closed

set {x2}, condition (iii) implies that for some i, fi(x1) /∈ {fi(x2)}. Hence fi(xi) 6= fi(x2),

and condition (ii) is satisfied.
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9.4.11 Theorem. (Urysohn’s Theorem) Every separable metric space (X, d)

is homeomorphic to a subspace of the Hilbert cube.

Proof. By Corollary 9.4.10 this result will follow if we can find a countably infinite

family of mappings fi : (X, d) −→ [0, 1], which are (i) continuous, and (ii) separate

points and closed sets.

Without loss of generality we can assume that d(a, b) ≤ 1, for all a and b in X,

since every metric is equivalent to such a metric.

As (X, d) is separable, there exists a countable dense subset Y = {yi, i ∈ N}. For

each i ∈ N, define fi : X −→ [0, 1] by fi(x) = d(x, yi). It is clear that each mapping fi is

continuous.

To see that the mappings {fi : i ∈ N} separate points and closed sets, let x ∈ X
and A be any closed set not containing x. Now X \A is an open set about x and so

contains an open ball B of radius ε and centre x, for some ε > 0.

Further, as Y is dense in X, there exists a yn such that d(x, yn) < ε
2
. Thus

d(yn, a) ≥ ε
2
, for all a ∈ A.

So [0, ε
2
) is an open set in [0, 1] which contains fn(x), but fn(a) 6∈ [0, ε

2
), for all a ∈ A.

This implies fn(A) ⊆ [ ε
2
, 1]. As the set [ ε

2
, 1] is closed, this implies fn(A) ⊆ [ ε

2
, 1].

Hence fn(x) /∈ fn(A) and thus the family {fi : i ∈ N} separates points and closed

sets.

9.4.12 Corollary. Every compact metrizable space is homeomorphic to a

closed subspace of the Hilbert cube. �

9.4.13 Corollary. If for each i ∈ N, (Xi,τ i) is a compact metrizable space,

then
∏∞

i=1(Xi,τ i) is compact and metrizable.

Proof. That
∏∞

i=1(Xi,τ i) is metrizable was proved in Proposition 9.3.9. That∏∞
i=1(Xi,τ i) is compact follows from Corollary 9.4.12 and Exercises 9.3 #9 (ii).
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Our next task is to verify the converse of Urysohn’s Theorem. To do this we

introduce a new concept. (See Exercises 2.2 #4.)

9.4.14 Definition. A topological space (X,τ ) is said to satisfy the second

axiom of countability (or to be second countable) if there exists a basis B for τ
such that B consists of only a countable number of sets.

9.4.15 Example. Let B = {(q − 1
n
, q + 1

n
) : q ∈ Q, n ∈ N}. Then B is a basis for the

euclidean topology on R. (Verify this). Therefore R is second countable. �

9.4.16 Example. Let (X,τ ) be an uncountable set with the discrete topology.

Then, as every singleton set must be in any basis for τ , (X,τ ) does not have any

countable basis. So (X,τ ) is not second countable. �

9.4.17 Proposition. Let (X, d) be a metric space and τ the induced topology.

Then (X,τ ) is a separable space if and only if it satisfies the second axiom of

countability.

Proof. Let (X,τ ) be separable. Then it has a countable dense subset Y = {yi : i ∈
N}. Let B consist of all the open balls (in the metric d) with centre yi, for some i,

and radius 1
n
, for some positive integer n. Clearly B is countable and we shall show

that it is a basis for τ .

Let V ∈ τ . Then for any v ∈ V , V contains an open ball, B, of radius 1
n

about v,

for some n. As Y is dense in X, there exists a ym ∈ Y , such that d(ym, v) < 1
2n

. Let B′

be the open ball with centre ym and radius 1
2n

. Then the triangle inequality implies

B′ ⊆ B ⊆ V . Also B′ ∈ B. Hence B is a basis for τ . So (X,τ ) is second countable.

Conversely let (X,τ ) be second countable, having a countable basis B1 = {Bi : i ∈
N}. For each Bi 6= Ø, let bi be any element of Bi, and put Z equal to the set of all

such bi. Then Z is a countable set. Further, if V ∈ τ , then V ⊇ Bi, for some i, and

so bi ∈ V. Thus V ∩Z 6= Ø. Hence Z is dense in X. Consequently (X,τ ) is separable.�
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9.4.18 Remark. The above proof shows that every second countable space is

separable, even without the assumption of metrizability. However, it is not true, in

general, that a separable space is second countable. (See Exercises 9.4 #11.)

9.4.19 Theorem. (Urysohn’s Theorem and its Converse) Let (X,τ ) be a

topological space. Then (X,τ ) is separable and metrizable if and only if it is

homeomorphic to a subspace of the Hilbert cube.

Proof. If (X,τ ) is separable and metrizable, then Urysohn’s Theorem 9.4.11 says

that it is homeomorphic to a subspace of the Hilbert cube.

Conversely, let (X,τ ) be homeomorphic to the subspace (Y,τ 1) of the Hilbert

cube I∞. By Proposition 9.4.4, I∞ is separable. So, by Proposition 9.4.17, it is

second countable. It is readily verified (Exercises 4.1 #14) that any subspace of a

second countable space is second countable, and hence (Y,τ 1) is second countable.

It is also easily verified (Exercises 6.1 #6) that any subspace of a metrizable space is

metrizable. As the Hilbert cube is metrizable, by Corollary 9.3.10, its subspace (Y,τ 1)

is metrizable. So (Y,τ 1) is metrizable and satisfies the second axiom of countability.

Therefore it is separable. Hence (X,τ ) is also separable and metrizable.

Exercises 9.4

1. Prove that every continuous image of a separable space is separable.

2. If (Xi,τ i), i ∈ N, are separable spaces, prove that
∏∞

i=1(Xi,τ i) is a separable space.

3. If all the spaces (Yi,τ i) in Lemma 9.4.7 are Hausdorff and (X,τ ) is compact,

show that condition (iii) of the lemma is superfluous.

4. If (X,τ ) is a countable discrete space, prove that it is homeomorphic to a

subspace of the Hilbert cube.
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5. Verify that C[0, 1], with the metric d described in Example 6.1.5, is homeomorphic

to a subspace of the Hilbert cube.

6. If (Xi,τ i), i ∈ N, are second countable spaces, prove that
∏∞

i=1(Xi,τ i) is second

countable.

7. (Lindelöf’s Theorem) Prove that every open covering of a second countable

space has a countable subcovering.

8. Deduce from Theorem 9.4.19 that every subspace of a separable metrizable

space is separable and metrizable.

9. (i) Prove that the set of all isolated points of a second countable space is

countable.

(ii) Hence, show that any uncountable subset A of a second countable space

contains at least one point which is a limit point of A.

10. (i) Let f be a continuous mapping of a Hausdorff non-separable space (X,τ )

onto itself. Prove that there exists a proper non-empty closed subset A of

X such that f(A) = A.

[Hint: Let x0 ∈ X and define a set S = {xn : n ∈ Z} such that xn+1 = f(xn) for

every integer n.]

(ii) Is the above result true if (X,τ ) is separable? (Justify your answer.)

11. Let τ be the topology defined on R in Example 2.3.1. Prove that

(i) (R,τ ) is separable;

(ii) (R,τ ) is not second countable.

12. A topological space (X,τ ) is said to satisfy the countable chain condition if

every disjoint family of open sets is countable.

(i) Prove that every separable space satisfies the countable chain condition.

(ii) Let X be an uncountable set and τ the countable-closed topology on X.

Show that (X,τ ) satisfies the countable chain condition but is not separable.
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13. A topological space (X,τ ) is said to be scattered if every non-empty subspace

of X has an isolated point (see Exercises 9.1 #2).

(i) Verify that R, Q, and the Cantor Space are not scattered, while every

discrete space is scattered.
(ii) Let X = R2, d the Euclidean metric on R2 and d′ the metric on X given

by d′(x, y) = d(x, 0) + d(0, y) if x 6= y and d′(x, y) = 0 if x = y. Let τ be the

topology induced on X by the metric d′. The metric d′ is called the Post

Office Metric. A topological space is said to be extremally disconnected if

the closure of every open set is open. A topological space (Y,τ 1) is said to

be collectionwise Hausdorff if for every discrete subspace (Z,τ 2) of (Y,τ 1)

and each pair of points z1, z2 in Z, there are disjoint open sets U1, U2 in (Y,τ 1)

such that z1 ∈ U1 and z2 ∈ U2. Prove the following:

(a) Every point in (X,τ ), except x = 0, is an isolated point.

(b) 0 is not an isolated point of (X,τ ).

(c) (X,τ ) is a scattered space.

(d) (X,τ ) is totally disconnected.

(e) (X,τ ) is not compact.

(f) (X,τ ) is not locally compact (see Exercise 8.3 #1).

(g) Every separable metric space has cardinality less than or equal to c.

(h) (X,τ ) is an example of a metrizable space of cardinality c which is not

separable. (Note that the metric space (`∞, d∞) of Exercises 6.1 #7 (iii)

is also of cardinality c and not separable.)

(i) Every discrete space is extremally disconnected.

(j) (X,τ ) is not extremally disconnected.

(k) The product of any two scattered spaces is a scattered space.

(l) Let (S,τ 3) be the subspace {0, 1, 1
2
, 1
3
, . . . 1

n
, . . . } of R. Then S is not

extremally disconnected.

(m)* Every extremally disconnected metrizable space is discrete.

[Hint. Show that every convergent sequence must have repeated terms.]

(n) A topological space is Hausdorff if and only if it is a T1-space and

collectionwise Hausdorff.

(o)* Every extremally disconnected collectionwise Hausdorff space is discrete.
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9.5 Peano’s Theorem

9.5.1 Remark. In the proof of Theorem 9.3.8 we showed that the Hilbert cube

I∞ is a continuous image of the Cantor Space (G,τ ). In fact, every compact metric

space is a continuous image of the Cantor Space. The next proposition is a step in

this direction.

9.5.2 Proposition. Every separable metrizable space (X,τ 1) is a continuous

image of a subspace of the Cantor Space (G,τ ). Further, if (X,τ 1) is compact,

then the subspace can be chosen to be closed in (G,τ ).

Proof. Let φ be the continuous mapping of (G,τ ) onto I∞ shown to exist in

the proof of Theorem 9.3.8. By Urysohn’s Theorem, (X,τ 1) is homeomorphic to a

subspace (Y,τ 2) of I∞. Let the homeomorphism of (Y,τ 2) onto (X,τ 1) be Θ. Let

Z = ψ−1(Y ) and τ 3 be the subspace topology on Z. Then Θ ◦ ψ is a continuous

mapping of (Z,τ 3) onto (X,τ 1). So (X,τ 1) is a continuous image of the subspace

(Z,τ 3) of (G,τ ).

Further if (X,τ 1) is compact, then (Y,τ 2) is compact and hence closed in I∞. So

Z = ψ−1(Y ) is a closed subset of (G,τ ), as required.
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9.5.3 Proposition. Let (Y,τ 1) be a (non-empty) closed subspace of the

Cantor Space (G,τ ). Then there exists a continuous mapping of (G,τ ) onto

(Y,τ 1).

Proof. Let (G′,τ ′) be the set of all real numbers which can be written in the

form
∑∞

i=1
ai
6i

, where each ai = 0 or 5, with the subspace topology induced from R.

The space (G′,τ ′) is called the middle two-thirds Cantor Space. Clearly (G′,τ ′) is

homeomorphic to the Cantor Space (G,τ ).

We can regard (Y,τ 1) as a closed subspace of (G′,τ ′) and seek a continuous

mapping of (G′,τ ′) onto (Y,τ 1). Before proceeding, observe from the construction

of the middle two thirds Cantor space that if g1 ∈ G′ and g2 ∈ G′, then g1+g2
2

/∈ G′.

The map ψ : (G′,τ ′) −→ (Y,τ 1) which we seek is defined as follows: for g ∈ G′,
ψ(g) is the unique element of Y which is closest to g in the euclidean metric on R.

However we have to prove that such a unique closest element exists.

Fix g ∈ G′. Then the map dg : (Y,τ 1) −→ R given by dg(y) = |g − y| is continuous.

As (Y,τ 1) is compact, Proposition 7.2.15 implies that dg(Y ) has a least element. So

there exists an element of (Y,τ 1) which is closest to g. Suppose there are two such

elements y1 and y2 in Y which are equally close to g. Then g = y1+y2
2

. But y1 ∈ G′ and

y2 ∈ G′ and so, as observed above, g = y1+y2
2

/∈ G′, which is a contradiction. So there

exists a unique element of Y which is closest to g. Call this element ψ(g).

It is clear that the map ψ : (G′,τ ′) −→ (Y,τ 1) is surjective, since for each y ∈ Y ,

ψ(y) = y. To prove continuity of ψ, let g ∈ G′. Let ε be any given positive real

number. Then it suffices, by Corollary 6.2.4, to find a δ > 0, such that if x ∈ G′ and

|g − x| < δ then |ψ(g)− ψ(x)| < ε.

Consider firstly the case when g ∈ Y , so ψ(g) = g. Put δ = ε
2
. Then for x ∈ G′ with

|g − x| < δ we have

|ψ(g)− ψ(x)| = |g − ψ(x)|

≤ |x− ψ(x)|+ |g − x|

≤ |x− g|+ |g − x|, by definition of ψ since g ∈ Y

= 2|x− g|

< 2δ

= ε, as required.
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Now consider the case when g /∈ Y , so g 6= ψ(g).

Without loss of generality, assume ψ(g) < g and put a = g − ψ(g).

If the set Y ∩ [g, 1] = Ø, then ψ(x) = ψ(g) for all x ∈ (g − a
2
, g + a

2
).

Thus for δ < a
2
, we have |ψ(x)− ψ(g)| = 0 < ε, as required.

If Y ∩ [g, 1] 6= Ø, then as Y ∩ [g, 1] is compact it has a least element y > g.

Indeed by the definition of ψ, if b = y − g, then b > a.

Now put δ = b−a
2

.

So if x ∈ G′ with |g − x| < δ, then either ψ(x) = ψ(g) or ψ(x) = y. Observe that

|x− ψ(g)| ≤ |x− g|+ |g − ψ(g)| < δ + a =
b− a

2
+ a =

b

2
+
a

2

while

|x− y| ≥ |g − y| − |g − x| ≥ b− b− a
2

=
b

2
+
a

2
.

So ψ(x) = ψ(g).

Thus |ψ(x)− ψ(g)| = 0 < ε, as required. Hence ψ is continuous. �

Thus we obtain from Propositions 9.5.2 and 9.5.3 the following theorem of

Alexandroff and Urysohn:

9.5.4 Theorem. Every compact metrizable space is a continuous image of

the Cantor Space.

9.5.5 Remark. The converse of Theorem 9.5.4 is false. It is not true that

every continuous image of a Cantor Space is a compact metrizable space. (Find

an example.) However, an analogous statement is true if we look only at Hausdorff

spaces. Indeed we have the following proposition.
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9.5.6 Proposition. Let f be a continuous mapping of a compact metric space

(X, d) onto a Hausdorff space (Y,τ 1). Then (Y,τ 1) is compact and metrizable.

Proof. Since every continuous image of a compact space is compact, the space

(Y,τ 1) is certainly compact. As the map f is surjective, we can define a metric d1

on Y as follows:

d1(y1, y2) = inf{d(a, b) : a ∈ f−1{y1} and b ∈ f−1{y2}}, for all y1 and y2 in Y.

We need to show that d1 is indeed a metric. Since {y1} and {y2} are closed in the

Hausdorff space (Y,τ 1), f
−1{y1} and f−1{y2} are closed in the compact space (X, d).

Hence the sets f−1{y1} and f−1{y2} are compact. So the product f−1{y1} × f−1{y2},
which is a subspace of the produce space (X,τ )× (X,τ ), is compact, where τ is the

topology induced by the metric d.

Observing that d : (X,τ )×(X,τ )→ R is a continuous mapping, Proposition 7.2.15

implies that d(f−1{y1} × f−1{y2}), has a least element.

So there exists an element x1 ∈ f−1{y1} and an element x2 ∈ f−1{y2} such that

d(x1, x2) = inf {d(a, b) : a ∈ f−1{y1}, b ∈ f−1{y2}} = d1(y1, y2).

Clearly if y1 6= y2, then f−11 {y1} ∩ f−1{y2} = Ø. Thus x1 6= x2 and hence d(x1, x2) > 0;

that is, d1(y1, y2) > 0.

It is easily verified that d1 has the other properties required of a metric, and so

is a metric on Y .

Let τ 2 be the topology induced on Y by d1. We have to show that τ 1 = τ 2.

Firstly, by the definition of d1, f : (X,τ ) −→ (Y,τ 2) is certainly continuous.

Observe that for a subset C of Y ,

C is a closed subset of (Y,τ 1)

⇒ f−1(C) is a closed subset of (X,τ )

⇒ f−1(C) is a compact subset of (X,τ )

⇒ f(f−1(C)) is a compact subset of (Y,τ 2)

⇒ C is a compact subset of (Y,τ 2)

⇒ C is closed in (Y,τ 2).

So τ 1 ⊆ τ 2. Similarly we can prove τ 2 ⊆ τ 1, and thus τ 1 = τ 2.
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9.5.7 Corollary. Let (X,τ ) be a Hausdorff space. Then it is a continuous

image of the Cantor Space if and only if it is compact and metrizable.

Finally in this chapter we turn to space-filling curves.

9.5.8 Remark. Everyone thinks he or she knows what a “curve” is. Formally

we can define a curve in R2 to be the set f [0, 1], where f is a continuous map

f : [0, 1] −→ R2. It seems intuitively clear that a curve has no breadth and hence zero

area. This is false! In fact there exist space-filling curves; that is, f(I) has non-zero

area. Indeed the next theorem shows that there exists a continuous mapping of [0, 1]

onto the product space [0, 1]× [0, 1].

9.5.9 Theorem. (Peano) For each positive integer n, there exists a

continuous mapping ψn of [0, 1] onto the n-cube In.

Proof. By Theorem 9.5.4, there exists a continuous mapping φn of the Cantor

Space (G,τ ) onto the n-cube In. As (G,τ ) is obtained from [0, 1] by successively

dropping out middle thirds, we extend φn to a continuous mapping ψn : [0, 1] −→ In by

defining ψn to be linear on each omitted interval; that is, if (a, b) is one of the open

intervals comprising [0, 1] \G, then ψn is defined on (a, b) by

ψn (αa+ (1− α) b) = αφn(a) + (1− α)φn(b), 0 ≤ α ≤ 1.

It is easily verified that ψn is continuous.

We conclude this chapter by stating (but not proving) the Hahn-Mazurkiewicz

Theorem which characterizes those Hausdorff spaces which are continuous images

of [0,1]. [For a proof of the theorem see Wilder [231] and p. 221 of Kuratowski

[144].] But first we need a definition.
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9.5.10 Definition. A topological space (X,τ ) is said to be locally connected

if it has a basis of connected (open) sets.

9.5.11 Remark. Every discrete space is locally connected as are Rn and Sn, for

all n ≥ 1. However, not every connected space is locally connected. (See Exercises

8.4 #6.)

9.5.12 Theorem. (Hahn-Mazurkiewicz Theorem) Let (X,τ ) be a Hausdorff

space. Then (X,τ ) is a continuous image of [0, 1] if and only if it is compact,

connected, metrizable and locally connected.
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Exercises 9.5

1. Let S ⊂ R2 be the set of points inside and on the triangle ABC, which has a

right angle at A and satisfies AC > AB. This exercise outlines the construction

of a continuous surjection f : [0, 1]→ S.

Let D on BC be such that AD is perpendicular to BC. Let a = ·a1a2a3 . . . be a

binary decimal, so that each an is 0 or 1. Then we construct a sequence (Dn)

of points of S as follows : D1 is the foot of the perpendicular from D onto the

hypotenuse of the larger or smaller of the triangles ADB, ADC according as

a1 = 1 or 0, respectively. This construction is now repeated using D1 instead of

D and the appropriate triangle of ADB, ADC instead of ABC. For example, the

figure above illustrates the points D1 to D5 for the binary decimal .1010 . . . . Give

a rigorous inductive definition of the sequence (Dn) and prove

(i) the sequence (Dn) tends to a limit D(a) in S;

(ii) if λ ∈ [0, 1] is represented by distinct binary decimals a, a′ then D(a) = D(a′); hence,

the point D(λ) in S is uniquely defined;

(iii) if f : [0, 1]→ S is given by f(λ) = D(λ) then f is surjective;

(iv) f is continuous.
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2. Let (G,τ ) be the Cantor Space and consider the mappings

φi : (G,τ )→ [0, 1], i = 1, 2,

where

φ1

[
∞∑
i=1

ai
3i

]
=
a1
22

+
a3
23

+ · · ·+ a2n−1
2n+1

+ . . .

and

φ2

[
∞∑
i=1

ai
3i

]
=
a2
22

+
a4
23

+ · · ·+ a2n
2n+1

+ . . . .

(i) Prove that φ1 and φ2 are continuous.

(ii) Prove that the map a 7→ 〈φ1(a), φ2(a)〉 is a continuous map of (G,τ ) onto

[0, 1]× [0, 1].

(iii) If a and b ∈ (G,τ ) and (a, b) ∩G = Ø, define, for j = 1, 2 ,

φj(x) =
b− x
b− a

φj(a) + x− ab− a φj(b), a ≤ x ≤ b.

Show that

x 7→ 〈φ1(x), φ2(x)〉

is a continuous mapping of [0, 1] onto [0, 1] × [0, 1] and that each point of

[0, 1]× [0, 1] is the image of at most three points of [0, 1].

9.6 Postscript

In this section we have extended the notion of a product of a finite number of

topological spaces to that of the product of a countable number of topological

spaces. While this step is a natural one, it has led us to a rich collection of results,

some of which are very surprising.

We proved that a countable product of topological spaces with property P has

property P, where P is any of the following: (i) T0-space (ii) T1-space (iii) Hausdorff

(iv) metrizable (v) connected (vi) totally disconnected (vii) second countable. It is

also true when P is compact, this result being the Tychonoff Theorem for countable

products. The proof of the countable Tychonoff Theorem for metrizable spaces
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presented here is quite different from the standard one which appears in the next

section. Our proof relies on the Cantor Space.

The Cantor Space was defined to be a certain subspace of [0, 1]. Later is was

shown that it is homeomorphic to a countably infinite product of 2-point discrete

spaces. The Cantor Space appears to be the kind of pathological example pure

mathematicians are fond of producing in order to show that some general statement

is false. But it turns out to be much more than this.

The Alexandroff-Urysohn Theorem says that every compact metrizable space is

an image of the Cantor Space. In particular [0, 1] and the Hilbert cube (a countable

infinite product of copies of [0, 1]) is a continuous image of the Cantor Space. This

leads us to the existence of space-filling curves – in particular, we show that there

exists a continuous map of [0, 1] onto the cube [0, 1]n, for each positive integer n. We

stated, but did not prove, the Hahn-Mazurkiewicz Theorem: The Hausdorff space

(X,τ ) is an image of [0, 1] if and only if it is compact connected locally connected

and metrizable.

Finally we mention Urysohn’s Theorem, which says that a space is separable

and metrizable if and only if it is homeomorphic to a subspace of the Hilbert cube.

This shows that [0, 1] is not just a “nice” topological space, but a “generator” of the

important class of separable metrizable spaces via the formation of subspaces and

countable products.



Chapter 10

Tychonoff’s Theorem

Introduction

In Chapter 9 we defined the product of a countably infinite family of topological

spaces. We now proceed to define the product of any family of topological spaces

by replacing the set {1, 2, . . . , n, . . . } by an arbitrary index set I. The central result will

be the general Tychonoff Theorem.

The reader should be aware that this chapter is more sophisticated and

challenging than previous chapters. However, the reward is that you will experience,

and hopefully enjoy, some beautiful mathematics.

221
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10.1 The Product Topology For All Products

10.1.1 Definitions. Let I be a set, and for each i ∈ I, let (Xi,τ i) be

a topological space. We write the indexed family of topological spaces as

{(Xi,τ i) : i ∈ I}. Then the product (or cartesian product) of the family of

sets {Xi : i ∈ I} is denoted by
∏

i∈I Xi, and consists of the set of all functions

f : I −→
⋃
i∈I Xi such that fi = xi ∈ Xi. We denote the element f of the product

by
∏

i∈I xi, and refer to f(i) = xi as the ith coordinate.

If I = {1, 2} then
∏

i∈{1,2}Xi is just the set of all functions f : {1, 2} → X1∪X2

such that f(1) ∈ X1 and f(2) ∈ X2. A moment’s thought shows that∏
i∈{1,2}Xi is a set “isomorphic to” X1×X2. Similarly if I = {1, 2, . . . , n, . . . },

then
∏

i∈I Xi is “isomorphic to” our previously defined
∏∞

i=1Xi.

The product space, denoted by
∏

i∈I(Xi,τ i), consists of the product set
∏

i∈I Xi

with the topology τ having as its basis the family

B =

{∏
i∈I

Oi : Oi ∈ τ i and Oi = Xi, for all but a finite number of i

}
.

The topology τ is called the product topology (or the Tychonoff topology).

10.1.2 Remark. Although we have defined
∏

i∈I(Xi,τ i) rather differently to the

way we did when I was countably infinite or finite you should be able to convince

yourself that when I is countably infinite or finite the new definition is equivalent to

our previous ones. Once this is realized many results on countable products can be

proved for uncountable products in an analogous fashion. We state them below. It

is left as an exercise for the reader to prove these results for uncountable products.

10.1.3 Proposition. Let I be a set and for i ∈ I, let Ci be a closed subset of

a topological space (X,τ i). Then
∏

i∈I Ci is a closed subset of
∏

i∈I(Xi,τ i). �
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10.1.4 Proposition. Let I be a set and and let {(Xi,τ i) : i ∈ I} be a family

of topological spaces having product space (
∏

i∈I Xi,τ ). If for each i ∈ I, Bi is a

basis for τ i, then

B′ =

{∏
i∈I

Oi : Oi ∈ Bi and Oi = Xi for all but a finite number of i

}
is a basis for τ . �

10.1.5 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} be a family

of topological spaces having product space (
∏

i∈I Xi,τ ). For each j ∈ I, let

pj :
∏

i∈I Xi −→ Xj be the projection mapping; that is, pj(
∏

i∈I xi) = xj, for each∏
i∈I xi ∈

∏
i∈I Xi. Then

(i) each pj is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set
∏

i∈I Xi such that each pj is continuous.

�

10.1.6 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} be a family

of topological spaces with product space
∏

i∈I(Xi,τ i). Then each (Xi,τ i) is

homeomorphic to a subspace of
∏

i∈I(Xi,τ i). �

10.1.7 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} and {(Yi,τ ′i) : i ∈ I}
be families of topological spaces. If hi : (Xi,τ i) −→ (Yi,τ ′i) is a continuous

mapping, for each i ∈ I, then h :
∏

i∈I(Xi,τ i) −→
∏

i∈I(Yi,τ ′i) is continuous, where

h(
∏

i∈I xi) =
∏

i∈I hi(xi). �
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10.1.8 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} be a family of

topological spaces and f a mapping of a topological space (Y,τ ) into
∏

i∈I(Xi,τ i).
Then f is continuous if and only if each mapping pi ◦ f : (Y,τ ) −→ (Xi,τ i) is

continuous, where pi, i ∈ I, denotes the projection mapping of
∏

i∈I(Xi,τ i) onto

(Xi,τ i). �

10.1.9 Lemma. (The Embedding Lemma) Let I be an index set and

{(Yi,τ i) : i ∈ I} a family of topological spaces and for each i ∈ I, let fi be a

mapping of a topological space (X,τ ) into (Yi,τ i). Further let e : (X,τ ) −→∏
i∈I(Yi,τ i) be the evaluation map; that is, e(x) =

∏
i∈I fi(x), for all x ∈ X. Then e

is a homeomorphism of (X,τ ) onto the space (e(X),τ ′), where τ ′ is the subspace

topology on e(X) if

(i) each fi is continuous.

(ii) the family {fi : i ∈ I} separates points of X; that is, if x1 and x2 are in X

with x1 6= x2, then for some i ∈ I, fi(x1) 6= f1(x2), and

(iii) the family {fi : i ∈ I} separates points and closed sets; that is, for x ∈ X and

A any closed subset of (X,τ ) not containing x, fi(x) /∈ fi(A), for some i ∈ I.�

10.1.10 Corollary. If (X,τ ) in Lemma 10.1.9 is a T1-space, then condition

(ii) is superfluous. �

10.1.11 Definitions. Let (X,τ ) and (Y,τ ′) be topological spaces. Then we

say that (X,τ ) can be embedded in (Y,τ ′) if there exists a continuous mapping

f : (X,τ ) −→ (Y,τ ′), such that f : (X,τ ) −→ (f(X),τ ′′) is a homeomorphism, where

τ ′′ is the subspace topology on f(X) from (Y,τ ′). The mapping f : (X,τ ) −→
(Y,τ ′) is said to be an embedding.
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Exercises 10.1

1. For each i ∈ I, some index set, let (Ai,τ ′i) be a subspace of (Xi,τ i).

(i) Prove that
∏

i∈I(Ai,τ ′i) is a subspace of
∏

i∈I(Xi,τ i).

(ii) Prove that
∏

i∈I Ai =
∏

i∈I Ai .

(iii) Prove that Int(
∏

i∈I Ai) ⊆
∏

i∈I(Int(Ai)).

(iv) Give an example where equality does not hold in (iii).

2. Let J be any index set, and for each j ∈ J, (Gj,τ j) a topological space

homeomorphic to the Cantor Space, and Ij a topological space homeomorphic

to [0, 1]. Prove that
∏

j∈J Ij is a continuous image of
∏

j∈J(Gj, Tj).

3. Let {(Xj,τ j) : j ∈ J} be any infinite family of separable metrizable spaces. Prove

that
∏

j∈J(Xj,τ j) is homeomorphic to a subspace of
∏

j∈J I
∞
j , where each I∞j is

homeomorphic to the Hilbert cube.
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4. (i) Let J be any infinite index set and {(Xi,j,τ i,j) : i ∈ N and j ∈ J} a family of

homeomorphic topological spaces. Prove that

∏
j∈J

(∏
i∈N

(Xi,j,τ i,j)
)
∼=
∏
j∈J

(X1,j,τ 1,j).

(ii) For each j ∈ J, any infinite index set, let (Aj,τ ′j) be homeomorphic to

the discrete space {0, 2} and (Gj, Tj) homeomorphic to the Cantor Space.

Deduce from (i) that ∏
j∈J

(Aj,τ ′j) ∼=
∏
j∈J

(Gj, Tj).

(iii) For each j ∈ J, any infinite index set, let Ij be homeomorphic to [0, 1], and

I∞j homeomorphic to the Hilbert cube I∞. Deduce from (i) that

∏
j∈J

Ij ∼=
∏
j∈J

I∞j .

(iv) Let J, Ij, I∞j , and (Aj,τ ′j) be as in (ii) and (iii). Prove that
∏

j∈J Ij and
∏

j∈J I
∞
j

are continuous images of
∏

j∈J(Aj,τ ′j).

(v) Let J and Ij be as in (iii). If, for each j ∈ J, (Xj,τ j) is a separable

metrizable space, deduce from #3 above and (iii) above that
∏

j∈J(Xj,τ j) is

homeomorphic to a subspace of
∏

j∈J Ij.

10.2 Zorn’s Lemma

Our next task is to prove the general Tychonoff Theorem which says that any

product of compact spaces is compact. However, to do this we need to use Zorn’s

Lemma which requires a little preparation.
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10.2.1 Definitions. A partial order on a set X is a binary relation, denoted

by ≤, which has the properties:

(i) x ≤ x, for all x ∈ X (reflexive)

(ii) if x ≤ y and y ≤ x, then x = y, for x, y ∈ X (antisymmetric), and

(iii) if x ≤ y and y ≤ z, then x ≤ z, for x, y, z ∈ X (transitive)

The set X equipped with the partial order ≤ is called a partially ordered set and

denoted by (X,≤). If x ≤ y and x 6= y, then we write x < y.

10.2.2 Examples. The prototype of a partially ordered set is the set N of all

natural numbers equipped with the usual ordering of natural numbers.

Similarly the sets Z, Q, and R with their usual orderings form partially ordered

sets. �

10.2.3 Example. Let N be the set of natural numbers and let ≤ be defined as

follows:

n ≤ m if n divides m

So 3 ≤ 6 but 3 6≤ 5. (It is left as an exercise to verify that with this ordering N is a

partially ordered set.) �

10.2.4 Example. Let X be the class of all subsets of a set U . We can define a

partial ordering on X by putting

A ≤ B if A is a subset of B

where A and B are in X.

It is easily verified that this is a partial order. �

10.2.5 Example. Let (X,≤) be a partially ordered set. We can define a new

partial order ≤∗ on X by defining

x ≤∗ y if y ≤ x.

�
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10.2.6 Example. There is a convenient way of picturing partially ordered sets;

this is by an order diagram.
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...................................................................................................................................................................

An element x is less than an element y if and only if one can go from x to y by

moving upwards on line segments. So in our order diagram

a < b, a < g, a < h, a < i, a < j, a < f, b < g, b < h,

b < i, b < f, c < b, c < f, c < g, c < h, c < i, d < a, d < b,

d < g, d < h, d < f, d < i, d < j, e < f, e < g, e < h, e < i,

f < g, f < h, g < h, g < i.

However d 6≤ c and c 6≤ d, e 6≤ f and f 6≤ e, etc. �
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10.2.7 Definition. Two elements x and y of a partially ordered set (X,≤) are

said to be comparable if either x ≤ y or y ≤ x.

10.2.8 Remark. We saw in the order diagram above that the elements d and c

are not comparable. Also e and f are not comparable.

In N, Q, R, and Z with the usual orderings, every two elements are comparable.

In Example 10.2.4, 3 and 5 are not comparable. �

10.2.9 Definitions. A partially ordered set (X,≤) is said to be linearly ordered

if every two elements are comparable. The order ≤ is then said to a linear order.

10.2.10 Examples. The usual orders on R, Q, N, and Z are linear orders.

The partial order of Example 10.2.4 is not a linear order (if U has at least two

points). �

10.2.11 Definition. Let (X,≤) be a partially ordered set. Then an element

s ∈ X is said to be the greatest element of X if x ≤ s, for all x ∈ X.

10.2.12 Definition. Let (X,≤) be a partially ordered set and Y a subset of

X. An element t ∈ X is said to be an upper bound for Y if y ≤ t, for all y ∈ Y .

It is important to note that an upper bound for Y need not be in Y .

10.2.13 Definition. Let (X,≤) be a partially ordered set. Then an element

w ∈ X is said to be maximal if w ≤ x, with x ∈ X, implies w = x.

10.2.14 Remark. It is important to distinguish between maximal elements and

greatest elements. Consider the order diagram in Example 10.2.6. There is no

greatest element! However, j, h, i and f are all maximal elements. �
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10.2.15 Remark. We can now state Zorn’s Lemma. Despite the name

“Lemma”, it is, in fact, an axiom and cannot be proved. It is equivalent to various

other axioms of Set Theory such as the Axiom of Choice and the Well-Ordering

Theorem. [See, for example, Halmos [100] or Wilder [231].] We shall take Zorn’s

Lemma as one of the axioms of our set theory and so use it whenever we wish.

10.2.16 Axiom. (Zorn’s Lemma) Let (X,≤) be a non-empty partially

ordered set in which every subset which is linearly ordered has an upper bound.

Then (X,≤) has a maximal element.

10.2.17 Example. Let us apply Zorn’s Lemma to the lattice diagram of Example

10.2.6. There are many linearly ordered subsets:

{i, g, b, a}, {g, b, a}, {b, a}, {g, b}, {i, g}, {a}, {b},

{g}, {i}, {i, b, a}, {i, g, a}, {i.a}, {g, a}, {h, g, e},

{h, e}, {g, e}, etc.

Each of these has an upper bound −− i, i, i, i, i, i, i, i, i, i, i, i, i, h, h, h, etc. Zorn’s Lemma

then says that there is a maximal element. In fact there are 4 maximal elements,

j, h, f and i. �

Exercises 10.2

1. Let X = {a, b, c, d, e, f, u, v}. Draw the order diagram of the partially ordered set

(X,≤) where

v < a, v > b, v < c, v < d, v < e, v < f, v < u,

a < c, a < d, a < e, a < f, a < u,

b < c, b > d, b < e, b < f, b < u,

c < d, c < e, c < f, c < u,

d < e, d < f, d < u,

e < u, f < u.
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2. In Example 10.2.3, state which of the following subsets of N is linearly ordered:

(a) {21, 3, 7};

(b) {3, 6, 15};

(c) {2, 6, 12, 72};

(d) {1, 2, 3, 4, 5, ...};

(e) {5}.

3. Let (X,≤) be a linearly ordered set. If x and y are maximal elements of X, prove

that x = y.

4. Let (X,≤) be a partially ordered set. If x and y are greatest elements of X,

prove that x = y.

5. Let X = {2, 3, 4, 5, 6, 7, 8, 9, 10} be partially ordered as follows:

x ≤ y if y is a multiple of x.

Draw an order diagram and find all the maximal elements of (X,≤). Does (X,≤)

have a greatest element?

6.* Using Zorn’s Lemma prove that every vector space V has a basis.

[Hints: (i) Consider first the case where V = {0}.

(ii) Assume V 6= {0} and define

B = {B : B is a set of linearly independent vectors of V.}

Prove that B 6= Ø.

(iii) Define a partial order ≤ on B by

B1 ≤ B2 if B1 ⊆ B2.

Let {Bi : i ∈ I} be any linearly ordered subset of B. Prove that

A =
⋃
i∈I Bi is a linearly independent set of vectors of V .

(iv) Deduce that A ∈ B and so is an upper bound for {Bi : i ∈ I}.

(v) Apply Zorn’s Lemma to show the existence of a maximal element of

B. Prove that this maximal element is a basis for V .]
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10.3 Tychonoff’s Theorem

10.3.1 Definition. Let X be a set and F a family of subsets of X. Then F is

said to have the finite intersection property if for any finite number F1, F2, . . . , Fn

of members of F , F1 ∩ F2 ∩ · · · ∩ Fn 6= Ø.

10.3.2 Proposition. Let (X,τ ) be a topological space. Then (X,τ ) is

compact if and only if every family F of closed subsets of X with the finite

intersection property satisfies
⋂
F∈F F 6= Ø.

Proof. Assume that every family F of closed subsets of X with the finite

intersection property satisfies
⋂
F∈F F 6= Ø. Let U be any open covering of X. Put

F equal to the family of complements of members of U. So each F ∈ F is closed

in (X,τ ). As U is an open covering of X,
⋂
F∈F F = Ø. By our assumption, then,

F does not have the finite intersection property. So for some F1, F2, . . . , Fn in F,

F1 ∩ F2 ∩ · · · ∩ Fn = Ø. Thus U1 ∪ U2 ∪ · · · ∪ Un = X, where Ui = X \ Fi, i = 1, . . . , n. So U
has a finite subcovering. Hence (X,τ ) is compact.

The converse statement is proved similarly. �
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10.3.3 Lemma. Let X be a set and F a family of subsets of X with the

finite intersection property. Then there is a maximal family of subsets of X that

contains F and has the finite intersection property.

Proof. Let Z be the collection of all families of subsets of X which contain F and

have the finite intersection property. Define a partial order ≤ on Z as follows: if F1

and F2 are in Z then put F1 ≤ F2 if F1 ⊆ F2. Let Y be any linearly ordered subset of

Z. To apply Zorn’s Lemma we need to verify that Y has an upper bound. We claim

that
⋃
Y∈Y Y is an upper bound for Y . Clearly this contains F, so we have to show

only that it has the finite intersection property. So let S1, S2, . . . , Sn ∈
⋃
Y∈Y Y. Then

each Si ∈ Yi, for some Yi ∈ Y . As Y is linearly ordered, one of the Yi contains all of

the others. Thus S1, S2, . . . , Sn all belong to that Yi. As Yi has the finite intersection

property, S1 ∩ S2 ∩ · · · ∩ Sn 6= Ø. Hence
⋃
Y∈Y Y has the finite intersection property and

is, therefore, an upper bound in X of Y . Thus by Zorn’s Lemma, Z has a maximal

element. �

We can now prove the much heralded Tychonoff Theorem.
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10.3.4 Theorem. (Tychonoff’s Theorem) Let {(Xi,τ i) : i ∈ I} be any

family of topological spaces. Then
∏

i∈I(Xi,τ i) is compact if and only if each

(Xi,τ i) is compact.

Proof. We shall use Proposition 10.3.2 to show that (X,τ ) =
∏

i∈I(Xi,τ i) is

compact, if each (Xi,τ i) is compact. Let F be any family of closed subsets of

X with the finite intersection property. We have to prove that
⋂
F∈F F 6= Ø.

By Lemma 10.3.3 there is a maximal family H of (not necessarily closed) subsets

of (X,τ ) that contains F and has the finite intersection property. We shall prove

that
⋂
H∈HH 6= Ø, from which follows the required result

⋂
F∈F F 6= Ø, since each F ∈ F

is closed.

As H is maximal with the property that it contains F and has the finite

intersection property, if H1, H2, . . . , Hn ∈ H, for any n ∈ N, then the set H ′ =

H1 ∩ H2 ∩ · · · ∩ Hn ∈ H. Suppose this was not the case. Then the set H′ = H ∪ {H ′}
would properly contain H and also have the property that it contains F and has the

finite intersection property. This is a contradiction to H being maximal. So H′ = H
and H ′ = H1 ∩H2 ∩ · · · ∩Hn ∈ H.

Let S be any subset of X that intersects non-trivially every member of H. We

claim that H ∪ {S} has the finite intersection property. To see this let H ′1, H
′
2, . . . , H

′
m

be members of H. We shall show that S ∩ H ′1 ∩ H ′2 ∩ . . . H ′m 6= Ø. By the previous

paragraph, H ′1 ∩ H ′2 ∩ . . . H ′m ∈ H. So by assumption S ∩ (H ′1 ∩ H ′2 ∩ . . . H ′m) 6= Ø. Hence

H∪{S} has the finite intersection property and contains F. Again using the fact that

H is maximal with the property that it contains F and has the finite intersection

property, we see that S ∈ H.

Fix i ∈ I and let pi :
∏

i∈I(Xi,τ i) → (Xi,τ i) be the projection mapping. Then

the family {pi(H) : H ∈ H} has the finite intersection property. Therefore the

family {pi(H) : H ∈ H} has the finite intersection property. As (Xi, Ti) is compact,⋂
H∈H pi(H) 6= Ø. So let xi ∈

⋂
H∈H pi(H). Then for each i ∈ I, we can find a point

xi ∈
⋂
H∈H pi(H). Put x =

∏
i∈I xi ∈ X.

We shall prove that x ∈
⋂
h∈HH. Let O be any open set containing x. Then O

contains a basic open set about x of the form
⋂
i∈J p

−1
i (Ui), where Ui ∈ τ i, xi ∈ Ui and J

is a finite subset of I. As xi ∈ pi(H), Ui∩pi(H) 6= Ø, for all H ∈ H. Thus p−1i (Ui)∩H 6= Ø,

for all H ∈ H. By the observation above, this implies that p−1i (Ui) ∈ H, for all i ∈ J. As

H has the finite intersection property,
⋂
i∈J p

−1
i (U1)∩H 6= Ø, for all H ∈ H. So O∩H 6= Ø

for all H ∈ H. Hence x ∈
⋂
H∈HH, as required.

Conversely, if
∏

I∈I(Xi,τ i) is compact, then by Propositions 7.2.1 and 10.1.5 (i)

each (Xi,τ i) is compact. �
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10.3.5 Notation. Let A be any set and for each a ∈ A let the topological space

(Ia,τ a) be homeomorphic to [0, 1]. Then the product space
∏

a∈A(Ia,τ a) is denoted by

IA and referred to as a cube.

Observe that IN is just the Hilbert cube which we also denote by I∞.

10.3.6 Corollary. For any set A, the cube IA is compact.

10.3.7 Proposition. Let (X, d) be a metric space. Then it is homeomorphic

to a subspace of the cube IX.

Proof. Without loss of generality, assume d(a, b) ≤ 1 for all a and b in X. For each

a ∈ X, let fa be the continuous mapping of (X, d) into [0, 1] given by

fa(x) = d(x, a).

That the family {fa : a ∈ X} separates points and closed sets is easily shown (cf. the

proof of Theorem 9.4.11). Thus, by Corollary 10.1.10 of the Embedding Lemma,

(X, d) is homeomorphic to a subspace of the cube IX. �

This leads us to ask: Which topological spaces are homeomorphic to subspaces

of cubes? We now address this question.

10.3.8 Definitions. Let (X,τ ) be a topological space. Then (X,τ ) is said to

be completely regular if for each x ∈ X and each open set U 3 x, there exists

a continuous function f : (X,τ ) −→ [0, 1] such that f(x) = 0 and f(y) = 1 for all

y ∈ X \ U .

If (X,τ ) is also Hausdorff, then it is said to be Tychonoff space (or a T3 1
2
-space).
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10.3.9 Proposition. Let (X, d) be a metric space and τ the topology induced

on X by d. Then (X,τ ) is a Tychonoff space.

Proof. Let a ∈ X and U be any open set containing a. Then U contains an open

ball with centre a and radius ε, for some ε > 0. Define f : (X, d) −→ [0, 1] by

f(x) = min

{
1,
d(x, a)

ε

}
, for x ∈ X.

Then f is continuous and satisfies f(a) = 0 and f(y) = 1, for all y ∈ X \ U . As (X, d) is

also Hausdorff, it is a Tychonoff space. �

10.3.10 Corollary. The space [0, 1] is a Tychonoff space. �

10.3.11 Proposition. If {(Xi,τ i) : i ∈ I} is any family of completely regular

spaces, then
∏

i∈I(Xi,τ i) is completely regular.

Proof. Let a =
∏

i∈I ai ∈
∏

i∈I Xi and U be any open set containing a. Then there

exists a finite subset J of I and sets Ui ∈ τ i such that

a ∈
∏
i∈I

Ui ⊆ U

where Ui = Xi for all i ∈ I \ J. As (Xj, Tj) is completely regular for each j ∈ J, there

exists a continuous mapping fj : (Xj,τ j) −→ [0, 1] such that fj(aj) = 0 and fj(y) = 1, for

all y ∈ Xj \ Uj. Then fj ◦ pj :
∏

i∈I(Xi,τ i) −→ [0, 1], where pj denotes the projection of∏
i∈I(Xi,τ i) onto (Xj,τ j).

If we put f(x) = max{fj◦pj(x) : j ∈ J}, for all x ∈
∏

i∈I Xi, then f :
∏

i∈I(Xi,τ i) −→ [0, 1]

is continuous (as J is finite). Further, f(a) = 0 while f(y) = 1 for all y ∈ X \ U . So∏
i∈I(Xi,τ i) is completely regular. �

The next proposition is easily proved and so its proof is left as an exercise.



10.3. TYCHONOFF’S THEOREM 237

10.3.12 Proposition. If {(Xi,τ i) : i ∈ I} is any family of Hausdorff spaces,

then
∏

i∈I(Xi,τ i) is Hausdoroff.

Proof. Exercise. �

10.3.13 Corollary. If {(Xi,τ i) : i ∈ I} is any family of Tychonoff spaces, then∏
i∈I(Xi,τ i) is a Tychonoff space. �

10.3.14 Corollary. For any set X, the cube IX is a Tychonoff space. �

10.3.15 Proposition. Every subspace of a completely regular space is

completely regular.

Proof. Exercise. �

10.3.16 Corollary. Every subspace of a Tychonoff space is a Tychonoff

space.

Proof. Exercise. �

10.3.17 Proposition. If (X,τ ) is any Tychonoff space, then it is

homeomorphic to a subspace of a cube.

Proof. Let F be the family of all continuous mappings f : (X,τ ) −→ [0, 1]. Then

if follows easily from Corollary 10.1.10 of the Embedding Lemma and the definition

of completely regular, that the evaluation map e : (X,τ )→ IF is an embedding. �
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Thus we now have a characterization of the subspaces of cubes. Putting

together Proposition 10.3.17 and Corollaries 10.3.14 and 10.3.16 we obtain:

10.3.18 Proposition. A topological space (X,τ ) can be embedded in a cube

if and only if it is a Tychonoff space. �

10.3.19 Remark. We now proceed to show that the class of Tychonoff spaces

is quite large and, in particular, includes all compact Hausdorff spaces.

10.3.20 Definitions. A topological space (X,τ ) is said to be a normal space

if for each pair of disjoint closed sets A and B, there exist open sets U and V

such that A ⊆ U , B ⊆ V and U ∩ V = Ø. A normal space which is also Hausdorff

is said to be a T4-space.

10.3.21 Remark. In Exercises 6.1 #9 it is noted that every metrizable space is

a normal space. A little later we shall verify that every compact Hausdorff space is

normal. First we shall prove that every normal Hausdorff space is a Tychonoff space

(that is, every T4-space is a T3 1
2
-space).
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10.3.22 Theorem. (Urysohn’s Lemma) Let (X,τ ) be a topological space.

Then (X,τ ) is normal if and only if for each pair of disjoint closed sets A and B

in (X,τ ) there exists a continuous function f : (X,τ ) −→ [0, 1] such that f(a) = 0

for all a ∈ A, and f(b) = 1 for all b ∈ B.

Proof. Assume that for each A and B an f with the property stated above exists.

Then U = f−1([0, 1
2
)) and V = f−1((1

2
, 1]) are open in (X,τ ) and satisfy A ⊆ U , B ⊆ V ,

and A ∩B = Ø. Hence (X,τ ) is normal.

Conversely, assume (X,τ ) is normal. We shall construct a family {Ui : i ∈ D} of

open subsets of X, where the set D is given by D =
{
k
2n

: k = 1, 2, . . . , 2n, n ∈ N
}
.

So D is a set of dyadic rational numbers, such that A ⊆ Ui, Ui ∩ B = Ø, and

d1 ≤ d2 implies Ud1 ⊆ Ud2. As (X,τ ) is normal, for any pair A,B of disjoint closed sets,

there exist disjoint open sets U 1
2

and V 1
2

such that A ⊆ U 1
2

and B ⊆ V 1
2
. So we have

A ⊆ U 1
2
⊆ V C

1
2

⊆ BC where the superscript C is used to denote complements in X (that

is, V C
1
2

= X \ V 1
2

and BC = X \B).

Now consider the disjoint closed sets A and UC
1
2

. Again, by normality, there exist

disjoint open sets U 1
4

and V 1
4

such that A ⊆ U 1
4

and UC
1
2

⊆ V 1
4
. Also as V C

1
2

and B are

disjoint closed sets there exists disjoint open sets U 3
4

and V 3
4

such that V C
1
2

⊆ U 3
4

and

B ⊆ V 3
4
. So we have

A ⊆ U 1
4
⊆ V C

1
4

⊆ U 1
2
⊆ V C

1
2

⊆ U 3
4
⊆ V C

3
4

⊆ BC .

Continuing by induction we obtain open sets Ud and Vd, for each d ∈ D, such that

A ⊆ U2−n ⊆ V C
2−n ⊆ U2.2−n ⊆ V C

2.2−n ⊆ · · · ⊆ U(2n−1)2−n ⊆ V C
(2n−1)2−n ⊆ BC .

So we have, in particular, that for d1 ≤ d2 in D, Ud1 ⊆ Ud2.

Now we define f : (X,τ ) −→ [0, 1] by f(x) =

{
inf{d : x ∈ Ud}, if x ∈

⋃
d∈D Ud

1, if x /∈
⋃
d∈D Ud.

Observe finally that since A ⊆ Ud, for all d ∈ D, f(a) = 0 for all a ∈ A. Also if b ∈ B,

then b /∈
⋃
d∈D Ud and so f(b) = 1. So we have to show only that f is continuous.

Let f(x) = y, where y 6= 0, 1 and set W = (y − ε, y + ε), for some ε > 0 (with

0 < y − ε < y + ε < 1). As D is dense in [0, 1], we can choose d0 and d1 such that

y − ε < d0 < y < d1 < y0 + ε. Then, by the definition of f , x ∈ U = Ud1 \ Ud0 and the

open set U satisfies f(u) ⊆ W . If y = 1 then we put W = (y − ε, 1], choose d0 such

that y − ε < d0 < 1, and set U = X \ Ud0. Again f(U) ⊆ W . Finally, if y = 0 then put

W = [0, y + ε), choose d1 such that 0 < d1 < Y + ε and set U = Ud1 to again obtain

f(U) ⊆ W . Hence f is continuous. �



240 CHAPTER 10. TYCHONOFF’S THEOREM

10.3.23 Corollary. If (X,τ ) is a Hausdorff normal space then it is a Tychonoff

space; that is, every T4-space is a T3 1
2
-space. Consequently it is homeomorphic

to a subspace of a cube.

�

10.3.24 Proposition. Every compact Hausdorff space (X,τ ) is normal.

Proof. Let A and B be disjoint closed subsets of (X,τ ). Fix b ∈ B. Then, as (X,τ )

is Hausdorff, for each a ∈ A, there exist open sets Ua and Va such that a ∈ Ua, b ∈ Va
and Ua∩Va = Ø. So {Ua : a ∈ A} is an open covering of A. As A is compact, there exists

a finite subcovering Ua1 , Ua2 , . . . , Uan. Put Ub = Ua1∪Ua2∪· · ·∪Uan and Vb = Va1∩Va2∩. . . Van.

Then we have A ⊆ Ub, b ∈ Vb, and Ub ∩ Vb = Ø. Now let b vary throughout B, so we

obtain an open covering {Vb : b ∈ B} of B. As B is compact, there exists a finite

subcovering Vb1 , Vb2 , . . . , Vbm. Set V = Vb1 ∪Vb2 ∪· · ·∪Vbm and U = Ub1 ∩Ub2 ∩· · ·∩Ubm. Then

A ⊆ U , B ⊆ V , and U ∩ V = Ø. Hence (X,τ ) is normal. �

10.3.25 Corollary. Every compact Hausdorff space can be embedded in a

cube. �

10.3.26 Remark. We can now prove the Urysohn metrization theorem which

provides a sufficient condition for a topological space to be metrizable. It also

provides a necessary and sufficient condition for a compact space to be metrizable

– namely that it be Hausdorff and second countable.

10.3.27 Definitions. A topological space (X,τ ) is said to be regular if for

each x ∈ X and each U ∈ τ such that x ∈ U , there exists a V ∈ τ with x ∈ V ⊆ U .

If (X,τ ) is also Hausdorff it is said to be a T3-space.
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10.3.28 Remark. It is readily verified that every T3 1
2
-space is a T3-space. So, from

Corollary 10.3.23, every T4-space is a T3-space. Indeed we now have a hierarchy:

compact Hausdorff⇒ T4 ⇒ T3 1
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0

metrizable⇒ T4 ⇒ T3 1
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0

�

10.3.29 Proposition. Every normal second countable Hausdorff space (X,τ )

is metrizable.

Proof. It suffices to show that (X,τ ) can be embedded in the Hilbert cube I∞. By

Corollary 9.4.10, to verify this it is enough to find a countable family of continuous

maps of (X,τ ) into [0, 1] which separates points and closed sets.

Let B be a countable basis for τ , and consider the set S of all pairs (V, U) such

that U ∈ B, V ∈ B and V ⊆ U . Then S is countable. For each pair (V, U) in S we

can, by Urysohn’s Lemma, find a continuous mapping fV U : (X,τ ) −→ [0, 1] such that

fV U(V ) = 0 and fV U(X \U) = 1. Put F equal to the family of functions, f , so obtained.

Then F is countable.

To see that F separates points and closed sets, let x ∈ X and W any open set

containing x. Then there exists a U ∈ B such that x ∈ U ⊆ W . By Remark 10.3.28,

(X,τ ) is regular and so there exists a set P ∈ τ such that x ∈ P ⊆ P ⊆ U . Therefore

these exists a V ∈ B with x ∈ V ⊆ P . So x ∈ V ⊆ P ⊆ U . Then (V, U) ∈ S and if fV U is

the corresponding mapping in F, then fV U(x) = 0 /∈ {1} = fV U(X \W ). �
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10.3.30 Lemma. Every regular second countable space (X,τ ) is normal.

Proof. Let A and B be disjoint closed subsets of (X, T ) and B a countable basis

for τ . As (X,τ ) is regular and X \ B is an open set, for each a ∈ A there exists a

Va ∈ B such that V a ⊆ X \B.

As B is countable we can list the members {Va : a ∈ A} so obtained by Vi, i ∈ N;

that is, A ⊆
⋃∞
i=1 Vi and V i ∩B = Ø, for all i ∈ N.

Similarly we can find sets Ui in B, i ∈ N, such that B ⊆
⋃∞
i=1 Ui and U i ∩A = Ø, for

all i ∈ N.

Now define U ′1 = U1 \ V 1 and V ′1 = V1 \ U1.

So U ′1 ∩ V ′1 = Ø, U ′1 ∈ τ , V ′1 ∈ τ , U ′1 ∩B = U1 ∩B, and V ′1 ∩ A = V1 ∩ A.

Then we inductively define

U
′
n = Un \

n⋃
i=1

V i and V ′n = Vn \
n⋃
i=1

U i

So that U ′n ∈ τ , V ′n ∈ τ , U ′n ∩B = Un ∩B, and V ′n ∩ A = An ∩ A.

Now put U =
⋃∞
n=1 U

′
n and V =

⋃∞
n=1 V

′
n.

Then U ∩ V = Ø, U ∈ τ , V ∈ τ , A ⊆ V , and B ⊆ U .

Hence (X,τ ) is a normal space. �

We can now deduce from Proposition 10.3.29. and Lemma 10.3.30 the Urysohn

Metrization Theorem, which generalizes Proposition 10.3.29.

10.3.31 Theorem. (Urysohn’s Metrization Theorem) Every regular second

countable Hausdorff space is metrizable. �

From Urysohn’s Metrization Theorem, Proposition 9.4.4, and Proposition 9.4.17,

we deduce the following characterization of metrizability for compact spaces.

10.3.32 Corollary. A compact space is metrizable if and only if it is Hausdorff

and second countable. �
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10.3.33 Remark. As mentioned in Remark 10.3.21, every metrizable space is

normal. It then follows from Proposition 9.4.17 that every separable metric space is

normal, Hausdorff, and second countable. Thus Uryshohn’s Theorem 9.4.11, which

says that every separable metric space is homeomorphic to a subspace of the Hilbert

cube, is a consequence of (the proof of) Proposition 10.3.29.

Exercises 10.3

1. A topological space (X,τ ) is said to be a Lindelöf space if every open covering

of X has a countable subcovering. Prove the following statements.

(i) Every regular Lindelöf space is normal.

[Hint: use a method like that in Lemma 10.3.30. Note that we saw in

Exercises 9.4 #8 that every second countable space is Lindelöf.]

(ii) The Sorgenfrey line (R,τ 1) is a Lindelöf space.

(iii) If (X,τ ) is a topological space which has a closed uncountable discrete

subspace, then (X,τ ) is not a Lindelöf space.

(iv) It follows from (iii) above and Exercises 8.1 #12 that the product space

(R,τ 1)× (R,τ 1) is not a Lindelöf space.

[Now we know from (ii) and (iv) that a product of two Lindelöf spaces is

not necessarily a Lindelöf space.]

2. Prove that any product of regular spaces is a regular space.

3. Verify that any closed subspace of a normal space is a normal space.

4. If (X,τ ) is an infinite connected Tychonoff space, prove that X is uncountable.
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5. A Hausdorff space (X,τ ) is said to be a kω-space if there is a countable collection

Xn, n ∈ N of compact subsets of X, such that

(a) Xn ⊆ Xn+1, for all n,

(b) X =
⋃∞
n=1Xn,

(c) any subset A of X is closed if and only if A ∩Xn is compactfor each n ∈ N.

Prove that

(i) every compact Hausdorff space is a kω-space,

(ii) every countable discrete space is a kω-space,

(iii) R and R2 are kω-spaces,

(iv) every kω-space is a normal space;

(v) every metrizable kω-space is separable;

(vi) every metrizable kω-space can be embedded in the Hilbert cube;

(vii) every closed subspace of a kω-space is a kω-space;

(viii) if (X,τ ) and (Y,τ ′) are kω-spaces then (X,τ )× (Y,τ ′) is a kω-space.

6. Prove that every T3 1
2
-space is a T3-space.

7. Prove that for metrizable spaces the conditions (i) Lindelöf space, (ii) separable,

and (iii) second countable, are equivalent.
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8. A topological space (X,τ ) is said to satisfy the first axiom of countability (or

to be first countable if for each x ∈ X, there exists a countable family Ui, i ∈ N
of open sets containing x, such that if V ∈ τ and x ∈ V , then V ⊇ Un′ for some

n.

(i) Prove that every metrizable space is first countable.

(ii) Verify that every second countable space is first countable, but that the

converse is false. (Hint: Consider discrete spaces.)

(iii) If {(Xi,τ i) : i ∈ N}, is a countable family of first countable spaces, prove

that
∏∞

i=1(Xi,τ i) is first countable.

(iv) Verify that every subspace of a first countable space is first countable.

(v) Let X be any uncountable set. Prove that the cube IX is not first countable,

and hence is not metrizable.

[Note that IX is an example of a [compact Hausdorff and hence] normal

space which is not metrizable.]

(vi) Generalize (v) above to show that if J is any uncountable set and each

(X,τ j) is a topological space with more than one point, then
∏

j∈J(Xj,τ j) is

not metrizable.

9. Prove that the class of all Tychonoff spaces is the smallest class of topological

spaces that contains [0, 1] and is closed under the formation of subspaces and

cartesian products.

10. Prove that any subspace of a completely regular space is a completely regular

space.

11. Using Proposition 8.6.8, prove that if (G,τ ) is a topological group, then (G,τ )

is a regular space.

[It is indeed true that every topological group is a completely regular space, but

this is much harder to prove.]

12. If {(Xi,τ i) : i ∈ I} is any family of connected spaces, prove that
∏

j∈I(Xi,τ i) is

connected.

[Hint: Let x =
∏

i∈I xi ∈
∏

i∈I Xi. Let S consists of the set of all points in
∏

i∈I Xi

which differ from x =
∏

i∈I xi in at most a finite number of coordinates. Prove

that CX(x) ⊇ S. Then show that S is dense in
∏

i∈I(Xi,τ i). Finally use the fact

that CX(x) is a closed set].
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13. Let {(Xj,τ j) : j ∈ J} be any family of topological spaces. Prove that
∏

j∈j(Xj,τ j)
is locally connected if and only if each (Xj,τ j) is locally connected and all but

a finite number of (Xj,τ j) are also connected.

14. Let (R,τ 1) be the Sorgenfrey line. Prove the following statements.

(i) (R,τ 1) is a normal space.

(ii) If (X,τ ) is a separable Hausdorff space, then there are at most c distinct

continuous functions f : (X,τ )→ [0, 1].

(iii) If (X,τ ) is a normal space which has an uncountable closed discrete

subspace, then there are at least 2c distinct continuous functions f : (X,τ )→
[0, 1]. [Hint: Use Urysohn’s Lemma.]

(iv) Deduce from (ii) and (iii) above and Exercises 8.1 #12, that (R,τ 1)×(R,τ 1)

is not a normal space.

[We now know that the product of two normal spaces is not necessarily a

normal space.]
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10.4 Stone-C̆ech Compactification

10.4.1 Definition. Let (X,τ ) be a topological space, (βX,τ ′) a compact

Hausdorff space and β : (X,τ ) −→ (βX,τ ′) a continuous mapping, then (βX,τ ′)
together with the mapping β is said to be the Stone-C̆ech compactification of

(X,τ ) if for any compact Hausdorff space (Y,τ ′′) and any continuous mapping

φ : (X,τ ) −→ (Y,τ ′′), there exists a unique continuous mapping Φ : (βX,τ ′) −→
(Y,τ ′′) such that Φ ◦ β = φ; that is, the diagram below commutes:

(X,τ ) (βX,τ ′)

(Y,τ ′′).

........................................................................................................................................................................................................... ............
β

.................................................................................................................................................................................................................................................................................................................................................................................. ........
....

φ

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.......
.....
.......
.....

Φ

WARNING The mapping β is usually not surjective, so β(X) is usually not equal to

βX.

10.4.2 Remark. Those familiar with category theory should immediately recognize

that the existence of the Stone-C̆ech compactification follows from the Freyd Adjoint

Functor Teorem the forgetful functor from the category of compact Hausdorff spaces

and continuous functions to the category of topological spaces and continuous

functions.] For a discussion of this see Maclane [154].

While the Stone-C̆ech compactification exists for all topological spaces, it

assumes more significance in the case of Tychonoff spaces. For the mapping β

is an embedding if and only if the space (X,τ ) is Tychonoff. The “only if” part of

this is clear, since the compact Hausdorff space (βX,τ ′) is a Tychonoff space and

so, therefore, is any subspace of it.

We now address the task of proving the existence of the Stone-C̆ech compactification

for Tychonoff spaces and of showing that the map β is an embedding in this case.
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10.4.3 Lemma. Let (X,τ ) and (Y,τ ′) be Tychonoff spaces and F(X) and

F(Y ) the family of all continuous mappings of X and Y into [0, 1], respectively.

Further let eX and eY be the evaluation maps of X into
∏

f∈F(X) If and Y into∏
g∈F(Y ) Ig, respectively, where If ∼= Ig ∼= [0, 1], for each f and g. If φ is any

continuous mapping of X into Y , then there exists a continuous mapping Φ of∏
f∈F(X) If into

∏
g∈F(Y ) Ig such that Φ ◦ eX = eY ◦ Φ; that is, the diagram below

commutes.

(X,τ ) (Y,τ ′)

∏
f∈F(X)

If
∏

g∈F(Y )

Ig

....................................................................................................................................................................................................................... ............
φ

...........................................................................................................................................................................................................................................
.....
.......
.....

eX

............. ............. ............. ............. ............. ............. ............. ............... ............

Φ

...........................................................................................................................................................................................................................................
.....
.......
.....

eY

Further, Φ(eX(X)) ⊆ eY (Y ).

Proof. Let
∏

f∈F(X) xf ∈
∏

f∈F(X) If . Define Φ
(∏

f∈F(X) xf

)
=
∏

g∈F(Y ) yg, where yg is

defined as follows: as g ∈ F(Y ), g is continuous map from (Y,τ ′) into [0, 1]. So g ◦ φ
is a continuous map from (X,τ ) into [0, 1]. Thus g ◦ φ = f , for some f ∈ F(X). Then

put yg = xf , for this f , and the mapping Φ is now defined.

To prove continuity of Φ, let U =
∏

g∈F(Z) Ug be a basic open set containing

Φ(
∏

f∈F(X) xf ) =
∏

g∈F(Y ) yg. Then Ug = Ig for all g ∈ F(Y ) \ {gi1 , . . . , gin}, for gi1 , . . . , gin .

Put fi1 = gi1 ◦ φ, fi2 = gi2◦, . . . , fin = gin ◦ φ. Now define V =
∏

f∈F(X) Vf , where Vf = If ,

for some f ∈ F(X) \ {fi1 , fi2 , . . . , fin}, and Vfi1 = Ugi1 , Vf12 = Ugi2 , . . . , Vfin = Ugin . Clearly∏
f∈F(X) xf ∈ V and Φ(V ) ⊆ U . So Φ is continuous.

To see that the diagram commutes, observe that

Φ(eX(x)) = Φ
( ∏
f∈F(X)

f(x)
)

=
∏

g∈F(Y )

g(φ(x)), for all x ∈ X.

So Φ ◦ eX = eY ◦ φ.

Finally as Φ is continuous, Φ(eX(X)) ⊆ eY (Y ), as required. �
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10.4.4 Lemma. Let Φ1 and Φ2 be continuous mappings of a topological

space (X,τ ) into the Hausdorff space (Y,τ ′). If Z is a dense subset of (X,τ ) and

Φ1(z) = Φ2(z) for all z ∈ Z, then Φ1 = Φ2 on X.

Proof. Suppose Φ1(x) 6= Φ2(x), for some x ∈ X. Then as (Y,τ ′) is Hausdorff, there

exist open sets U 3 Φ1(x) and V 3 Φ2(x), with U ∩V = Ø. So Φ−11 (U)∩Φ−12 (V ) is an open

set containing x.

As Z is dense in (X,τ ), there exists a z ∈ Z such that z ∈ Φ−11 (U) ∩ Φ−12 (V ). So

Φ1(z) ∈ U and Φ2(z) ∈ V . But Φ1(z) = Φ2(z). So U ∩ V 6= Ø, which is a contradiction.

Hence Φ1(x) = Φ2(x), for all x ∈ X. �
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10.4.5 Proposition. Let (X,τ ) be any Tychonoff space, F(X) the family of

continuous mappings of (X,τ ) into [0, 1], and eX the evaluation map of (X,τ ) into∏
f∈F(X) If , where each If ∼= [0, 1]. Put (βX, T ′) equal to eX(X) with the subspace

topology and β : (X,τ ) −→ (βX,τ ′) equal to the mapping eX. Then (βX,τ ′)
together with the mapping β is the Stone-C̆ech compactification of (X,τ ).

Proof. Firstly observe that (βX,τ ′) is indeed a compact Hausdorff space, as it is

a closed subspace of a compact Hausdorff space.

Let φ be any continuous mapping of (X,τ ) into any compact Hausdorff space

(Y,τ ′′). We are required to find a mapping Φ as in Definition 10.4.1 so that the

diagram there commutes and show that φ is unique.

Let F(Y ) be the family of all continuous mappings of (Y,τ ′′) into [0, 1] and eY the

evaluation mapping of (Y,τ ′′) into
∏

g∈F(Y ) Ig, where each Ig ∼= [0, 1].

By Lemma 10.4.3, there exists a continuous mapping Γ :
∏

f∈F(X) If −→
∏

g∈F(Y ) Ig,

such that eY ◦ φ = Γ ◦ eX, and Γ(eX(X)) ⊆ eY (Y ); that is, Γ(βX) ⊆ eY (Y ).

As (Y,τ ′′) is a compact Hausdorff space and eY is one-to-one, we see that

eY (Y ) = eY (Y ) and eY : (Y,τ ′′) −→ (eY (Y ),τ ′′′) is a homeomorphism, where τ ′′′ is the

subspace topology on eY (Y ). So e−1Y : (eY (Y ),τ ′′′) −→ (Y,τ ′′) is a homeomorphism.

Put Φ = e−1Y ◦Γ so that Φ is a continuous mapping of (βX,τ ′) into (Y,τ ′′). Further,

Φ(β(x)) = Φ(eX(x), for any x ∈ X

= e−1Y (Γ(eX(x)))

= e−1Y (eY (φ(x))), as eY ◦ φ = Γ ◦ eX

= φ(x).

Thus Φ ◦ β = φ, as required.

Now suppose there exist two continuous mappings Φ1 and Φ2 of (βX,τ ′) into

(Y,τ ′′) with Φ1 ◦ β = φ and Φ2 ◦ β = φ . Then Φ1 = Φ2 on the dense subset β(X) of

(βX,τ ′). So by Lemma 10.4.4, Φ1 = Φ2. Hence the mapping Φ is unique. �
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10.4.6 Remark. In Definition 10.4.1 referred to the Stone-C̆ech compactification

implying that for each (X,τ ) there is a unique (βX,τ ′). The next Proposition indicates

in precisely what sense this is true. However we first need a lemma.

10.4.7 Lemma. Let (X,τ ) be a topological space and let (Z,τ 1) together

with a mapping β : (X, T ) −→ (Z,τ 1) be a Stone-C̆ech compactification of (X,τ ).

Then β(X) is dense in (Z,τ 1).

Proof. Suppose β(X) is not dense in (Z,τ 1). Then there exists an element

z0 ∈ Z \ β(X). As (Z,τ 1) is a compact Hausdorff space, by Remark 10.3.28, it is

a Tychonoff space.

Observing that Z \β(X) is an open set containing z, we deduce that there exists a

continuous mapping Φ1 : (Z,τ 1) −→ [0, 1] with Φ1(z0) = 1 and Φ1(β(X)) = {0}. Also there

exists a continuous mapping Φ2 : (Z,τ 1) −→ [0, 1
2
] with Φ2(z0) = 1

2
and Φ2(β(X)) = {0}.

So we have the following diagrams which commute

(X,τ ) (Z,τ 1)

[0, 1]

..................................................................................................................................................................................................................... ............
β

.................................................................................................................................................................................................................................................................................................................................................................................. ........
....

φ

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.......
.....
.......
.....

Φ1

(X,τ ) (Z,τ 1)

[0, 1]

[0, 1
2
]

.............

.............

.............

.............

.......
.....
.......
.....

e

................................................................................................................................................................................................................................................................................................ ............
β

............................................................................................................................................................................................................................................................................................................................................................................................................................. ........
....

φ

.............

.............

.............

.............

.......
.....
.......
.....

Φ2

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.......
.....
.......
.....

Φ3

where φ(x) = 0, for all x ∈ X and Φ3 is defined by Φ3 = e ◦ Φ2, where e is the natural

embedding of [0, 1
2
] into [0, 1]. We see that the uniqueness of the mapping Φ in

Definition 10.4.1 implies that Φ1 = Φ3, which is clearly false as Φ1(z0) = 1 and Φ3(z0) = 1
2
.

So our supposition is false and hence β(X) is dense in (Z,τ 1). �
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10.4.8 Proposition. Let (X,τ ) be a topological space and (Z1,τ 1) together

with a mapping β1 : (X,τ ) −→ (Z1,τ 1) a Stone-C̆ech compactification of (X,τ ).

If (Z2,τ 2) together with a mapping β2 : (X,τ ) −→ (Z2,τ 2) is also a Stone-

C̆ech compactification of (X,τ ) then (Z1,τ 1) ∼= (Z2,τ 2). Indeed, there exists

a homeomorphism Θ: (Z1,τ 1)→ (Z2,τ 2) such that Θ ◦ β1 = β2.

(X,τ ) (Z1,τ 1)

(Z2,τ 2).

................................................................................................................................................................................................................ ............
β1

.................................................................................................................................................................................................................................................................................................................................................................................. ........
....

β2

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.......
.....
.......
.....

Θ

Proof. As (Z1,τ 1) together with β1 is a Stone-C̆ech compactification of (X,τ ) and

β2 is a continuous mapping of (X,τ ) into the compact Hausdorff space (Z2,τ 2), there

exists a continuous mapping Θ: (Z1,τ 1) −→ (Z2,τ 2), such that Θ ◦ β1 = β2.

Similarly there exists a continuous map Θ1 : (Z2,τ 2) −→ (Z1,τ 1) such that Θ1 ◦β2 =

β1. So for each x ∈ X, Θ1(Θ(β1(x))) = Θ1(β2(X)) = β1(x); that is, if idZ1 is the identity

mapping on (Z1,τ 1) then Θ1 ◦ Θ = idZ1 on β1(X), which by Lemma 10.4.7 is dense in

(Z1,τ 1). So, by Lemma 10.4.4, Θ1 ◦Θ = idZ1 on Z1.

Similarly Θ ◦ Θ1 = idZ2 on Z2. Hence Θ = Θ−11 and as both are continuous this

means that Θ is a homeomorphism. �

10.4.9 Remark. Note that if if (X,τ ) is any Tychonoff space and (βX,τ ′)
together with β : (X,τ )→ (βX,τ ′) is its Stone-C̆ech compactification then the proof

of Proposition 10.4.5 shows that β is an embedding. Indeed it is usual, in this

case, to identify X with βX, and so regard (X,τ ) as a subspace of (βX,τ ′). We,

then, do not mention the embedding β and talk about (βX,τ ′) as the Stone-C̆ech

compactification.
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10.4.10 Remark. For the case that (X,τ ) is a compact Hausdorff space, the

Stone-C̆ech compactification of (X,τ ) is (X,τ ) itself. Obviously (X,τ ) together

with the identity mapping into itself has the required property of a Stone-C̆ech

compactification. By uniqueness, it is the Stone-C̆ech compactification. This could

also be seen from the proof of Proposition 10.4.5 where we saw that for the compact

Hausdorff space (Y,τ ′′) the mapping eY : (Y,τ ′′) −→ (eY (Y ),τ ′′′) is a homeomorphism.

10.4.11 Remark. Stone-C̆ech compactifications of even nice spaces are usually

complicated. For example [0, 1] is not the Stone-C̆ech compactification of (0, 1], since

the continuous mapping φ : (0, 1] −→ [−1, 1] given by φ(x) = sin( 1
x
) does not extend to

a continuous map Φ: [0, 1] −→ [−1, 1]. Indeed it can be shown that the Stone-C̆ech

compactification of (0, 1] is not metrizable.

Exercises 10.4

1. Let (X,τ ) by a Tychonoff space and (βX,τ ′) its Stone-C̆ech compactification.

Prove that (X,τ ) is connected if and only if (βX,τ ′) is connected.

[Hint: Firstly verify that providing (X,τ ) has at least 2 points it is connected

if and only if there does not exist a continuous map of (X,τ ) onto the discrete

space {0, 1}.]

2. Let (X,τ ) be a Tychonoff space and (βX,τ ′) its Stone-C̆ech compactification.

If (A,τ 1) is a subspace of (βX,τ ′) and A ⊇ X, prove that (βX,τ ′) is also the

Stone-C̆ech compactification of (A,τ 1).

[Hint: Verify that every continuous mapping of (X,τ ) into [0, 1] can be extended

to a continuous mapping of (A,τ 1) into [0, 1]. Then use the construction of

(βX,τ ′).]

3. Let (X,τ ) be a dense subspace of a compact Hausdorff space (Z,τ 1). If every

continuous mapping of (X,τ ) into [0, 1] can be extended to a continuous mapping

of (Z,τ 1) into [0, 1], prove that (Z,τ 1) is the Stone-C̆ech compactification of

(X,τ ).
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10.5 Postscript

At long last we defined the product of an arbitrary number of topological spaces

and proved the general Tychonoff Theorem. (An alternative and more elegant proof

of the Tychonoff Theorem using fthe concept of a filter appears in Appendix 6.)

We also extended the Embedding Lemma to the general case. This we used to

characterize the Tychonoff spaces as those which are homeomorphic to a subspace

of a cube (that is, a product of copies of [0, 1]).

Urysohn’s Lemma allowed us to obtain the following relations between the

separation properties:

T4 ⇒ T3 1
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

Further, each of the properties compact Hausdorff and metrizable imply T4.

We have also seen a serious metrization theorem – namely Urysohn’s Metrization

Theorem, which says that every regular second countable Hausdorff space is

metrizable.

We concluded the chapter by introducing the Stone-C̆ech compactification which

is a serious topic of study in its own right. (See Hindman and Strauss [108] and

Walker [225].)



Appendix 1: Infinite Sets

Introduction

Once upon a time in a far-off land there were two hotels, the Hotel Finite (an

ordinary hotel with a finite number of rooms) and Hilbert’s Hotel Infinite (an extra-

ordinary hotel with an infinite number of rooms numbered 1, 2, . . . n, . . . ). One day a

visitor arrived in town seeking a room. She went first to the Hotel Finite and was

informed that all rooms were occupied and so she could not be accommodated, but

she was told that the other hotel, Hilbert’s Hotel Infinite, can always find an extra

room. So she went to Hilbert’s Hotel Infinite and was told that there too all rooms

were occupied. However, the desk clerk said at this hotel an extra guest can always

be accommodated without evicting anyone. He moved the guest from room 1 to

room 2, the guest from room 2 to room 3, and so on. Room 1 then became vacant!

From this cute example we see that there is an intrinsic difference between

infinite sets and finite sets. The aim of this Appendix is to provide a gentle but very

brief introduction to the theory of Infinite Sets. This is a fascinating topic which,

if you have not studied it before, will contain several surprises. We shall learn that

“infinite sets were not created equal” - some are bigger than others. At first pass it

is not at all clear what this statement could possibly mean. We will need to define

the term “bigger”. Indeed we will need to define what we mean by “two sets are

the same size”.

255
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A1.1 Countable Sets

A1.1.1 Definitions. Let A and B be sets. Then A is said to be equipotent

to B, denoted by A ∼ B, if there exists a function f : A → B which is both

one-to-one and onto (that is, f is a bijection or a one-to-one correspondence).

A1.1.2 Proposition. Let A, B, and C be sets.

(i) Then A ∼ A.

(ii) If A ∼ B then B ∼ A.

(iii) If A ∼ B and B ∼ C then A ∼ C.

Outline Proof.

(i) The identity function f on A, given by f(x) = x, for all x ∈ A, is a one-to-one

correspondence between A and itself.

(ii) If f is a bijection of A onto B then it has an inverse function g from B to A and

g is also a one-to-one correspondence.

(iii) If f : A → B is a one-to-one correspondence and g : B → C is a one-to-

one correspondence, then their composition gf : A → C is also a one-to-one

correspondence.

Proposition A1.1.2 says that the relation “∼” is reflexive (i), symmetric (ii), and

transitive (iii); that is, “∼” is an equivalence relation.

A1.1.3 Proposition. Let n,m ∈ N. Then the sets {1, 2, . . . , n} and {1, 2, . . . ,m}
are equipotent if and only if n = m.

Proof. Exercise. �

Now we explicitly define the terms “finite set” and “infinite set”.
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A1.1.4 Definitions. Let S be a set.

(i) Then S is said to be finite if it is the empty set, Ø, or it is equipotent to

{1, 2, . . . , n}, for some n ∈ N.

(ii) If S is not finite, then it is said to be infinite.

(iii) If S ∼ {1, 2, . . . , n} then S is said to have cardinality n, which is denoted by

card S = n.

(iv) If S = Ø then the cardinality is said to be 0, which is denoted by card Ø = 0.

The next step is to define the “smallest” kind of infinite set. Such sets will be

called countably infinite. At this stage we do not know that there is any “bigger”

kind of infinite set – indeed we do not even know what “bigger” would mean in this

context.

A1.1.5 Definitions. Let S be a set.

(i) The set S is said to be countably infinite (or denumerable) if it is equipotent

to N.

(ii) The set S is said to be countable if it is finite or countably infinite.

(iii) If S is countably infinite then it is said to have cardinality ℵ0, denoted by

card S = ℵ0.

(iv) A set S is said to be uncountable if it is not countable.

A1.1.6 Remark. If the set S is countably infinite, then S = {s1, s2, . . . , sn, . . . } where

f : N → S is a one-to-one correspondence and sn = f(n), for all n ∈ N. So we can

list the elements of S. Of course if S is finite and non-empty, we can also list its

elements by S = {s1, s2, . . . , sn}. So we can list the elements of any countable set.

Conversely, if the elements of S can be listed, then S is countable as the listing

defines a one-to-one correspondence with N or {1, 2, . . . , n}.
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A1.1.7 Example. The set S of all even positive integers is countably infinite.

Proof. The function f : N → S given by f(n) = 2 n, for all n ∈ N, is a one-to-one

correspondence.

Example A1.1.7 is worthy of a little contemplation. We think of two sets being

in one-to-one correspondence if they are “the same size”. But here we have the

set N in one-to-one correspondence with one of its proper subsets. This does not

happen with finite sets. Indeed finite sets can be characterized as those sets which

are not equipotent to any of their proper subsets.

A1.1.8 Example. The set Z of all integers is countably infinite.

Proof. The function f : N→ Z given by

f(n) =


m, if n = 2m, m ≥ 1

−m, if n = 2m+ 1, m ≥ 1

0, if n = 1.

is a one-to-one correspondence.

A1.1.9 Example. The set S of all positive integers which are perfect squares is

countably infinite.

Proof. The function f : N→ S given by f(n) = n2 is a one-to-one correspondence.

Example A1.1.9 was proved by G. Galileo about 1600. It troubled him and

suggested to him that the infinite is not man’s domain.

A1.1.10 Proposition. If a set S is equipotent to a countable set then it is

countable.

Proof. Exercise.
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A1.1.11 Proposition. If S is a countable set and T ⊂ S then T is countable.

Proof. Since S is countable we can write it as a list S = {s1, s2, . . .} (a finite list if

S is finite, an infinite one if S is countably infinite).

Let t1 be the first si in T (if T 6= Ø). Let t2 be the second si in T (if T 6= {t1}).

Let t3 be the third si in T (if T 6= {t1, t2}), . . . .

This process comes to an end only if T = {t1, t2, . . . , tn} for some n, in which case

T is finite. If the process does not come to an end we obtain a list {t1, t2, . . . , tn, . . .}
of members of T . This list contains every member of T , because if si ∈ T then we

reach si no later than the ith step in the process; so si occurs in the list. Hence T is

countably infinite. So T is either finite or countably infinite.

As an immediate consequence of Proposition A1.1.11 and Example 1.1.8 we

have the following result.

A1.1.12 Corollary. Every subset of Z is countable.

A1.1.13 Lemma. If S1, S2, . . . , Sn, . . . is a countably infinite family of countably

infinite sets such that Si ∩ Sj = Ø for i 6= j, then
∞⋃
i=1

Si is a countably infinite set.

Proof. As each Si is a countably infinite set, Si = {si1, si2, . . . , sin, . . .}. Now put the

sij in a square array and list them by zigzagging up and down the short diagonals.

s11 → s12 s13 → s14 · · ·
↙ ↗ ↙

s21 s22 s23 · · ·
↓ ↗ ↙ ↗
s31 s32 s33 · · ·
... ↙ ... ↗ ...

. . .

This shows that all members of
⋃∞
i=1 Si are listed, and the list is infinite because each

Si is infinite. So
⋃∞
i=1 Si is countably infinite.

In Lemma A1.1.13 we assumed that the sets Si were pairwise disjoint. If they

are not pairwise disjoint the proof is easily modified by deleting repeated elements

to obtain:
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A1.1.14 Lemma. If S1, S2, . . . , Sn, . . . is a countably infinite family of countably

infinite sets, then
∞⋃
i=1

Si is a countably infinite set.

A1.1.15 Proposition. The union of any countable family of countable sets

is countable.

Proof. Exercise.

A1.1.16 Proposition. If S and T are countably infinite sets then the product

set S × T = {〈s, t〉 : s ∈ S, t ∈ T} is a countably infinite set.

Proof. Let S = {s1, s2, . . . , sn, . . . } and T = {t1, t2, . . . , tn, . . . }. Then

S × T =
∞⋃
i=1

{〈si, t1〉, 〈si, t2〉, . . . , 〈si, tn〉, . . . }.

So S × T is a countably infinite union of countably infinite sets and is therefore

countably infinite.

A1.1.17 Corollary. Every finite product of countable sets is countable.

We are now ready for a significant application of our observations on countable

sets.

A1.1.18 Lemma. The set, Q>0, of all positive rational numbers is countably

infinite.

Proof. Let Si be the set of all positive rational numbers with denominator i, for

i ∈ N. Then Si =
{

1
i
, 2
i
, . . . , n

i
, . . .

}
and Q>0 =

∞⋃
i=1

Si. As each Si is countably infinite,

Proposition A1.1.15 yields that Q>0 is countably infinite.
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We are now ready to prove that the set, Q, of all rational numbers is countably

infinite; that is, there exists a one-to-one correspondence between the set Q and the

(seemingly) very much smaller set, N, of all positive integers.

A1.1.19 Theorem. The set Q of all rational numbers is countably infinite.

Proof. Clearly the set Q<0 of all negative rational numbers is equipotent to the set,

Q>0, of all positive rational numbers and so using Proposition A1.1.10 and Lemma

A1.1.18 we obtain that Q<0 is countably infinite.

Finally observe that Q is the union of the three sets Q>0, Q<0 and {0} and so it

too is countably infinite by Proposition A1.1.15.

A1.1.20 Corollary. Every set of rational numbers is countable.

Proof. This is a consequence of Theorem A1.1.19 and Proposition A1.1.11.

A1.1.21 Definitions. A real number x is said to be an algebraic number if

there is a natural number n and integers a0, a1, . . . , an with a0 6= 0 such that

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

A real number which is not an algebraic number is said to be a transcendental

number.

A1.1.22 Example. Every rational number is an algebraic number.

Proof. If x = p
q
, for p, q ∈ Z and q 6= 0, then qx − p = 0; that is, x is an algebraic

number with n = 1, a0 = q, and an = −p.

A1.1.23 Example. The number
√

2 is an algebraic number which is not a rational

number.

Proof. While x =
√

2 is irrational, it satisfies x2 − 2 = 0 and so is algebraic.
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A1.1.24 Remark. It is also easily verified that 4
√

5 −
√

3 is an algebraic number

since it satisfies x8 − 12x6 + 44x4 − 288x2 + 16 = 0. Indeed any real number which can

be constructed from the set of integers using only a finite number of the operations

of addition, subtraction, multiplication, division and the extraction of square roots,

cube roots, . . . , is algebraic.

A1.1.25 Remark. Remark A1.1.24 shows that “most” numbers we think of

are algebraic numbers. To show that a given number is transcendental can be

extremely difficult. The first such demonstration was in 1844 when Liouville proved

the transcendence of the number

∞∑
n=1

1

10n!
= 0.11000100000000000000000100 . . .

It was Charles Hermite who, in 1873, showed that e is transcendental. In 1882

Lindemann proved that the number π is transcendental thereby answering in the

negative the 2,000 year old question about squaring the circle. (The question is:

given a circle of radius 1, is it possible, using only a straight edge and compass,

to construct a square with the same area? A full exposition of this problem and

proofs that e and π are transcendental are to be found in the book, Jones, Morris

& Pearson [132].)

We now proceed to prove that the set A of all algebraic numbers is also countably

infinite. This is a more powerful result than Theorem A1.1.19 which is in fact a

corollary of this result.
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A1.1.26 Theorem. The set A of all algebraic numbers is countably infinite.

Proof. Consider the polynomial f(x) = a0x
n + a1x

n−1 + · · · + an−1x + an , where a0 6= 0

and each ai ∈ Z and define its height to be k = n+ |a0|+ |a1|+ · · ·+ |an|.

For each positive integer k, let Ak be the set of all roots of all such polynomials

of height k. Clearly A =
∞⋃
k=1

Ak.

Therefore, to show that A is countably infinite, it suffices by Proposition A1.1.15

to show that each Ak is finite.

If f is a polynomial of degree n, then clearly n ≤ k and |ai| ≤ k for i = 1, 2, . . . , n.

So the set of all polynomials of height k is certainly finite.

Further, a polynomial of degree n has at most n roots. Consequently each

polynomial of height k has no more than k roots. Hence the set Ak is finite, as

required.

A1.1.27 Corollary. Every set of algebraic numbers is countable.

Note that Corollary A1.1.27 has as a special case, Corollary A1.1.20.

So far we have not produced any example of an uncountable set. Before doing so

we observe that certain mappings will not take us out of the collection of countable

sets.

A1.1.28 Proposition. Let X and Y be sets and f a map of X into Y .

(i) If X is countable and f is surjective (that is, an onto mapping), then Y is

countable.

(ii) If Y is countable and f is injective (that is, a one-to-one mapping), then X

is countable.

Proof. Exercise.
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A1.1.29 Proposition. Let S be a countable set. Then the set of all finite

subsets of S is also countable.

Proof. Exercise.

A1.1.30 Definition. Let S be any set. The set of all subsets of S is said to

be the power set of S and is denoted by P(S).

A1.1.31 Theorem. (Georg Cantor) For every set S, the power set, P(S), is

not equipotent to S; that is, P(S) 6∼ S.

Proof. We have to prove that there is no one-to-one correspondence between

S and P(S). We shall prove more: that there is not even any surjective function

mapping S onto P(S).

Suppose that there exists a function f : S → P(S) which is onto. For each x ∈ S,

f(x) ∈ P(S), which is the same as saying that f(x) ⊆ S.

Let T = {x : x ∈ S and x 6∈ f(x)}. Then T ⊆ S; that is, T ∈ P(S). So T = f(y) for

some y ∈ S, since f maps S onto P(S). Now y ∈ T or y 6∈ T .

Case 1.
y ∈ T ⇒ y 6∈ f(y) (by the definition of T)

⇒ y 6∈ T (since f(y) = T).

So Case 1 is impossible.

Case 2.
y 6∈ T ⇒ y ∈ f(y) (by the definition of T)

⇒ y ∈ T (since f(y) = T).

So Case 2 is impossible.

As both cases are impossible, we have a contradiction. So our supposition is

false and there does not exist any function mapping S onto P(S). Thus P(S) is not

equipotent to S.
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A1.1.32 Lemma. If S is any set, then S is equipotent to a subset of its

power set, P(S).

Proof. Define the mapping f : S → P(S) by f(x) = {x}, for each x ∈ S. Clearly f

is a one-to-one correspondence between the sets S and f(S). So S is equipotent to

the subset f(S) of P(S).

A1.1.33 Proposition. If S is any infinite set, then P(S) is an uncountable

set.

Proof. As S is infinite, the set P(S) is infinite. By Theorem A1.1.31, P(S) is not

equipotent to S.

Suppose P(S) is countably infinite. Then by Proposition A1.1.11, Lemma

1.1.32 and Proposition A1.1.10, S is countably infinite. So S and P(S) are equipotent,

which is a contradiction. Hence P(S) is uncountable.

Proposition A1.1.33 demonstrates the existence of uncountable sets. However

the sceptic may feel that the example is contrived. So we conclude this section by

observing that important and familiar sets are uncountable.
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A1.1.34 Lemma. The set of all real numbers in the half open interval [1, 2)

is not countable.

Proof. (Cantor’s diagonal argument) We shall show that the set of all real

numbers in [1, 2) cannot be listed.

Let L = {r1, r2, . . . rn . . . } be any list of real numbers each of which lies in the set

[1, 2). Write down their decimal expansions:

r1 =1.r11r12 . . . r1n . . .

r2 =1.r21r22 . . . r2n . . .

...

rm =1.rm1rm2 . . . rmn . . .

...

Consider the real number a defined to be 1.a1a2 . . . an . . . where, for each n ∈ N,

an =

{
1 if rnn 6= 1

2 if rnn = 1.

Clearly an 6= rnn and so a 6= rn, for all n ∈ N. Thus a does not appear anywhere in

the list L. Thus there does not exist a listing of the set of all real numbers in [1, 2);

that is, this set is uncountable.

A1.1.35 Theorem. The set, R, of all real numbers is uncountable.

Proof. Suppose R is countable. Then by Proposition A1.1.11 the set of all real

numbers in [1, 2) is countable, which contradicts Lemma A1.1.34. Therefore R is

uncountable.
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A1.1.36 Corollary. The set, I, of all irrational numbers is uncountable.

Proof. Suppose I is countable. Then R is the union of two countable sets: I
and Q. By Proposition A1.1.15, R is countable which is a contradiction. Hence I is

uncountable.

Using a similar proof to that in Corollary A1.1.36 we obtain the following result.

A1.1.37 Corollary. The set of all transcendental numbers is uncountable.

A1.2 Cardinal Numbers

In the previous section we defined countably infinite and uncountable and suggested,

without explaining what it might mean, that uncountable sets are “bigger” than

countably infinite sets. To explain what we mean by “bigger” we will need the next

theorem.

Our exposition is based on that in the book, Halmos [100]
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A1.2.1 Theorem. (Cantor-Schröder-Bernstein) Let S and T be sets. If S

is equipotent to a subset of T and T is equipotent to a subset of S, then S is

equipotent to T .

Proof. Without loss of generality we can assume S and T are disjoint. Let f : S → T

and g : T → S be one-to-one maps. We are required to find a bijection of S onto T .

We say that an element s is a parent of an element f(s) and f(s) is a descendant

of s. Also t is a parent of g(t) and g(t) is a descendant of t. Each s ∈ S has an infinite

sequence of descendants: f(s), g(f(s)), f(g(f(s))), and so on. We say that each term

in such a sequence is an ancestor of all the terms that follow it in the sequence.

Now let s ∈ S. If we trace its ancestry back as far as possible one of three things

must happen:

(i) the list of ancestors is finite, and stops at an element of S which has no ancestor;

(ii) the list of ancestors is finite, and stops at an element of T which has no ancestor;

(iii) the list of ancestors is infinite.

Let SS be the set of those elements in S which originate in S; that is, SS is the

set S \ g(T ) plus all of its descendants in S. Let ST be the set of those elements

which originate in T ; that is, ST is the set of descendants in S of T \ f(S). Let S∞

be the set of all elements in S with no parentless ancestors. Then S is the union of

the three disjoint sets SS, ST and S∞. Similarly T is the disjoint union of the three

similarly defined sets: TT , TS, and T∞.

Clearly the restriction of f to SS is a bijection of SS onto TS.

Now let g−1 be the inverse function of the bijection g of T onto g(T ). Clearly the

restriction of g−1 to ST is a bijection of ST onto TT .

Finally, the restriction of f to S∞ is a bijection of S∞ onto T∞.

Define h : S → T by

h(s) =


f(s) if s ∈ SS

g−1(s) if s ∈ ST
f(s) if s ∈ S∞.

Then h is a bijection of S onto T . So S is equipotent to T .
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Our next task is to define what we mean by “cardinal number”.

A1.2.2 Definitions. A collection, ℵ, of sets is said to be a cardinal number

if it satisfies the conditions:

(i) Let S and T be sets. If S and T are in ℵ, then S ∼ T ;

(ii) Let A and B be sets. If A is in ℵ and B ∼ A, then B is in ℵ.

If ℵ is a cardinal number and A is a set in ℵ, then we write card A = ℵ.

Definitions A1.2.2 may, at first sight, seem strange. A cardinal number is defined

as a collection of sets. So let us look at a couple of special cases:

If a set A has two elements we write card A = 2; the cardinal number 2 is the

collection of all sets equipotent to the set {1, 2}, that is the collection of all sets with

2 elements.

If a set S is countable infinite, then we write card S = ℵ0; in this case the cardinal

number ℵ0 is the collection of all sets equipotent to N.

Let S and T be sets. Then S is equipotent to T if and only if card S = card T .

A1.2.3 Definitions. The cardinality of R is denoted by c; that is, card R = c.

The cardinality of N is denoted by ℵ0.

The symbol c is used in Definitions A1.2.3 as we think of R as the “continuum”.

We now define an ordering of the cardinal numbers.

A1.2.4 Definitions. Let m and n be cardinal numbers. Then the cardinal m

is said to be less than or equal to n, that is m ≤ n, if there are sets S and T such

that card m = S, card T = n, and S is equipotent to a subset of T . Further, the

cardinal m is said to be strictly less than n, that is m < n, if m ≤ n and m 6= n.

As R has N as a subset, card R = c and card N = ℵ0, and R is not equipotent to

N, we immediately deduce the following result.
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A1.2.5 Proposition. ℵ0 < c.

We also know that for any set S, S is equipotent to a subset of P(S), and S is

not equipotent to P(S), from which we deduce the next result.

A1.2.6 Theorem. For any set S, card S < card P(S).

The following is a restatement of the Cantor-Schröder-Bernstein Theorem.

A1.2.7 Theorem. Let m and n be cardinal numbers. If m ≤ n and n ≤ m,

then m = n.

A1.2.8 Remark. We observe that there are an infinite number of infinite cardinal

numbers. This is clear from the fact that:

(∗) ℵ0 = card N < card P(N) < card P(P(N)) < . . .

The next result is an immediate consequence of Theorem A1.2.6.

A1.2.9 Corollary. There is no largest cardinal number.

Noting that if a finite set S has n elements, then its power set P(S) has 2n

elements, it is natural to introduce the following notation.

A1.2.10 Definition. If a set S has cardinality ℵ, then the cardinality of P(S)

is denoted by 2ℵ.

Thus we can rewrite (∗) above as:

(∗∗) ℵ0 < 2ℵ0 < 22ℵ0 < 222
ℵ0
< . . . .

When we look at this sequence of cardinal numbers there are a number of

questions which should come to mind including:
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(1) Is ℵ0 the smallest infinite cardinal number?

(2) Is c equal to one of the cardinal numbers on this list?

(3) Are there any cardinal numbers strictly between ℵ0 and 2ℵ0?

These questions, especially (1) and (3), are not easily answered. Indeed they

require a careful look at the axioms of set theory. It is not possible in this Appendix

to discuss seriously the axioms of set theory. Nevertheless we will touch upon the

above questions later in the appendix.

We conclude this section by identifying the cardinalities of a few more familiar

sets.

A1.2.11 Lemma. Let a and b be real numbers with a < b. Then

(i) [0, 1] ∼ [a, b];

(ii) (0, 1) ∼ (a, b);

(iii) (0, 1) ∼ (1,∞);

(iv) (−∞,−1) ∼ (−2,−1);

(v) (1,∞) ∼ (1, 2);

(vi) R ∼ (−2, 2);

(vii) R ∼ (a, b).

Outline Proof. (i) is proved by observing that f(x) = a + b x defines a one-to-one

function of [0, 1] onto [a, b]. (ii) and (iii) are similarly proved by finding suitable

functions. (iv) is proved using (iii) and (ii). (v) follows from (iv). (vi) follows from

(iv) and (v) by observing that R is the union of the pairwise disjoint sets (−∞,−1),

[−1, 1] and (1,∞). (vii) follows from (vi) and (ii). .
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A1.2.12 Proposition. Let a and b be real numbers with a < b. If S

is any subset of R such that (a, b) ⊆ S, then card S = c. In particular,

card (a, b) = card [a, b] = c.

Proof. Using Lemma A1.2.11 observe that

card R = card (a, b) ≤ card [a, b] ≤ card R.

So card (a, b) = card [a, b] = card R = c. .

A1.2.13 Proposition. If R2 is the set of points in the Euclidean plane, then

card (R2) = c.

Outline Proof. By Proposition A1.2.12, R is equipotent to the half-open interval

[0, 1) and it is easily shown that it suffices to prove that [0, 1)× [0, 1) ∼ [0, 1).

Define f : [0, 1) → [0, 1) × [0, 1) by f(x) is the point 〈x, 0〉. Then f is a one-to-one

mapping of [0, 1) into [0, 1)× [0, 1) and so c = card [0, 1) ≤ card [0, 1)× [0, 1).

By the Cantor-Schröder-Bernstein Theorem, it suffices then to find a one-to-one

function g of [0, 1)× [0, 1) into [0, 1). Define

g(〈0.a1a2 . . . an . . . , 0.b1b2 . . . bn . . . , 〉) = 0.a1b1a2b2 . . . anbn . . . .

Clearly g is well-defined (as each real number in [0, 1) has a unique decimal

representation that does not end in 99. . . 9. . . ) and is one-to-one, which completes

the proof.

A1.3 Cardinal Arithmetic

We begin with a definition of addition of cardinal numbers. Of course, when the

cardinal numbers are finite, this definition must agree with addition of finite numbers.

A1.3.1 Definition. Let α and β be any cardinal numbers and select disjoint

sets A and B such that card A = α and card B = β. Then the sum of the cardinal

numbers α and β is denoted by α + β and is equal to card (A ∪B).
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A1.3.2 Remark. Before knowing that the above definition makes sense and

in particular does not depend on the choice of the sets A and B, it is necessary

to verify that if A1 and B1 are disjoint sets and A and B are disjoint sets such

that card A = card A1 and card B = card B1, then A ∪ B ∼ A1 ∪ B1; that is,

card (A ∪ B) = card (A1 ∪ B1). This is a straightforward task and so is left as an

exercise.

A1.3.3 Proposition. For any cardinal numbers α, β and γ :

(i) α + β = β + α ;

(ii) α + (β + γ) = (α + β) + γ ;

(iii) α + 0 = α ;

(iv) If α ≤ β then α + γ ≤ β + γ .

Proof. Exercise

A1.3.4 Proposition.

(i) ℵ0 + ℵ0 = ℵ0;

(ii) c + ℵ0 = c;

(iii) c + c = c;

(iv) For any finite cardinal n, n+ ℵ0 = ℵ0 and n+ c = c.

Proof.
(i) The listing 1,−1, 2,−2, . . . , n,−n, . . . shows that the union of the two countably

infinite sets N and the set of negative integers is a countably infinite set.

(ii) Noting that [−2,−1] ∪ N ⊂ R, we see that card [−2,−1] + card N ≤ card R = c. So

c = card [−2,−1] ≤ card ([−2,−1] ∪ N) = card [−2,−1] + card N = c + ℵ0 ≤ c.

(iii) Note that c ≤ c + c = card ((0, 1) ∪ (1, 2)) ≤ card R = c from which the required

result is immediate.

(iv) Observe that ℵ0 ≤ n + ℵ0 ≤ ℵ0 + ℵ0 = ℵ0 and c ≤ n + c ≤ c + c = c, from which the

results follow.

Next we define multiplication of cardinal numbers.
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A1.3.5 Definition. Let α and β be any cardinal numbers and select disjoint

sets A and B such that card A = α and card B = β. Then the product of the

cardinal numbers α and β is denoted by αβ and is equal to card (A×B).

As in the case of addition of cardinal numbers, it is necessary, but routine, to

check in Definition A1.3.5 that αβ does not depend on the specific choice of the

sets A and B.

A1.3.6 Proposition. For any cardinal numbers α, β and γ

(i) αβ = βα ;

(ii) α(βγ) = (αβ)γ ;

(iii) 1.α = α ;

(iv) 0.α = 0;

(v) α(β + γ) = αβ + αγ;

(vi) For any finite cardinal n, nα = α + α + . . . α (n-terms);

(v1i) If α ≤ β then αγ ≤ βγ .

Proof. Exercise

A1.3.7 Proposition.

(i) ℵ0 ℵ0 = ℵ0;

(ii) c c = c;

(iii) cℵ0 = c;

(iv) For any finite cardinal n, nℵ0 = ℵ0 and n c = c.

Outline Proof. (i) follows from Proposition A1.1.16, while (ii) follows from Proposition

A1.2.13. To see (iii), observe that c = c.1 ≤ cℵ0 ≤ c c = c. The proof of (iv) is also

straightforward.
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The next step in the arithmetic of cardinal numbers is to define exponentiation

of cardinal numbers; that is, if α and β are cardinal numbers then we wish to define

α β.

A1.3.8 Definitions. Let α and β be cardinal numbers and A and B sets such

that card A = α and card B = β. The set of all functions f of B into A is denoted

by AB. Further, α β is defined to be card AB.

Once again we need to check that the definition makes sense, that is that αβ

does not depend on the choice of the sets A and B. We also check that if n and

m are finite cardinal numbers, A is a set with n elements and B is a set with m

elements, then there are precisely nm distinct functions from B into A.

We also need to address one more concern: If α is a cardinal number and A is

a set such that card A = α, then we have two different definitions of 2α. The above

definition has 2α as the cardinality of the set of all functions of A into the two point

set {0, 1}. On the other hand, Definition A1.2.10 defines 2α to be card (P(A)). It

suffices to find a bijection θ of {0, 1}A onto P(A). Let f ∈ {0, 1}A. Then f : A→ {0, 1}.
Define θ(f) = f−1(1). The task of verifying that θ is a bijection is left as an exercise.

A1.3.9 Proposition. For any cardinal numbers α, β and γ :

(i) α β+γ = αβαγ ;

(ii) (αβ)γ = αγ βγ ;

(iii) (αβ)
γ

= α(βγ) ;

(iv) α ≤ β implies αγ ≤ βγ ;

(v) α ≤ β implies γα ≤ γ β .

Proof. Exercise

After Definition A1.2.10 we asked three questions. We are now in a position to

answer the second of these questions.



276 APPENDIX 1: INFINITE SETS

A1.3.10 Lemma. ℵ0ℵ0 = c.

Proof. Observe that card NN = ℵ0ℵ0 and card (0, 1) = c. As the function f : (0, 1)→ NN

given by f(0.a1a2 . . . an . . . ) = 〈a1, a2, . . . , an, . . . 〉 is an injection, it follows that c ≤ ℵ0ℵ0.

By the Cantor-Schröder-Bernstein Theorem, to conclude the proof it suffices to

find an injective map g of NN into (0, 1). If 〈a1, a2, . . . , an, . . . 〉 is any element of NN,

then each ai ∈ N and so we can write

ai = . . . ain ai(n−1) . . . ai2 ai1, where for some Mi ∈ N, ain = 0, for all n > Mi [For

example 187 = . . . 0 0 . . . 0 1 8 7 and so if ai = 187 then ai1 = 7, ai2 = 8, ai3=1 and ain = 0,

for n > Mi = 3.] Then define the map g by

g(〈a1, a2, . . . , an, . . . 〉) = 0.a11a12a21a13a22a31a14a23a32a41a15a24a33a42a51a16 . . . .

(Compare this with the proof of Lemma A1.1.13.)

Clearly g is an injection, which completes the proof.

We now state a beautiful result, first proved by Georg Cantor.

A1.3.11 Theorem. 2ℵ0 = c.

Proof. Firstly observe that 2ℵ0 ≤ ℵ0ℵ0 = c, by Lemma A1.3.10. So we have to verify

that c ≤ 2ℵ0. To do this it suffices to find an injective map f of the set [0, 1) into

{0, 1}N. Each element x of [0, 1) has a binary representation x = 0.x1x2 . . . xn . . . , with

each xi equal to 0 or 1. The binary representation is unique except for representations

ending in a string of 1s; for example,

1/4 = 0.0100 . . . 0 · · · = 0.0011 . . . 1 . . . .

Providing that in all such cases we choose the representation with a string of zeros

rather than a string of 1s, the representation of numbers in [0, 1) is unique. We define

the function f : [0, 1) → {0, 1}N which maps x ∈ [0, 1) to the function f(x) : N → {0, 1}
given by f(x)(n) = xn, n ∈ N. To see that f is injective, consider any x and y in

[0, 1) with x 6= y. Then xm 6= ym, for some m ∈ N. So f(x)(m) = xm 6= ym = f(y)(m).

Hence the two functions f(x) : N→ {0, 1} and f(y) : N→ {0, 1} are not equal. As x and

y were arbitrary (unequal) elements of [0, 1), it follows that f is indeed injective, as

required.
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A1.3.12 Corollary. If α is a cardinal number such that 2 ≤ α ≤ c, then αℵ0 = c.

Proof. Observe that c = 2ℵ0 ≤ αℵ0 ≤ cℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c.



Appendix 2: Topology Personalities

The source for material extracted in this appendix is primarily The MacTutor History

of Mathematics Archive [214] and Bourbaki [32]. In fairness all of the material in

this section should be treated as being essentially direct quotes from these sources,

though I have occasionally changed the words slightly, and included here only the

material that I consider pertinent to this book.

René Louis Baire

René Louis Baire was born in Paris, France in 1874. In 1905 he was appointed to

the Faculty of Science at Dijon and in 1907 was promoted to Professor of Analysis.

He retired in 1925 after many years of illness, and died in 1932. Reports on his

teaching vary, perhaps according to his health: “Some described his lectures as very

clear, but others claimed that what he taught was so difficult that it was beyond

human ability to understand.”

Stefan Banach

Stefan Banach was born in Ostrowsko, Austria-Hungary – now Poland – in 1892. He

lectured in mathematics at Lvov Technical University from 1920 where he completed

his doctorate which is said to mark the birth of functional analysis. In his dissertation,

written in 1920, he defined axiomatically what today is called a Banach space. The

name ’Banach space’ was coined by Fréchet. In 1924 Banach was promoted to full

Professor. As well as continuing to produce a stream of important papers, he wrote

textbooks in arithmetic, geometry and algebra for high school. Banach’s Open

Mapping Theorem of 1929 uses set-theoretic concepts which were introduced by

278
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Baire in his 1899 dissertation. The Banach-Tarski paradox appeared in a joint paper

of the two mathematicians (Banach and Alfred Tarski) in 1926 in Fundamenta

Mathematicae entitled Sur la décomposition des ensembles de points en partiens

respectivement congruent. The puzzling paradox shows that a ball can be divided

into subsets which can be fitted together to make two balls each identical to the

first. The Axiom of Choice is needed to define the decomposition and the fact that

it is able to give such a non-intuitive result has made some mathematicians question

the use of the Axiom. The Banach-Tarski paradox was a major contribution to the

work being done on axiomatic set theory around this period. In 1929, together with

Hugo Dyonizy Steinhaus, he started a new journal Studia Mathematica and Banach

and Steinhaus became the first editors. The editorial policy was . . . to focus on

research in functional analysis and related topics. The way that Banach worked

was unconventional. He liked to do mathematical research with his colleagues in

the cafés of Lvov. Stanislaw Ulam recalls frequent sessions in the Scottish Café (cf.

Mauldin [157]): “It was difficult to outlast or outdrink Banach during these sessions.

We discussed problems proposed right there, often with no solution evident even

after several hours of thinking. The next day Banach was likely to appear with

several small sheets of paper containing outlines of proofs he had completed.” In

1939, just before the start of World War II, Banach was elected President of the

Polish Mathematical Society. The Nazi occupation of Lvov in June 1941 meant

that Banach lived under very difficult conditions. Towards the end of 1941 Banach

worked feeding lice in a German institute dealing with infectious diseases. Feeding

lice was to be his life during the remainder of the Nazi occupation of Lvov up to

July 1944. Banach died in 1945.

Luitzen Egbertus Jan Brouwer

Luitzen Egbertus Jan Brouwer was born in 1881 in Rotterdam, The Netherlands.

While an undergraduate at the University of Amsterdam he proved original results on

continuous motions in four dimensional space. He obtained his Master’s degree in

1904. Brouwer’s doctoral dissertation, published in 1907, made a major contribution

to the ongoing debate between Bertrand Russell and Jules Henri Poincaré on the

logical foundations of mathematics. Brouwer quickly found that his philosophical
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ideas sparked controversy. Brouwer put a very large effort into studying various

problems which he attacked because they appeared on David Hilbert’s list of problems

proposed at the Paris International Congress of Mathematicians in 1900. In particular

Brouwer attacked Hilbert’s fifth problem concerning the theory of Lie groups. He

addressed the International Congress of Mathematicians in Rome in 1908 on the

topological foundations of Lie groups. Brouwer was elected to the Royal Academy

of Sciences in 1912 and, in the same year, was appointed extraordinary Professor

of set theory, function theory and axiomatics at the University of Amsterdam; he

would hold the post until he retired in 1951. Bartel Leendert van der Waerden,

who studied at Amsterdam from 1919 to 1923, wrote about Brouwer as a lecturer:

Brouwer came [to the university] to give his courses but lived in Laren. He came only

once a week. In general that would have not been permitted - he should have lived in

Amsterdam - but for him an exception was made. ... I once interrupted him during

a lecture to ask a question. Before the next week’s lesson, his assistant came to

me to say that Brouwer did not want questions put to him in class. He just did not

want them, he was always looking at the blackboard, never towards the students.

Even though his most important research contributions were in topology, Brouwer

never gave courses on topology, but always on – and only on – the foundations of

intuitionism. It seemed that he was no longer convinced of his results in topology

because they were not correct from the point of view of intuitionism, and he judged

everything he had done before, his greatest output, false according to his philosophy.

As is mentioned in this quotation, Brouwer was a major contributor to the theory

of topology and he is considered by many to be its founder. He did almost all

his work in topology early in his career between 1909 and 1913. He discovered

characterisations of topological mappings of the Cartesian plane and a number of

fixed point theorems. His first fixed point theorem, which showed that an orientation

preserving continuous one-one mapping of the sphere to itself always fixes at least

one point, came out of his research on Hilbert’s fifth problem. Originally proved

for a 2-dimensional sphere, Brouwer later generalised the result to spheres in n

dimensions. Another result of exceptional importance was proving the invariance

of topological dimension. As well as proving theorems of major importance in

topology, Brouwer also developed methods which have become standard tools in

the subject. In particular he used simplicial approximation, which approximated
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continuous mappings by piecewise linear ones. He also introduced the idea of the

degree of a mapping, generalised the Jordan curve theorem to n-dimensional space,

and defined topological spaces in 1913. Van der Waerden, in the above quote,

said that Brouwer would not lecture on his own topological results since they did

not fit with mathematical intuitionism. In fact Brouwer is best known to many

mathematicians as the founder of the doctrine of mathematical intuitionism, which

views mathematics as the formulation of mental constructions that are governed by

self-evident laws. His doctrine differed substantially from the formalism of Hilbert and

the logicism of Russell. His doctoral thesis in 1907 attacked the logical foundations

of mathematics and marks the beginning of the Intuitionist School. In his 1908

paper The Unreliability of the Logical Principles Brouwer rejected in mathematical

proofs the Principle of the Excluded Middle, which states that any mathematical

statement is either true or false. In 1918 he published a set theory developed

without using the Principle of the Excluded Middle. He was made Knight in the

Order of the Dutch Lion in 1932. He was active setting up a new journal and he

became a founding editor of Compositio Mathematica which began publication in

1934. During World War II Brouwer was active in helping the Dutch resistance,

and in particular he supported Jewish students during this difficult period. After

retiring in 1951, Brouwer lectured in South Africa in 1952, and the United States

and Canada in 1953. In 1962, despite being well into his 80s, he was offered a post

in Montana. He died in 1966 in Blaricum, The Netherlands as the result of a traffic

accident.

Maurice Fréchet

Maurice Fréchet was born in France in 1878 and introduced the notions of metric

space and compactness (see Chapter 7) in his dissertation in 1906. He held positions

at a number of universities including the University of Paris from 1928–1948. His

research includes important contributions to topology, probability, and statistics. He

died in 1973.
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Felix Hausdorff

One of the outstanding mathematicians of the first

half of the twentieth century was Felix Hausdorff. He

did ground-breaking work in topology, metric spaces,

functional analysis, Lie algebras and set theory. He

was born in Breslau, Germany – now Wroc law, Poland

– in 1868. He graduated from, and worked at,

University of Leipzig until 1910 when he accepted a

Chair at the University of Bonn. In 1935, as a Jew, he was forced to leave his

academic position there by the Nazi Nuremberg Laws. He continued to do research

in mathematics for several years, but could publish his results only outside Germany.

In 1942 he was scheduled to go to an internment camp, but instead he and his wife

and sister committed suicide.

Wac law Sierpiński

Wac law Sierpiński was born in 1882 in Warsaw, Russian Empire – now Poland. Fifty

years after he graduated from the University of Warsaw, Sierpiński looked back at

the problems that he had as a Pole taking his degree at the time of the Russian

occupation: . . . we had to attend a yearly lecture on the Russian language. . . . Each

of the students made it a point of honour to have the worst results in that subject.

. . . I did not answer a single question . . . and I got an unsatisfactory mark. ... I passed

all my examinations, then the lector suggested I should take a repeat examination,

otherwise I would not be able to obtain the degree of a candidate for mathematical

science. . . . I refused him saying that this would be the first case at our University

that someone having excellent marks in all subjects, having the dissertation accepted

and a gold medal, would not obtain the degree of a candidate for mathematical

science, but a lower degree, the degree of a ‘real student’ (strangely that was what

the lower degree was called) because of one lower mark in the Russian language.

Sierpiński was lucky for the lector changed the mark on his Russian language course

to ‘good’ so that he could take his degree. Sierpiński graduated in 1904 and worked

as a school teacher of mathematics and physics in a girls’ school. However when
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the school closed because of a strike, Sierpiński went to Krakóv to study for his

doctorate. At the Jagiellonian University in Krakóv he received his doctorate and

was appointed to the University of Lvov in 1908. In 1907 Sierpiński for the first time

became interested in set theory. He happened across a theorem which stated that

points in the plane could be specified with a single coordinate. He wrote to Tadeusz

Banachiewicz asking him how such a result was possible. He received a one word reply

(Georg) ‘Cantor’. Sierpiński began to study set theory and in 1909 he gave the first

ever lecture course devoted entirely to set theory. During the years 1908 to 1914,

when he taught at the University of Lvov, he published three books in addition to

many research papers. These books were The theory of Irrational numbers (1910),

Outline of Set Theory (1912) and The Theory of Numbers (1912). When World War

I began in 1914, Sierpiński and his family happened to be in Russia. Sierpiński was

interned in Viatka. However Dimitri Feddrovich Egorov and Nikolai Nikolaevich Luzin

heard that he had been interned and arranged for him to be allowed to go to Moscow.

Sierpiński spent the rest of the war years in Moscow working with Luzin. Together

they began the study of analytic sets. When World War I ended in 1918, Sierpiński

returned to Lvov. However shortly after he was accepted a post at the University

of Warsaw. In 1919 he was promoted to Professor spent the rest of his life there.

In 1920 Sierpiński, together with his former student Stefan Mazurkiewicz, founded

the important mathematics journal Fundamenta Mathematica. Sierpiński edited the

journal which specialised in papers on set theory. From this period Sierpiński worked

mostly in set theory but also on point set topology and functions of a real variable.

In set theory he made important contributions to the axiom of choice and to the

continuum hypothesis. He studied the Sierpiński curve which describes a closed

path which contains every interior point of a square – a “space-filling curve”. The

length of the curve is infinity, while the area enclosed by it is 5/12 that of the

square. Two fractals – Sierpiński triangle and Sierpiński carpet – are named after

him. Sierpiński continued to collaborate with Luzin on investigations of analytic

and projective sets. Sierpiński was also highly involved with the development of

mathematics in Poland. In 1921 He had been honoured with election to the Polish

Academy was made Dean of the faculty at the University of Warsaw. In 1928 he

became Vice-Chairman of the Warsaw Scientific Society and, was elected Chairman

of the Polish Mathematical Society. In 1939 life in Warsaw changed dramatically
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with the advent of World War II. Sierpiński continued working in the ‘Underground

Warsaw University’ while his official job was a clerk in the council offices in Warsaw.

His publications continued since he managed to send papers to Italy. Each of these

papers ended with the words: The proofs of these theorems will appear in the

publication of Fundamenta Mathematica which everyone understood meant ‘Poland

will survive’. After the uprising of 1944 the Nazis burned his house destroying his

library and personal letters. Sierpiński spoke of the tragic events of the war during a

lecture he gave in 1945. He spoke of his students who had died in the war: In July

1941 one of my oldest students Stanislaw Ruziewicz was murdered. He was a retired

professor of Jan Kazimierz University in Lvov . . . an outstanding mathematician and

an excellent teacher. In 1943 one of my most distinguished students Stanislaw Saks

was murdered. He was an Assistant Professor at Warsaw University, one of the

leading experts in the world in the theory of the integral. . . In 1942 another student

of mine was Adolf Lindenbaum was murdered. He was an Assistant Professor at

Warsaw University and a distinguished author of works on set theory. After listing

colleagues who were murdered in the war such as Juliusz Pawel Schauder and others

who died as a result of the war such as Samuel Dickstein and Stanislaw Zaremba,

Sierpiński continued: Thus more than half of the mathematicians who lectured in

our academic schools were killed. It was a great loss for Polish mathematics which

was developing favourably in some fields such as set theory and topology . . . In

addition to the lamented personal losses Polish mathematics suffered because of

German barbarity during the war, it also suffered material losses. They burned down

Warsaw University Library which contained several thousand volumes, magazines,

mathematical books and thousands of reprints of mathematical works by different

authors. Nearly all the editions of Fundamenta Mathematica (32 volumes) and ten

volumes of Mathematical Monograph were completely burned. Private libraries of

all the four Professors of mathematics from Warsaw University and also quite a

number of manuscripts of their works and handbooks written during the war were

burnt too. Sierpiński was the author of the incredible number of 724 papers and

50 books. He retired in 1960 as Professor at the University of Warsaw but he

continued to give a seminar on the theory of numbers at the Polish Academy of

Sciences up to 1967. He also continued his editorial work, as Editor-in-Chief of Acta

Arithmetica which he began in 1958, and as an editorial board member of Rendiconti
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dei Circolo Matimatico di Palermo, Compositio Mathematica and Zentralblatt für

Mathematik. Andrzej Rotkiewicz, who was a student of Sierpiński’s wrote: Sierpiński

had exceptionally good health and a cheerful nature. . . . He could work under any

conditions. Sierpiński died in 1969.



Appendix 3: Chaos Theory and
Dynamical Systems

Introduction

In this Appendix we give but a taste of dynamical systems and chaos theory. Most

of the material is covered by way of exercises. Some parts of this Appendix require

some knowledge of calculus. If you have not studied calculus you can skip this

Appendix altogether or merely skim through it to get a flavour.

A3.1 Iterates and Orbits

A3.1.1 Definition. Let S be a set and f a function mapping the set S into

itself; that is, f : S → S. The functions f 1, f 2, f 3, . . . , fn, . . . are inductively defined

as follows:

f 1 : S → S is given by f 1(x) = f(x); that is f 1 = f ;

f 2 : S → S is given by f 1(x) = f(f(x)); that is f 2 = f ◦ f ;

f 3 : S → S is given by f 3(x) = f(f(f(x))); that is, f 3 = f ◦ f ◦ f = f ◦ f 2;

and if fn−1 is known then

fn : S → S is defined by fn(x) = f(fn−1(x)); that is, fn = f ◦ fn−1.
Each of the the functions f 1, f 2, f 3, . . . , fn, . . . is said to be an iterate of the function

f .

Note that fn+m = fn ◦ fm, for n,m ∈ N.

286



287

A3.1.2 Definitions. Let f be a function mapping the set S into itself. If

x0 ∈ S, then the sequence x0, f
1(x0), f

2(x0), . . . , f
n(x0), . . . is called the orbit of the

point x0. The point x0 is called the seed of the orbit.

There are several possibilities for orbits, but the most important kind is a fixed

point.

A3.1.3 Definition. Let f be a mapping of a set S into itself. A point a ∈ S
is said to be a fixed point of f if f(a) = a.

A3.1.4 Example. Graphically, we can find all fixed points of a function f : R→ R,

simply by sketching the curve y = f(x) and seeing where it intersects the line y = x.

At points of interesection, and only for these points, do we have f(x) = x.

�
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A3.1.5 Example.

�

Exercises A3.1

1. Let the functions f : R → R, g : R → R and h : R → R be given by f(x) = x(1 − x),

g(x) = x sinx, and h(x) = x2 − 2, for all x ∈ R.

(a) Evaluate f 1(x) and f 2(x).

(b) Evaluate g2(x) and g2(1).

(c) Evaluate h2(x) and h3(x).

2. (a) If C(x) = cos(x), use your calculator [in radians to 4 decimal places]

to compute C10(123), C20(123), C30(123), C40(123), C50(123), C60(123), C70(123),

C80(123), C90(123), C100(123), C100(500) and C100(1). What do you notice?

(b) If S(x) = sin(x), use your calculator to compute S10(123), S20(123), S30(123),

S40(123), S50(123), S60(123), S70(123), S80(123), S90(123), S100(123). What do you

notice?
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3. Let the function h : R → R be given by h(x) = x2, for all x ∈ R. Calculate the

orbits for the function h of each of the following seeds: 0, 1, −1, 0.5, 0.25.

4. Find all the fixed points of the function f in Exercise 1 above.

5. Let f : R→ R be given by f(x) = x3− 3x. Find all the fixed points of the function

f .

A3.2 Fixed Points and Periodic Points

A3.2.1 Definition. Let f be a mapping of a set S into itself. A point a ∈ S is

said to be eventually fixed if a is not a fixed point, but some point on the orbit

of a is a fixed point.

A3.2.2 Definitions. Let f be a function mapping the set S into itself. If

x ∈ S, then the point x ∈ S is said to be periodic if there exists a positive integer

p such that fp(x) = x. If m is the least n ∈ N such that fn(x) = x, then m is called

the prime period of x.

A3.2.3 Definition. Let f be a function mapping the set S into itself. Then

the point x0 ∈ S is said to be eventually periodic if x0 is not periodic itself, but

some point in the orbit of x0 is periodic.

A3.2.4 Remark. We have seen that points may be fixed, eventually fixed,

periodic, or eventually periodic. However, it is important to realize that most points

are not in any of these classes. �

Exercises A3.2

1. Verify that the point −1 is an eventually fixed point of f(x) = x2.



290 APPENDIX 3: CHAOS THEORY AND DYNAMICAL SYSTEMS

2. Find the eventually fixed points of the function f : R→ R given by f(x) = |x|.

3. . If f : R → R is given by f(x) = −3
2
x2 + 5

2
x + 1, verify that f(0) = 1, f(1) = 2, and

f(2) = 0, so that the orbit of 0 is 0, 1, 2, 0, 1, 2, . . . . Hence 0 is a periodic point

of prime period 3.

4. Prove that if x is a periodic point of prime period m of the function f : S → S,

then the orbit of x has precisely m points.

[Hint: Firstly write down the orbit of the point x and then deduce that it has at

most m points in it. Next suppose that there are fewer than m distinct points

in the orbit of x and show that this leads to a contradiction to x having period

m.]

5. Let f : R → R be given by f(x) = x2 − 1. Verify that the points
√

2 and 1 are

eventually periodic.

6. Consider the function f : R→ R given by f(x) = |1− x|.

(i) Find all of the fixed points of f .

(ii) If m is an odd integer, what can you say about the orbit of m?

(iii) If m is an even integer, what can you say about the orbit of m?

A3.3 Phase Portraits, Attracting and Repelling Fixed Points

We wish to study dynamical systems, that is processes in motion. Such processes

include for example the motion of planets, but other systems to which this theory

is applied include the weather and population growth. Some even feel the study of

dynamical systems will help us to understand stock market movements.

A very good method for depicting all orbits of a dynamical system is the phase

portrait of the system. This is a picture on the real line of the orbits.

In the phase portrait we represent fixed points by solid dots and the dynamics

along orbits by arrows.
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A3.3.1 Example. if f(x) = x3, then the fixed points are 0, 1, and −1. If |x0| < 1

then the orbit of x0 is a sequence which tends to 0; we write this fn(x0) → 0. If

|x0| > 1, then the orbit is a sequence which diverges to ∞; that is, fn(x0)→ ±∞. The

phase portrait is given below:

�

A3.3.2 Definition. Let a be a fixed point of the function f : R → R. The

point a is said to be an attracting fixed point of f if there is an open interval I

containing a such that if x ∈ I, then fn(x)→ a as n→∞.

A3.3.3 Definition. Let a be a fixed point of the function f : R → R. The

point a is said to be a repelling fixed point of f if there is is an open interval I

containing a such that if x ∈ I with x 6= a then there is an integer n such that

fn(x) /∈ I.

A3.3.4 Example. Observe that 0 is an attracting fixed point of f(x) = x3, while

−1 and 1 are repelling fixed points of this function. �

A3.3.5 Definition. A fixed point which is neither repelling nor attracting is

called a neutral fixed point.
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Exercises A3.3

1. Verify that the picture below is a correct phase portrait of f(x) = x2 and identify

whether the fixed points are repelling, attracting or neutral.

2. Do phase portraits for each of the following functions f : R → R. Determine

whether any fixed points are attracting, repelling or neutral.

(i) f(x) = −x3.

(ii) f(x) = 4x.

(iii) f(x) = x− x2.

(iv) f(x) = sinx.

3. Let D : [0, 1)→ R be the doubling function defined by

D(x) =

{
2x, 0 ≤ x < 1

2

2x− 1, 1
2
≤ x < 1.

[We could define D more succinctly by D(x) = 2x (mod 1).]

(i) Verify that the point 1
99

is a periodic point and find its prime period.
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(ii) Explain why 1
n

is either a periodic point or an eventually periodic point for

each positive integer n.

(iii) Explain why 1
2n

is eventually fixed, for every positive integer n.

(iv) Write an explicit formula for D2(x) and D3(x), for 0 ≤ x < 1.

(v) Find all fixed points of D2 and D3.

4. Do a phase portrait of the function f(x) = 2x(1 − x). [This is an example of

a so-called logistic function which arises naturally in the study of population

growth and ecology.]

A3.4 Graphical Analysis

A3.4.1 Remark. We have used phase portraits to determine whether a point x0

is fixed, periodic, eventually periodic etc. This method is particularly useful when

we are dealing with more than one dimension. But for functions f : R → R, we can

use graphical analysis. This is done as follows.

Given a function f : R → R, we are asked to determine the nature of the point

x0 ∈ R. What we do is find the orbits of points a near to x0. We begin by sketching

the function f and superimposing on its graph the graph of the line y = x.

To find the orbit of the point a, plot the point (a, a). Next draw a vertical line

to meet the graph of f at the point (a, f(a)). Then draw a horizontal line to meet

the line y = x at the point f(a), f(a). Now draw a vertical line to meet the graph of f

at the point (f(a), f 2(a)). Once again draw a horizontal line to meet the line y = x at

the point (f 2(a), f 2(a)). We continue this process and the points a, f(a), f 2(a), f 3(a),

. . . form the orbit of a. �

A3.4.2 Example. We will now consider the function f : R→ R, given by f(x) = x4.

We sketch the curve y = x4 and superimpose the line y = x. To find the fixed points

we can solve f(x) = x; that is, solve x4 = x.

It is readily seen that the fixed points are 0 and 1. We will consider points near

each of these and do a graphical analysis, as described above, to find the orbits of
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points near 0 and near 1. The analysis in the diagram below shows what happens

to points near to 1.

�

The next examples show graphical analyses of two more functions to indicate

how different these can be for different functions. You will then get experience doing

graphical analysis yourself.
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A3.4.3 Example.

In the above figure f(x) = sinx+ x+ 2.

�
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A3.4.4 Example.

In the above figure f(x) = x2 − 1.5.

�
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Exercises A3.4

1. Determine by graphical analysis whether each fixed point of f(x) = x4 is an

attracting fixed point, a repelling fixed point, or a neutral fixed point.

2. Use graphical analysis to describe the orbits of the function f(x) = 2x and to

determine the type of fixed point it has.

3. Find the fixed points of the function f(x) =
√
x and use graphical analysis to

determine their nature (that is, whether they are attracting, repelling, or neutral

fixed points).

4. Use graphical analysis to describe the fate of all orbits of the function f(x) =

x− x2.

5. Use graphical analysis to describe the fate of all orbits of the function f(x) = ex.

6. Let f(x) = |x − 2|. Use graphical analysis to display a variety of orbits of f . It

may help to use different colours; for example, one colour for periodic orbits,

another colour for eventually periodic orbits and yet another for eventually fixed

orbits.

7. Let D : [0, 1)→ [0, 1) be the doubling function given by D(x) = 2x mod(1).

(i) Prove that x ∈ [0, 1) is a rational number if and only if x is either a periodic

point or an eventually periodic point of D.

(ii) Verify that the set of all periodic points of D is

P =
∞⋃
n=1

{
0,

1

2n − 1
,

2

2n − 1
,

3

2n − 1
, . . . ,

2n − 2

2n − 1

}
.

[Hint. It may be helpful to write down a formula for Dn and to calculate

the points of intersection of the graph of Dn with the line y = x.]

(iii) Verify that the set of periodic points of D is dense in [0, 1). [We shall see

that this is one of the two conditions required to show that the dynamical

system ([0, 1), D) is chaotic.]
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A3.5 Bifurcation

A3.5.1 Remark. It is natural to ask if every continuous function f : S → R has

a fixed point, where S ⊆ R? The answer is easily seen to be no . For example, if

f : R→ R is given by f(x) = x+1, then obviously there are no fixed points. Therefore it

is remarkable that we can guarantee the existence of fixed points of all continuous

functions of [0, 1] into itself. More precisely, we have already seen and proved the

following corollary:

5.2.11 Corollary. (Fixed Point Theorem) Let f be a continuous mapping

of [0, 1] into [0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z.

Of course the above corollary does not help us to find the fixed point, rather it

tells us only that at least one fixed point exists.

It would also be nice to have a simple way of establishing whether a particular

fixed point is attracting, repelling, or neutral. For well-behaved functions Theorems

A3.5.2and A3.5.3 will be very useful in this regard. �

A3.5.2 Theorem. Let S be an interval in R and a be a point in the interior

of S. Further, let a be a fixed point of a function f : S → R. If f is differentiable

at the point a and |f ′(a)| < 1, then a is an attracting fixed point of f .

Proof. As |f ′(a)| < 1, we have |f ′(a)| < k < 1, where k is the postive real number

given by k = |f ′(a)|+1
2

.

By definition, f ′(a) = lim
x→a

f(x)−f(a)
x−a . So for x “close enough” to a, we have

|f(x)−f(a)
x−a | ≤ k; more precisely, there exists an interval I = [a − δ, a + δ], for some δ > 0,

such that |f(x)−f(a)
x−a | ≤ k, for all x ∈ I with x 6= a.

Since a is a fixed point, f(a) = a. So

|f(x)− a| ≤ k|x− a| , for all x ∈ I. (1)
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This implies that f(x) is closer to a than x is, and so f(x) is in I too. So we can

repeat the same argument with f(x) replacing x and obtain

|f 2(x)− a| ≤ k|f(x)− a| , for all x ∈ I. (2)

From (1) and (2), we obtain

|f 2(x)− a| ≤ k2|x− a| , for all x ∈ I. (3)

Noting that |k| < 1 implies that k2 < 1, we can repeat the argument again. By

mathematical induction we obtain,

|fn(x)− a| ≤ kn|x− a| , for all x ∈ I and n ∈ N. (4)

As |k| < 1, lim
n→∞

kn = 0. By (4) this implies that fn(x) → a as n → ∞. And we have

proved that a is an attracting fixed point. �

The proof of Theorem A3.5.3 is analogous to that of Theorem A3.5.2 and so

is left as an exercise.

A3.5.3 Theorem. Let S be an interval in R and a an interior point of S.

Further, let a be a fixed point of a function f : S → R. If f is differentiable at the

point a and |f ′(a)| > 1, then a is a repelling fixed point of f .

A3.5.4 Remark. It is important to note that Theorem A3.5.2 and Theorem

A3.5.3 do not give necessary and sufficient conditions. Rather they say that if f ′

exists and |f ′(x)| < 1 in an interval containing the fixed point a, then a is an attracting

fixed point; and if |f ′(x)| > 1 in an interval containing the fixed point a, then a is a

repelling fixed point. If neither of these conditions is true we can say nothing! For

example, it is possible that f is not differentiable at a but f still has an attracting fixed

point at a. (This is the case, for example for f(x) =

{
x2 for x ∈ Q
−x2 for x ∈ R \Q,

which

has 0 as an attracting fixed point.)

Even if f is differentiable at a, Theorems A3.1.17 and A3.1.18 tell us absolutely

nothing if f ′(a) = 1. Consider f(x) = sin x. This function is differentiable at 0 with

f ′(0) = cos(0) = 1. So Theorems A3.1.17 and A3.1.18 tell us nothing. However, 0 is

an attracting fixed point of f . �
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A3.5.5 Remark. One of the most important family of functions in this theory is

the family of quadratic maps Qc : R → R, where c ∈ R, and Qc(x) = x2 + c. For each

different value of c we get a different quadratic function. But the surprising feature

is that the dynamics of Qc changes as c changes. The following theorem indicates

this. We leave the proof of the theorem as an exercise.

A3.5.6 Theorem. (The First Bifurcation Theorem) Let Qc be the

quadratic function for c ∈ R.

(i) If c > 1
4
, then all orbits tend to infinity; that is, for all x ∈ R, (Qc)

n(x)→∞ as

n→∞.

(ii) If c = 1
4
, then Qc has precisely one fixed point at x = 1

2
and this is a neutral

fixed point.

(iii) If c < 1
4
, then Qc has two fixed points a+ = 1

2
(1+
√

1− 4c) and a− = 1
2
(1−
√

1− 4c).

(a) The point a+ is always repelling.

(b) If −3
4
< c < 1

4
, then a− is attracting.

(c) If c < −3
4
, then a− is repelling.

A3.5.7 Remark. The term bifurcation means a division into two. We see in the

above theorem that for c > 1
4

there are no fixed points; for c = 1
4

there is precisely

one fixed point; but for c < 1
4

this fixed point splits into two — one at a+ and one at

a−. We will say more about bifurcation presently.

A3.5.8 Definition. Let f be a function mapping the set S into itself. If the

point x ∈ S has prime period m, then the orbit of x is {x, f(x), . . . , fm−1(x)} and

the orbit is called an m-cycle.
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A3.5.9 Definitions. Let a be a periodic point of a function f : S → S of prime

period m, for some m ∈ N. [So a is clearly a fixed point of fm : S → S.] Then a

is said to be an attracting periodic point of f if it is an attracting fixed point

of fm. Similarly a is said to be a repelling periodic point of f if it is a repelling

fixed point of fnm.

The following theorem is left as an exercise.

A3.5.10 Theorem. (The Second Bifurcation Theorem) Let Qc be the

quadratic function for c ∈ R.

(a) If −3
4
≤ c < 1

4
, then Qc has no 2-cycles.

(b) If −5
4
< c < −3

4
, then Qc has an attracting 2-cycle, {q−, q+}, where q+ =

1
2
(−1 +

√
−4c− 3) and q− = 1

2
(−1−

√
−4c− 3).

(c) If c < −5
4
, then Qc has a repelling 2-cycle {q−, q+}.

A3.5.11 Remark. In The Second Bifurcation Theorem we saw a new kind of

bifurcation called a period doubling bifurcation. As c decreases below −3
4
, two things

happen: the fixed point a− changes from attracting to repelling and a new 2-cycle,

{q−, q+} appears. Note that when c = −3
4
, we have q− = q+ = −1

2
= a−. So these two

new periodic points originated at a− when c = −3
4
.

We will have more to say about period doubling bifurcations when we consider

one-parameter families of functions (such as Qc : R → R, which depends on the

parameter c, and the logistic functions fλ(x) = λx(1 − x), which depend on the

parameter λ). �
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Exercises A3.5

1. Prove Theorem A3.5.3.

2. Using Theorems A3.5.2 and A3.5.3 determine the nature of the fixed points of

each of the following functions:

(i) f1(x) = 3x.

(ii) f2(x) = 1
4x

.

(iii) f3(x) = x3.

3. Prove The First Bifurcation Theorem A3.5.6.
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4. Let x be a periodic point of period 2 of the quadratic map Qc. Prove that

(i) Prove that x4 + 2cx2 − x+ c2 + c = 0.

(ii) Why do the points a+ = 1
2
(1 +

√
1− 4c) and a− = 1

2
(1 −

√
1− 4c) satisfy the

equation in (i)?

[Hint. Use The First Bifurcation Theorem.]

(iii) Using (ii), show that if x is a periodic point of prime period 2 of Qc, then

x2 + x+ c+ 1 = 0.

(iv) Deduce that if x is a periodic point of prime period 2, then x is one of the

points

q+ = 1
2
(−1 +

√
−4c− 3) and q− = 1

2
(−1−

√
−4c− 3).

(v) Deduce that Qc has a 2-cycle if and only if c < −3
4
. [Be careful to eliminate

the case c = −3
4
.]

(vi) Using Theorem A3.1.17 show that the quadratic function Qc has q− and q+

as attracting periodic points if |dQ
2
c(x)
dx
| = |4x3 + 4cx| < 1 at x = q− and x = q+.

(vii) Noting that q− and q+ both satisfy the equation x2 + x+ c+ 1 = 0 (from (iii)

and (iv) above), show that

4x3 + 4cx = 4x(x2 + c) = 4x(−1− x) = 4(c+ 1).

(viii) Using (vi), (vii), and (v) show that for −5
4
< c < −3

4
, q+ and q− are attracting

periodic points of Qc.

(ix) Similarly show that for c < −5
4
, q+ and q− are repelling periodic points.

(x) Deduce the Second Bifurcation Theorem A3.5.10 from what has been

proved above in this exercise.
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A3.6 The Magic of Period 3: Period 3 Implies Chaos

A3.6.1 Remark. In 1964, the Soviet mathematician A.N. Sarkovskii published

the paper (Sarkovskii [201]) in Russian in a Ukranian journal. There he proved

a remarkable theorem which went unnoticed. In 1975 James Yorke and T-Y. Li

published the paper (Yorke and Li [233]) in the American Mathematical Monthly.

Even though the term “chaos” had previously been used in scientific literature, it

was this paper that initiated the popularisation of the term. The main result of

the paper, The Period Three Theorem, is astonishing, but is a very special case of

Sarkovskii’s Theorem, proved a decade earlier. The discussion here of The Period

Three Theorem is based on the presentation by Robert L. Devaney in his book

(Devaney [60]).

A3.6.2 Theorem. (The Period Three Theorem) Let f : R → R be a

continuous function. If f has a periodic point of prime period 3, then for each

n ∈ N it has a periodic point of prime period n.

Proof. Exercises A3.6 #1–4.. �
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A3.6.3 Remark. The Period Three Theorem is remarkable. But as stated earlier,

a much more general result is true. It is known as Sarkovskii’s Theorem. We shall

not give a proof, but simply point out that the proof is of a similar nature to that

above.

To state Sarkovskii’s Theorem we need to order the natural numbers is the

following curious way known as Sarkovskii’s ordering of the natural numbers:

3, 5, 7, 9, . . .

2 · 3, 2 · 5, 2 · 7, . . .

22 · 3, 22 · 5, 22 · 7 . . .

23 · 3, 23 · 5, 23 · 7 . . .
...

. . . , 2n, 2n−1, . . . , 23, 22, 21, 1.

A3.6.4 Theorem. (Sarkovskii’s Theorem) Let f : R → R be a continuous

function. If f has a periodic point of prime period n and n precedes k in

Sarkovskii’s ordering of the natural numbers, then f has a periodic point of

prime period k.
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A3.6.5 Remarks. (i) Firstly observe that as 3 appears first in Sarkovskii’s

ordering of the natural numbers, Sarkovskii’s Theorem implies The Period Three

Theorem.

(ii) Secondly note that as the numbers of the form 2n constitute the tail of

Sarkovskii’s ordering of the natural numbers, it follows that if f has only a

finite number of periodic points, then they must all be of the form 2n.

(iii) Thirdly note that Sarkovskii’s Theorem applies to continuous functions from

R into itself. If R is replaced by other spaces the theorem may become

false. However, R can be replaced by any closed interval [a, b]. To see this

let f : [a, b] → [a, b] be a continuous function. Then extend f to a continuous

function f ′ : R → R by defining f ′(x) = f(x), for x ∈ [a, b]; f ′(x) = f(a) if x < a; and

f ′(x) = f(b), if x > b. Then the Theorem for f can be deduced from the Theorem

for f ′.

It is remarkable that the converse of Sarkovskii’s Theorem is also true but we

shall not prove it here. See (Dunn [71])

3A.6.6 Theorem. (Converse of Sarkovskii’s Theorem) Let n ∈ N and l

precede n in Sarkovskii’s ordering of the natural numbers. Then there exists a

continuous function f : R→ R which has a periodic point of prime period n, but

no periodic point of prime period l.

A3.6.7 Remark. From the Converse of Sarkovskii’s Theorem it follows, for

example, that there exists a continuous function of R into itself which has a periodic

point of prime period 6, and hence a periodic point of prime period of each even

number, but no periodic point of odd prime period except 1.

Exercises A3.6

1. Let f be a continuous mapping of an interval I into R. Using Propositions 4.3.5

and 5.2.1, prove that f(I) is an interval.
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2. Use the Weierstrass Intermediate Value Theorem 5.2.9 to prove the following

result:

Proposition A. Let a, b ∈ R with a < b and f : I = [a, b]→ R a continuous function.

If f(I) ⊇ I, prove that f has a fixed point in I.

[Hints. (i) Show that there exists points s, t ∈ [a, b] such that f(s) = c ≤ a ≤ s

and f(t) = d ≥ b ≥ t.

(ii) Put g(x) = f(x)−x and observe that g is continuous and g(s) ≤ 0 and g(t) ≥ 0.

(iii) Apply the Weierstrass Intermediate Value Theorem to g.]

3. Use the Weierstrass Intermediate Value Theorem 5.2.9 to prove the following

result:

Propostion B. Let a, b ∈ R with a < b. Further, let f : [a, b]→ R be a continuous

function and f([a, b]) ⊇ J = [c, d], for c, d ∈ R with c < d. Prove that there is a

subinterval I ′ = [s, t] of I = [a, b] such that f(I ′) = J.

[Hints. (i) Verify that f−1({c}) and f−1({d}) are non-empty closed sets.

(ii) Using (i) and Lemma 3.3.2 (above) verify that there is a largest number s

such that f(s) = c.

(ii) Consider the case that there is some x > s such that f(x) = d. Verify that

there is a smallest number such that t > s and f(t) = d.

(iii) Suppose that there is a y ∈ [s, t] such that f(y) < c. Use the Weierstrass

Intermediate Value Theorem to obtain a contradiction.

(iv) Show also in a similar fashion that there is no z ∈ [s, t]. such that f(z) > d.

(v) Deduce that, under the condition in (ii), f([s, t]) = [c, d] = J, as required.

(vi) Now consider the case that there is no x > s such that f(x) = d. Let s′ be

the largest number such that f(s′) = d. Clearly s′ < s. Let t′ be the smallest

number such that t′ > s′ and f(t′) = c. Verify that f([s′, t′]) = [c, d] = J, as

required.]
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4. Let f be as in The Period Three Theorem A3.6.2. So there exists a point a

in R of prime period 3. So f(a) = b, f(b) = c, and f(c) = a, where a 6= b, a 6= c,

and b 6= c. We shall consider the case a < b < c. The other cases are similarly

handled. Put I0 = [a, b] and I1 = [b, c].

(i) Using Exercise 1 above, verify that f(I0) ⊇ I1.

(ii) Using Exercise 1 above again, verify that f(I1) ⊇ I0 ∪ I1.

(iii) Deduce from (ii) and Proposition B above that there is a closed interval

A1 ⊆ I1, such that f(A1) = I1.

(iv) Noting that f(A1) = I1 ⊇ A1, use Proposition B above again to show there

exists a closed interval A2 ⊆ A1 such that f(A2) = A1.

(v) Observe that A2 ⊆ A1 ⊆ I1 and f 2(A2) = I1.

(vi) Use mathematical induction to show that for n ≥ 3 there are closed

intervals A1, A2, . . . , An−2 such that

An−2 ⊆ An−3 ⊆ · · · ⊆ A2 ⊆ A1 ⊆ I1

such that f(Ai) = Ai−1, i = 2, . . . , n− 2, and f(A1) = I1.

(vii) Deduce from (vi) that fn−2(An−2) = I1 and An−2 ⊆ I1.

(viii) Noting that f(I0) ⊇ I1 ⊇ An−2, show that there is a closed interval An−1 ⊆ I0

such that f(An−1) = An−2.

(ix) Finally, using the fact that f(I1) ⊃ I0 ⊇ An−1, show that there is a closed

interval An ⊂ I1 such that f(An) = An−1.

(x) Putting the above parts together we see

An
f−→An−1

f−→ . . .
f−→A1 −→ I1

with f(Ai) = Ai−1 and fn(An) = I1. Use the fact that An ⊂ I1 and Proposition

A to show that there is a point x0 ∈ An such that fn(x0) = x0.

(xi) Observe from (x) that the point x0 is a periodic point of f of period n. [We

have yet to show that x0 is of prime period n.]

(xii) Using the fact that f(x0) ∈ An−1 ⊆ I0 and f i(x0) ∈ I1, for i = 2, . . . , n, and

I0 ∩ I1 = {b}, show that x0 is of prime period n. [Note the possibility that

f(x0) = b needs to be eliminated. This can be done by observing that

f 3(x0) ∈ I1, but f 2(b) = a /∈ I1.]
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(xiii) From (xi) and (xii) and (vi), deduce that f has a periodic point of prime

period n for every n ≥ 3. [We deal with the cases n = 1 and n = 2 below.]

(xiv) Use Proposition A and the fact that f(I1) ⊇ I1 to show there is a fixed point

of f in I1; that is there exists a periodic point of prime period 1.

(xv) Note that f(I0) ⊇ I1 and f(I1) ⊇ I0. Using Proposition B show that there is

a closed interval B ⊆ I0 such that f(B) = I1. Then, observe that f 2(B) ⊇ I0,

and from Proposition A, deduce that there exists a point x1 ∈ B such that

f 2(x1) = x1. Verify that x1 ∈ B ⊆ I0 = [a, b] while f(x1) ∈ f(B) = I1 = [b, c] and

x1 6= b. Deduce that x1 is a periodic point of prime period 2 of f . This

completes the proof of The Period Three Theorem.

5. (i) Show that The Period Three Theorem would be false if R were replaced

by R2. [Hint. Consider a rotation about the origin.]

(ii) Show that The Period Three Theorem would be false if R were replaced

by Rn, n ≥ 2.

(iii) Show that The Period Three Theorem would be false if R were replaced

by S1, where S1 is the circle centred at the origin of radius 1 in R2.

6. Why is the Sarkovskii Theorem true when R is replaced by the open interval

(a, b), for a, b ∈ R with a < b? [Hint. It’s easy to deduce from Sarkovskii’s

Theorem for R.]

A3.7 Chaotic Dynamical Systems

A3.7.1 Remarks. Today there are literally thousands of published research papers

and hundreds of books dealing with chaotic dynamical systems. These are related

to a variety of disciplines including art, biology, economics, ecology and finance. It

would be folly to try to give a definitive history of chaos, a term used in the book of

Genesis in the Bible and Hun-Tun (translated as chaos) in Taoism (Girardot [96]),

a philospohical tradition dating back 2,200 years in China to the Han Dynasty. Here

we focus on the twentieth century.

It would also be folly to try here to give the “correct” definition of the

mathematical concept of chaos. Rather, we shall give one reasonable definition,
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noting there are others which are inequivalent. Indeed some mathematicians assert

that no existing definition captures precisely what we want chaos to be.

As stated earlier, the 1975 paper of Yorke and Li triggered widespread interest in

chaotic dynamical systems. However the previous year the Australian scientist Robert

M. May, later Lord Robert May and President of the prestigious Royal Society of

London published the paper (May [158]) in which he stated “Some of the simplest

nonlinear difference equations describing the growth of biological populations with

nonoverlapping generations can exhibit a remarkable spectrum of dynamical behavior,

from stable equilibrium points, to stable cyclic oscillations between 2 population

points, to stable cycles with 4, 8, 16, . . . points, through to a chaotic regime

in which (depending on the initial population value) cycles of any period, or even

totally aperiodic but bounded population fluctuations, can occur.”

Jules Henri Poincaré (1854-1912), one of France’s greatest mathematicians,

is acknowledged as one of the founders of a number of fields of mathematics

including modern nonlinear dynamics, ergodic theory, and topology. His work laid

the foundations for chaos theory. He stated in his 1903 book, a translated version

of which was republished in 2003 (Poincarè [190]): “If we knew exactly the laws

of nature and the situation of the universe at its initial moment, we could predict

exactly the situation of that same universe at a succeeding moment. But even if

it were the case that the natural laws had no longer any secret for us, we could

still only know the initial situation approximately. If that enabled us to predict the

succeeding situation with the same approximation, that is all we require, and we

should say that the phenomenon had been predicted, that it is governed by laws.

But it is not always so; it may happen that small differences in the initial conditions

produce very great ones in the final phenomena. A small error in the former will

produce an enormous error in the latter. Prediction becomes impossible”. What

Poincaré described quite precisely has subsequently become known colloquially as

the butterfly effect, an essential feature of chaos.

In 1952 Collier’s magazine published a short story called “A Sound of Thunder”

by the renowned author, Ray Bradbury (1920–). In the story a party of rich

businessmen use time travel to journey back to a prehistoric era and go on a safari to

hunt dinosaurs. However, one of the hunters accidentally kills a prehistoric butterfly,
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and this innocuous event dramatically changes the future world that they left. This

was perhaps the incentive for a meteorologist’s presentation in 1973 to the American

Association for the Advancement of Science in Washington , D.C. being given the

name “Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado

in Texas?” The meteorologist was Edward Norton Lorenz (1917–) and the flapping

wing represented a tiny change in initial conditions causing enormous changes later.

Lorenz discovered sensitivity to initial conditions by accident. He was running on

a computer a mathematical model to predict the weather. Having run a particular

sequence, he decided to replicate it. He re-entered the number from his printout,

taken part-way through the sequence, and let it run. What he found was that the new

results were radically different from his first results. Because his printout rounded

to three decimal places, he had entered the number .506 than the six digit number

.506127. Even so, he would have expected that the resulting sequence would differ

only slightly from the original run. Since repeated experimentation proved otherwise,

Lorenz concluded that the slightest difference in initial conditions made a dramatic

difference to the outcome. So prediction was in fact impossible. Sensitivity to

initial conditions, or the butterfly effect, had been demonstrated to be not just of

theoretical importance but in fact of practical importance in meteorology. It was a

serious limitation to predicting the weather – at least with that model. Perhaps this

effect was evident also in a variety of other practical applications.

The American mathematicians George David Birkoff (1884-1944) and Harold

Calvin Marston Morse (1892–1977) continued Poincaré’s work on dynamical systems.

While Poincaré had made use of topology in the theory of dynamical systems,

Birkhoff, in particular, supplemented this by the use of Lebesgue measure theory.

In 1931 Birkhoff and P.A. Smith in their paper Birkhoff and Smith [27] introduced

the concept of metric transitivity which is central in ergodic theory and was used by

Robert L. Devaney in 1986 in his widely published definition of, and approach to,

chaos.

The three conditions: transitivity, sensitivity to initial conditions, and density of

of periodic points as appeared in The Period Three Theorem, were precisely what

Devaney used in his definition of chaos. �
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A3.7.2 Definition. Let (X, d) be a metric space and f : X → X a mapping of

the set X into itself. Then (X, f) is said to be a dynamical system.

A3.7.3 Remark. It would be much more appropriate to denote the dynamical

system as (X, d, f), however in the literature the convention is not do this.

A3.7.4 Definition. Let (X, d) be a metric space and f : X → X a mapping

of X into itself. Then the dynamical system (X, f) is said to be transitive if

given x, y ∈ X, and any ε > 0, there exists a z ∈ X and an n ∈ N, such that

d(z, y) < ε and d(fn(z), x) < ε.

A3.7.5 Remark. Roughly speaking, transitivity says that there is a point z

“close” to y such that some point in the orbit of z is “close” to x.

A3.7.6 Remark. At long last we shall define chaos. However, care needs to be

taken as there is a number of inequivalent definitions of chaos in the literature as

well as many writers who are vague about what they mean by chaos. Our definition

is that used by Robert L. Devaney, with a modification resulting from the work of a

group of Australian mathematicians in 1992.

A3.7.7 Definition. The dynamical system (X, f) is said to be chaotic if

(i) the set of all periodic points of f is dense in the set X, and

(ii) (X, f) is transitive.

A3.7.8 Remark. Until 1992 it was natural to add a third condition in the

definition of chaotic dynamical systems. This condition is that in the dynamical

system (X, f), f depends sensitively on initial conditions. However in 1992 a group

of mathematicians from La Trobe University in Melbourne, Australia proved that
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this condition is automatically true if the two conditions in Definition A3.7.7 hold.

Their work appeared in the paper “On Devaney’s definition of chaos” by the authors

John Banks, Gary Davis, Peter Stacey, Jeff Brooks and Grant Cairns in the American

Mathematical Monthly (Banks et al. [19]). See also (Banks et al. [20]).

A3.7.9 Definition. The dynamical system (X, f) is said to depend sensitively

on initial conditions if there exists a β > 0 such that for any x ∈ X and any ε > 0

there exists n ∈ N and y ∈ X with d(x, y) < ε such that d(fn(x), fn(y)) > β.

A3.7.10 Remark. This definition says that no matter which x we begin with and

how small a neighbourhood of x we choose, there is always a y in this neighbourhood

whose orbit separates from that of x by at least β. [And β is independent of x.]

A3.7.11 Remark. What we said in Remark A3.7.8 is that every chaotic dynamical

system depends sensitively on initial conditions. We shall not prove this here. But

we will show in Exercises A3.7 # 2 that the doubling map does indeed depend

sensitively on initial conditions.

A3.7.12 Remark. In 1994, Michel Vellekoop and Raoul Berglund Vellekoop and

Berglund [222] proved that in the special case that (X, d) is a finite or infinite interval

interval with the Euclidean metric, then transitivity implies condition (ii) in Definition

A3.7.7, namely that the set of all periodic points is dense. However, David Asaf

and Steve Gadbois IV and Gadbois [127] showed this is not true for general metric

spaces.
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Exercises A3.7

1. Let D : [0, 1)→ [0, 1) given by D(x) = 2x (mod 1) be the doubling map. Prove that

the dynamical system ([0, 1), D) is chaotic.

[Hints. Recall that in Exercises A3.4 #7 it was proved that the set of all

periodic points of D is

P =
∞⋃
n=1

{
0,

1

2n − 1
,

2

2n − 1
,

3

2n − 1
, . . . ,

2n − 2

2n − 1

}
.

and that the set P is dense in [0, 1). So condition (i) of Definition A3.7.7 is

satisfied. To verify condition (ii) use the following steps:

(a) Let x, y ∈ [0, 1) and ε > 0 be given. Let n ∈ N be such that 2−n < ε. For

k ∈ {1, 2, . . . , n}, let

Jk,n =

[
k − 1

2n
,
k

2n

)
.

Show that there exists a k ∈ {1, 2, . . . , n}, such that x ∈ Jk,n.

(b) Verify that fn(Jk,n) = [0, 1).

(c) Deduce from (b) that there exists a z ∈ Jk,n such that fn(z) = y.

(d) Deduce that z has the required properties of Definition A3.7.4 and so

([0, 1), D) is a transitive dynamical system.

(e) Deduce that ([0, 1), D) is a chaotic dynamical system.]

2. Prove that the doubling map of Exercise 1 above depends sensitively on initial

conditions.

[Hints. Let β = 1
4
. Given any ε > 0, let n ∈ N be such that 2−n < ε. Put

s = fn(x) + 0.251 (mod 1). Firstly, verify that d(fn(x), s) > β. As observed

in Exercise 1(a), x ∈ Jk,n, for some k ∈ {1, 2, . . . , n}. But by Exercise 1(b),

fn(Jk,n) = [0, 1). Let y ∈ Jk,n be such that fn(y) = s. Now verify that y has the

required properties (i) d(x, y) < ε and (ii) d(fn(x), fn(y) > β.]

3. Let m be a (fixed) positive integer and consider the dynamical system ([0, 1), fm)

where fm(x) = mx (mod 1). Prove that ([0, 1), fm) is chaotic.

[Hint. See Exercise 1 above]
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4. Let (X,τ ) be a topological space and f a continuous mapping of X into itself.

Then f is said to be topologically transitive if for any pair of non-empty open

sets U and V in (X,τ ) there exists an n ∈ N such that fk(U) ∩ V 6= Ø. For X, d)

a metric space and τ the topology induced by the metric d, prove that f is

transitive if and only if it is topologically transitive.

A3.8 Conjugate Dynamical Systems

A3.8.1 Definition. Let (X1, d1) and (X2, d2) be metric spaces and (X1, f1) and

(X2, f2) dynamical systems. Then (X1, f1) and (X2, f2) are said to be conjugate

dynamical systems if there is a homeomorphism h : (X1, d1) → (X, d2) such that

f2 ◦ h = h ◦ f1; that is, f2(h(x)) = h(f1(x)), for all x ∈ X1. The map h is called a

conjugate map.

3A.8.2 Remark. In Exercises A3.8 #2 it is verfied that if (X1, f1) and (X2, f2)

are conjugate dynamical systems, then (X2, f2) and (X1, f1) are conjugate dynamical

systems. So we see that the order in which the dynamical systems are considered is

of no importance. �

A3.8.3 Remark. Conjugate dynamical systems are equivalent in the same

sense that homeomorphic topological spaces are equivalent. The next theorem

demonstrates this fact. Very often it will be possible to analyze a complex dynamical

system by showing it is conjugate to one we already understand. �
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A3.8.4 Theorem. Let (X1, f1) and (X2, f2) be conjuagate dynamical systems,

where h is the conjugate map.

(i) A point x ∈ X1 is a fixed point of f1 in X1 if and only if h(x) is a fixed point

of f2 in X2.

(ii) A point x ∈ X1 is a periodic point of period n ∈ N of f1 in X1 if and only if

h(x) is a periodic point of period n of f2 in X2.

(iii) The dynamical system (X, f1) is chaotic if and only if the dynamical system

(X, f2) is chaotic.

Proof. (i) and (ii) are straightforward and left as exercises for you.

To see (iii), assume that (X1, f1) is chaotic. Let P be the set of periodic points

of f1. As (X1, f1) is chaotic, P is dense in X1. As h is a continuous, it is easily seen

that h(P ) is dense in the set h(X1) = X2. As h(P ) is the set of periodic points of

(X2, f2), it follows (X2, f2) satisfies condition (i) of Definition A3.7.7.

To complete the proof, we need to show that (X2, f2) is transitive. To this end,

let ε > 0 and u, v ∈ X2. Then there are x, y ∈ X1 such that h(x) = u and h(y) = v. Since

h is continuous, it is continuous at the points x, y ∈ X1. Thus, there exists a δ > 0

such that

z ∈ X1 and d1(x, z) < δ ⇒ d2(h(x), h(z)) < ε, (10.1)

and
z′ ∈ X1 and d1(y, z

′) < δ ⇒ d2(h(y), h(z′)) < ε. (10.2)

As (X1, f1) is transitive, there is a z ∈ X1 and n ∈ N, such that

d1(x, z) < δ ⇒ d1(f
n
1 (z), y) < δ. (10.3)

Let z be chosen so that (10.3) holds, and put w = h(z). Using this value for z in

(10.1), and taking fn1 (z) as z′ in (10.2), we obtain

d2(u,w) = d2(h(x), h(z)) < ε, from (10.1) and (10.3) (10.4)

and

d2(f
n
2 (w), v) = d2(f

n
2 (h(z)), h(y)),

= d2(h(fn1 (z), h(y)), as h ◦ f1 = f2 ◦ h,
< ε, (10.5)

from (2) and (3). Now from (10.4) and (10.5) it follows that (X2, f2) is transitive.�
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Exercises A3.8

1. Let T : [0, 1]→ [0, 1] be the tent function given by

T (x) =

{
2x, for 0 ≤ x ≤ 1

2
,

2− 2x, for 1
2
≤ x ≤ 1.

(i) Sketch the graph of T .

(ii) Calculate the formula for T 2 and sketch the graph of T 2.

(iii) Calculate the formula for T 3 and sketch the graph of T 3.

(iv) Let Ik,n = [k−1
2n
, k
2n

], for k ∈ {1, 2, . . . , 2n − 1}, n ∈ N. Verify that T n(Ik,n) = [0, 1].

(v) Using Proposition A of Exercises 3.6 #2, show that T n has a fixed point in

each Ik,n.

(vi) Deduce from (v) that there is a periodic point of T in each Ik,n.

(vii) Using the above results show that (T, [0, 1]) is a chaotic dynamical system.

2. Verify that if (X1, f1) and (X2, f2) are conjugate dynamical systems then (X2, f2)

and (X1, f1) are conjugate dynamical systems. (So the order in which the

dynamical systems are considered is of no importance.)

3. Let L : [0, 1]→ [0, 1] be the logistic function given by L(x) = 4x(1− x).

(i) Show that the map h : [0, 1]→ [0, 1] given by h(x) = sin2(π
2
x), is a homeomorphism

of [0, 1] onto itself such that h ◦ T = L ◦ h, where T is the tent function.

(ii) Deduce that ([0, 1], T ) and ([0, 1], L) are conjugate dynamical systems.

(iii) Deduce from (ii), Theorem A3.8.4 and Exercise 1 above that ([0, 1], L) is a

chaotic dynamical system.

4. Consider the quadratic map Q−2 : [−2, 2]→ [−2, 2], where Q−2(x) = x2 − 2.

(i) Prove that the dynamical systems ([−2, 2], Q−2) and ([0, 1], L) of Exercise 3

above are conjugate.

(ii) Deduce that ([−2, 2], Q−2) is a chaotic dynamical system.



Appendix 4: Hausdorff Dimension

Introduction

In this section we introduce the notion of Hausdorff Dimension which plays an

important role in the study of fractals.

A4.1 Hausdorff Dimension

We begin by warning the reader that this section is significantly more complicated

than much of the material in the early chapters of this book. Further, an

understanding of this section is not essential to the understanding of the rest of

the book.

We think of points as 0-dimensional, lines as 1-dimensional, squares as 2-

dimensional, cubes as 3-dimensional etc. So intuitively we think we know what the

notion of dimension is. For arbitrary topological spaces there are competing notions

of topological dimension. In “nice” spaces, the different notions of topological

dimension tend to coincide. However, even the well-behaved euclidean spaces, Rn,

n > 1, have surprises in store for us.

In 1919 Felix Hausdorff introduced the notion of Hausdorff dimension of a metric

space. A surprising feature of Hausdorff dimension is that it can have values which

are not integers. This topic was developed by Abram Samoilovitch Besicovitch a

decade or so later, but came into prominence in the 1970s with the work of Benoit

Mandelbrot on what he called fractal geometry and which spurred the development

of chaos theory. Fractals and chaos theory have been used in a very wide range of

disciplines including economics, finance, meteorology, physics, and physiology.

We begin with a discussion of Hausdorff measure (or what some call Hausdorff-

318
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Besicovitch measure). Some readers will be familiar with the related notion of

Lebesgue measure, however such an understanding is not essential here.

A4.1.1 Definition. Let Y be a subset of a metric space (X, d). Then the

number sup{d(x, y) : x, y ∈ Y } is said to be the diameter of the set Y and is

denoted diamY .

A4.1.2 Definition. Let Y be a subset of a metric space (X, d), I an index

set, ε a positive real number, and {Ui : i ∈ I} a family of subsets of X such that

Y ⊆
⋃
i∈I
Ui and, for each i ∈ I, diamUi < ε. Then {Ui : i ∈ I} is said to be an

ε-covering of the set Y .

We are particularly interested in ε-coverings which are countable. So we are led

to ask: which subsets of a metric space have countable ε-coverings for all ε > 0?

The next Proposition provides the answer.

A4.1.3 Proposition. Let Y be a subset of a metric space (X, d) and d1 the

induced metric on Y . Then Y has a countable ε-covering for all ε > 0 if and only

if (Y, d1) is separable.

Proof. Assume that Y has a countable ε-covering for all ε > 0. In particular Y

has a countable (1/n)-covering, {Un,i : i ∈ N}, for each n ∈ N. Let yn,i be any point in

Y ∩Un,i. We shall see that the countable set {yn,i : i ∈ N, n ∈ N} is dense in Y. Clearly

for each y ∈ Y , there exists an i ∈ N, such that d(y, yn,i) < 1/n. So let O be any open

set intersecting Y non-trivially. Let y ∈ O∩Y . Then O contains an open ball B centre

y of radius 1/n, for some n ∈ N. So yn,i ∈ O, for some i ∈ N. Thus {yn,i : i ∈ N, n ∈ N}
is dense in Y and so Y is separable.

Conversely, assume that Y is separable. Then it has a countable dense subset

{yi : i ∈ N}. Indeed, given any y ∈ Y and any ε > 0, there exists a yi, i ∈ N, such that

d(y, yi) < ε/2. So the family of all {Ui : i ∈ N}, where Ui is the open ball centre yi and

radius ε/2 is an ε-covering of Y , as required. �
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We are now able to define the Hausdorff s-dimensional measure of a subset of

a metric space. More precisely, we shall define this measure for separable subsets of

a metric space. Of course, if (X, d) is a separable metric space, such as Rn, for any

n ∈ N, then all of its subsets are separable. (See Exercises 6.3 #15.)

A4.1.4 Definition. Let Y be a separable subset of a metric space (X, d) and

s a positive real number. For each positive real number ε < 1, put

Hs
ε(Y ) = inf

∑
i∈N

(diamUi)
s : {Ui : i ∈ N} is an ε-covering of Y

 , and

Hs(Y ) =

lim
ε→0
ε>0

Hs
ε(Y ), if the limit exists;

∞, otherwise.

Then Hs(Y ) is said to be the s-dimensional Hausdorff outer measure of the set

Y .

A4.1.5 Remark. Note that in Definition A4.1.4, if ε1 < ε2, then Hs
ε1

(Y ) ≥ Hs
ε2

(Y ).

So as ε tends to 0, either the limit of Hs
ε(Y ) exists or it tends to ∞. This helps us to

understand the definition of Hs(Y ).

A4.1.6 Remark. It is important to note that if d1 is the metric induced on Y by

the metric d on X, then Hs(Y ) depends only on the metric d1 on Y . In other words

if Y is also a subset of the metric space (Z, d2) and d2 induces the same metric d1

on Y , then Hs(Y ) is the same when considered as a subset of (X, d) or (Y, d2). So,

for example, the s-dimensional Hausdorff outer measure is the same for the closed

interval [0,1] whether considered as a subset of R or of R2 or indeed of Rn, for any

positive integer n.
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A4.1.7 Lemma. Let Y be a separable subset of a metric space (X, d), s and

t positive real numbers with s < t, and ε a positive real number < 1. Then

(i) H t
ε(Y ) ≤ Hs

ε (Y ), and

(ii) H t
ε(Y ) ≤ εt−sHs

ε (Y ).

Proof. Part (i) is an immediate consequence of the fact that ε < 1 and so each

diamUi < 1, which implies (diamUi)
t < (diamUi)

s. Part (ii) follows from the fact that

diamUi < ε < 1 and so (diamUi)
t < εt−s(diamUi)

s. �

A4.1.8 Proposition. Let Y be a separable subset of a metric space (X, d)

and s and t positive real numbers with s < t.

(i) If Hs(Y ) <∞, then Ht(Y ) = 0.

(ii) If 0 6= Ht(Y ) <∞, then Hs(Y ) =∞.

Proof. These follow immediately from Definition A4.1.3 and Lemma A4.1.7ii).�

A4.1.9 Remark. From Proposition A4.1.8 we see that if Hs(Y ) is finite and

non-zero for some value of s, then for all larger values of s, Hs(Y ) equals 0 and for

all smaller values of s, Hs(Y ) equals ∞. �

Proposition A4.1.8 allows us to define Hausdorff dimension.

A4.1.10 Definition. Let Y be a separable subset of a metric space (X, d).

Then

dimH(Y ) =

{
inf{s ∈ [0,∞) : Hs(Y ) = 0}, if Hs(Y ) = 0 for some s > 0;

∞, otherwise

is called the Hausdorff dimension of the set Y .
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We immediately obtain the following Proposition.

A4.1.11 Proposition. Let Y be a separable subset of a metric space (X, d).

Then

(i) dimH(Y ) =


0, if Hs(Y ) = 0 for all s;

sup{s ∈ [0,∞) : Hs(Y ) =∞}, if the supremum exists;

∞, otherwise.

(ii) Hs(Y ) =

{
0, if s > dimH(Y );

∞, if s < dimH(Y ).

�

The calculation of the Hausdorff dimension of a metric space is not an easy

exercise. But here is an instructive example.

A4.1.12 Example. Let Y be any finite subset of a metric space (X, d). Then

dimH(Y ) = 0.

Proof. Put Y = {y1, y2, . . . , yN}, N ∈ N. Let Oε(i) be the open ball centre yi and

radius ε/2. Then {Oi : i = 1, . . . , N} is an ε-covering of Y . So

Hs
ε(Y ) = inf

∑
i∈N

(diamUi)
s : {Ui} an open covering of Y }

 ≤
N∑
i=1

(diamOi)
s = εs.N s+1/2s.

Thus Hs(Y ) ≤ lim
ε→0
ε>0

εs.N s+1/2s = 0. So Hs(Y ) = 0, for all s > 0. Hence dimH(Y ) = 0. �

The next Proposition is immediate.

A4.1.13 Proposition. If (Y1, d1) and (Y2, d2) are isometric metric spaces, then

dimH(Y1) = dimH(Y2). �

A4.1.14 Proposition. Let Z and Y be separable subsets of a metric space

(X, d). If Z ⊂ Y , then dimH(Z) ≤ dimH(Y ).
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Proof. Exercise. �

A4.1.15 Lemma. Let Y =
⋃
i∈N

Yi be a separable subset of a metric space

(X, d). Then

Hs(Y ) ≤
∞∑
i=1

Hs(Yi).

Proof. Exercise. �

A4.1.16 Proposition. Let Y =
⋃
i∈N

Yi be a separable subset of a metric space

(X, d). Then

dimH(Y ) = sup{dimH(Yi) : i ∈ N}.

Proof. It follows immediately from Lemma A4.1.15 that

dimH(Y ) ≤ sup{dimH(Yi) : i ∈ N}.

However, by Proposition A4.1.14, dimH(Y ) ≥ dimH(Yi), for each i ∈ N. Putting these

two observations together completes the proof of the Proposition. �

A4.1.17 Proposition. If Y is a countable subset of a metric space (X, d), then

dimH(Y ) = 0.

Proof. This follows immediately from Proposition A4.1.16 and Example A4.1.12�

In particular, Proposition A4.1.17 tells us that dimH(Q) = 0.
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A4.1.18 Example. Let [a, a+ 1], a ∈ R be a closed interval in R, where R has the

euclidean metric. Then dimH [a, a+ 1] = dimH [0, 1] = dimH(R).

Proof. Let da be the metric induced on [a, a + 1] by the euclidean metric on

R. Then ([a, a + 1], da) is isometric to ([0, 1], d0), and so by Proposition A4.1.13,

dimH [a, a+ 1] = dimH [0, 1].

Now observe that R =
∞⋃

a=−∞
[a, a+ 1]. So

dimH(R) = sup{dimH [a, a+ 1] : a = . . . ,−n, . . . ,−2,−1, 0, 1, 2, . . . , n, . . . } = dimH [0, 1],

as each dimH [a, a+ 1] = dimH [0, 1]. �

A4.1.19 Proposition. Let (X, d1) and (Y, d2) be separable metric spaces and

f : X → Y a surjective function. If there exist positive real numbers a and b, such

that for all x1, x2 ∈ X,

a.d1(x1, x2) ≤ d2(f(x1), f(x2)) ≤ b.d1(x1, x2),

then dimH(X, d1) = dimH(Y, d2).

Proof. Exercise

A4.1.20 Remark. In some cases Proposition A4.1.19 is useful in calculating the

Hausdorff dimension of a space. See Exercises 6.6 #7 and #8.

Another useful device in calculating Hausdorff dimension is to refine the definition

of the s-dimensional Hausdorff outer measure as in the following Proposition, where

all members of the ε-covering are open sets.
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A4.1.21 Proposition. Let Y be a separable subset of a metric space (X, d)

and s a positive real number. If for each positive real number ε < 1,

Osε(Y ) = inf

∑
i∈N

(diamOi)
s : {Oi : i ∈ N} is an ε-covering of Y by open sets Oi

 ,

then Osε(Y ) = Hs
ε(Y ).

Further Hs(Y ) =

lim
ε→0
ε>0

Osε(Y ), if the limit exists;

∞, otherwise.

Proof. Exercise.

A4.1.22 Lemma. Let Y be a connected separable subset of a metric space

(X, d). If {Oi : i ∈ N} is a covering of Y by open sets Oi, then∑
i∈N

diamOi ≥ diamY

Proof. Exercise.

A4.1.23 Example. Show H1[0, 1] ≥ 1.

Proof. If we put Y = [0, 1] in Lemma A4.1.22 and s = 1 in Proposition A4.1.21,

noting diam[0, 1] = 1 yields H1
ε[0, 1] ≥ 1, for all ε > 0. This implies the required result.�
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A4.1.24 Proposition. Let [0, 1] denote the closed unit interval with the

euclidean metric. Then dimH [0, 1] = 1.

Proof. From Proposition A4.1.11, it suffices to show that 0 6= H1[0, 1] < ∞. This

is the case if we show H1[0, 1] = 1.

For any 1 > ε > 0, it is clear that the interval [0, 1] can be covered by nε intervals

each of diameter less than ε, where nε ≤ 2 + 1/ε. So H1
ε[0, 1] ≤ ε(2 + 1/ε); that is,

H1
ε[0, 1] ≤ 1 + 2ε. Thus H1[0, 1] ≤ 1. From Example A4.1.23, we now have H1[0, 1] = 1,

from which the Proposition follows. �

A similar argument to that above shows that if a, b ∈ R with a < b, where R
has the euclidean metric, then dimH [a, b] = 1. The next Corollary includes this result

and is an easy consequence of combining Proposition A4.1.24, Example A4.1.18,

Proposition A4.1.14, Proposition 4.3.5, and the definition of totally disconnected in

Exercises 5.2 #10.

A4.1.25 Corollary. Let R denote the set of all real numbers with the

euclidean metric.

(i) dimH R = 1.

(ii) If S ⊂ R, then dimH S ≤ 1.

(iii) If S contains a non-trivial interval (that is, is not totally disconnected), then

dimH S = 1.

(iv) If S is a non-trivial interval in R, then dimH S = 1.

Proof. Exercise �

A4.1.26 Remark. In fact if Rn has the euclidean metric, with n ∈ N, then it is

true that dimH Rn = n. This is proved in Exercises A4.1. However, the proof there

depends on the Generalized Heine-Borel Theorem 8.3.3 which is not proved until

Chapter 8.
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This appendix on Hausdorff dimension is not yet complete. From time to time

please check for updates. �

Exercises A4.1

1. Ley Y be a subset of a metric space (X, d) and Y its closure. Prove that

diamY = diamY .

2. Prove Proposition A4.1.14.

[Hint. Use Definitions A4.1.4 and A4.1.10.]

3. Prove Lemma A4.1.15.

4. If Y =
n⋃
i=1

Yi, for some n ∈ N, is a separable subset of a metric space (X, d), show

that dimH(Y ) = sup{dimH(Yi) : i = 1, 2 . . . , n}.

5. (i) Let n ∈ N, and a, b ∈ Rn. Show that if r and s are any positive real numbers,

then the

open balls Br(a) and Bs(b) in Rn with the euclidean metric satisfy

dimH Br(a) = dimH Bs(b).

(ii) Using the method of Example A4.1.18, show that dimH Br(a) = dimRn.

(ii) If S1 is the open cube {〈x1, x2, . . . , xn〉 ∈ Rn : 0 < xi < 1, i = 1, . . . , n}, prove that

dimH S1 = dimH Rn.

(iii)* Using the method of Proposition A4.1.24, show that if n = 2 then H2(S1) ≤ 2

and so dimH(S1) ≤ 2.

(iv) Prove that dimH R2 ≤ 2.

(v)* Using an analogous argument, prove that dimH Rn ≤ n, for all n > 2.

6. Prove Proposition A4.1.19.

[Hint. Prove that as.Hs(X) ≤ Hs(Y ) ≤ bs.Hs(X).]
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7. Let f : R→ R2 be the function given by f(x) = 〈x, x2〉. Using Proposition A4.1.19,

show that dimH f [0, 1] = dimH [0, 1]. Deduce from this and Proposition A4.1.16

that if Y is the graph in R2 of the function θ : R → R given by θ(x) = x2, then

dimH(Y ) = dimH [0, 1].

8. Using an analogous argument to that in Exercise 7 above, show that if Z is

the graph in R2 of any polynomial φ(x) = anx
n + an−1x

n−1 + . . . a2x
2 + a1x+ a0, where

an 6= 0, then dimH Z = dimH [0, 1].

9.* Let g : R → R be a function such that the nth-derivative g(n) exists, for each

n ∈ N. Further assume that there exists a K ∈ N, |g(n)(x)| < K, for all n ∈ N and

all x ∈ [0, 1]. (Examples of such functions include g = exp, g = sin, g = cos, and

g is a polynomial.) Using the Taylor series expansion of g, extend the method

of Exercises 7 and 8 above to show that if f : R→ R2 is given by f(x) = 〈x, g(x)〉,
then dimH f [0, 1] = dimH [0, 1].

10. Prove Proposition A4.1.21.

[Hint. Firstly prove that if z is any positive real number greater than 1, and Ui

is any set in (X, d) of diameter less than ε, then there exists an open set Oi such

that (i) Ui ⊆ Oi, (ii) diamOi < ε, and (iii) diamOi ≤ z. diamUi. Use this to show

that Osε(Y ) ≤ zs.Hs
ε(Y ), for all z > 1.]

11. Prove Lemma A4.1.22.

[Hint. First assume that Y is covered by 2 open sets and prove the analogous

result. Then consider the case that Y is covered by a finite number of open

sets. Finally consider the case of an infinite covering remembering a sum of

an infinite number of terms exists (and is finite) if and only if the limit of the

finite sums exist.]

12. Show that if P denotes the set of all irrational numbers with the euclidean

metric, then dimH P = 1

13. Fill in the details of the proof of Corollary A4.1.25.
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14. The Generalized Heine-Borel Theorem 8.3.3 proved in Chapter 8, implies that if

{Oi : i ∈ N} is an ε-covering of the open cube S1 of Example 5 above, then there

exists an N ∈ N, such that {O1, O2, . . . , ON} is also an ε-covering of S1. Using this,

extend Proposition A4.1.21 to say that: For every positive real number ε,

Hs
ε(S1) = inf

{
N∑
i=1

(diamOi)
s : where N ∈ N and O1, . . . , ON is an open ε covering of S1

}
.

Warning: Note that this Exercise depends on a result not proved until Chapter

8.

15. (i) Show that if O is a subset of R2 with the euclidean metric, and A is its area,

then A ≤ π
4
.(diamO)2.

(ii) Deduce from (i) that if O1, O2, . . . , ON is an ε-covering of S1 in R2 of Example

5 above, then
N∑
i=1

(diamOi)
2 ≥ 4

π
.

(iii) Deduce from (ii) and Exercise 14 above that H2(S1) ≥ 4
π
.

(iv) Using (iii) and Exercise 5, prove that dimH(S1) = dimH R2 = 2.

(v) Using an analogous method to that above, prove that dimH Rn = n, where

Rn has the euclidean metric.

(vi) Prove that if S is any subset of Rn with the euclidean metric, such that S

contains a non-empty open ball in Rn, the dimH S = n.

Warning: Note that (iii), (iv), (v), and (vi) of this Exercise depend on a result

proved in Chapter 8.



Appendix 5: Topological Groups

Introduction

In this Appendix we give an introduction to the theory of topological groups. It

assumes that the reader is familiar with the notion of group as is included in an

introductory course on group theory or usually in an introductory course on abstract

algebra.

A5.1 Topological Groups

A5.1.1 Definition. Let (G,τ ) be a set G, that is a group, with a topology τ
on G. Then (G,τ ) is said to be a topological group if

(i) the mapping (x, y) → xy of the product space (G,τ ) × (G,τ ) onto (G,τ ) is

continuous, and

(ii) the mapping x→ x−1 of (G,τ ) onto (G,τ ) is continuous.

330
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A5.1.2 Examples.

(1) The additive group of real numbers with the euclidean topology is a topological

group, usually denoted by R.

(2) The multiplicative group of positive real numbers with the induced topology

from R is also a topological group.

(3) The additive group of rational numbers with the euclidean topology is a

topological group denoted by Q.

(4) The additive group of integers with the discrete topology is a topological group

denoted by Z.

(5) Any group with the discrete topology is a topological group.

(6) Any group with the indiscrete topology is a topological group.

(7) The “circle” group consisting of the complex numbers of modulus one (i.e. the

set of numbers e2πix, 0 ≤ x < 1) with the group operation being multiplication

of complex numbers and the topology induced from the euclidean topology on

the complex plane is a topological group. This topological group is denoted by

T (or S1).

(8) Linear groups. Let A = (ajk) be an n × n matrix, where the coefficients ajk are

complex numbers. The transpose tA of the matrix A is the matrix (akj) and the

conjugate A of A is the matrix (ajk), where ajk is the complex conjugate of the

number ajk. The matrix A is said to be orthogonal if A = A and tA = A−1 and

unitary if A−1 = t(A).

The set of all non-singular n×n matrices (with complex number coefficients) is

called the general linear group (over the complex number field) and is denoted by

GL(n,C). The subgroup GL(n,C) consisting of those matrices with determinant

one is the special linear group (over the complex field) and is denoted by

SL(n,C). The unitary group U(n) and the orthogonal group O(n) consist of all

unitary matrices and all orthogonal matrices, respectively; they are subgroups of

GL(n,C). Finally we define the special unitary group and the special orthogonal

group as SU(n) = SL(n,C) ∩ U(n) and SO(n) = SL(n,C) ∩O(n), respectively.

The group GL(n,C) and all its subgroups can be regarded as subsets of Cn2

,

where C denotes the complex number plane, and so Cn2

is a 2n2-dimension

euclidean space. As such GL(n,C) and all its subgroups have induced topologies

and it is easily verified that, with these, they are topological groups.
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A5.1.3 Remark. Of course not every topology on a group makes it into a

topological group; i.e. the group structure and the topological structure need not

be compatible. If a topology τ on a group G makes (G,τ ) into a topological group,

then τ is said to be a group topology or a topological group topology

A5.1.4 Example. Let G be the additive group of integers. Define a topology τ
on G as follows: a subset U of G is open if either

(a) 0 6∈ U , or

(b) G\U is finite.

Clearly this is a (compact Hausdorff) topology, but Proposition A5.1.5 below shows

that (G,τ ) is not a topological group.

A5.1.5 Proposition. Let (G,τ ) be a topological group. For each a ∈ G, left

and right translation by a are homeomorphisms of (G,τ ). Inversion is also a

homeomorphism.

Proof. The map La : (G,τ ) → (G,τ ) given by g 7→ ag is the product of the two

continuous maps

(G,τ )→ (G,τ )× (G,τ ) given by g 7→ (a, g), where g ∈ G, a is fixed, and

(G,τ )× (G,τ )→ (G,τ ) given by (x, y) 7→ xy, x, y ∈ G,

and is therefore continuous. So left translation by any a ∈ G is continuous. Further,

La has a continuous inverse, namely La−1, since La [La−1(g)] = La [a−1g] = a(a−1g) = g and

La−1 [La(g)] = La−1 [ag] = a−1(ag) = g. So left translation is a homeomorphism. Similarly

right translation is a homeomorphism.

The map I : (G,τ )→ (G,τ ) given by g 7→ g−1 is continuous, by definition. Also I

has a continuous inverse, namely I itself, as I[I(g)] = I[g−1] = [g−1]−1 = g. So I is also

a homeomorphism. �
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It is now clear that the (G,τ ) in Example A5.1.4 above is not a topological group

as left translation by 1 takes the open set {−1} onto {0}, but {0} is not an open set.

What we are really saying is that any topological group is a homogeneous space

while the example is not. Homogeneous spaces are defined next.

A5.1.6 Definition. A topological space (X,τ ) is said to be homogeneous if

it has the property that for each ordered pair x, y of points of X, there exists a

homeomorphism f : (X,τ )→ (X,τ ) such that f(x) = y.

While every topological group is a homogeneous topological space, we will see

shortly that not ever homogeneous space can be made into a topological group.

A5.1.7 Definition. A topological space is said to be a T1-space if each point

in the space is a closed set.

It is readily seen that any Hausdorff space is a T1-space but that the converse is

false. See Exercises 4.1 #13.

We will see, however, that any topological group which is a T1-space is

Hausdorff. Incidentally, this is not true, in general, for homogeneous spaces–as

any infinite set with the cofinite topology is a homogeneous T1space but is not

Hausdorff. As a consequence we will then have that not every homogeneous space

can be made into a topological group.

A5.1.8 Proposition. Let (G,τ ) be any topological group and e its identity

element. If U is any neighbourhood of e, then there exists an open

neighbourhood V of e such that

(i) V = V −1 (that is, V is a symmetric neighbourhood of the identity e)

(ii) V 2 ⊆ U .

(Here V −1 = {v−1 : v ∈ V } and V 2 = {v1v2 : v1 ∈ V, v2 ∈ V }, not the set {v2 : v ∈ V }.)

Proof. Exercise. �
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A5.1.9 Proposition. Any topological group (G,τ ) which is a T1-space is also

a Hausdorff space.

Proof. Let x and y be distinct points of G. Then x−1y 6= e. The set G \ {x−1y}
is an open neighbourhood of e and so, by Proposition A5.1.8, there exists an open

symmetric neighbourhood V of e such that V 2 ⊆ G \ {x−1y}. Thus x−1y 6∈ V 2.

Now xV and yV are open neighbourhoods of x and y, respectively. Suppose

xV ∩yV 6= Ø. Then xv1 = yv2, where v1 and v2 are in V ; that is, x−1y = v1v
−1
2 ∈ V.V −1 = V 2,

which is a contradiction. Hence xV ∩ yV = Ø and so (G,τ ) is Hausdorff. �

A5.1.10 Remark. So to check that a topological group is Hausdorff it is only

necessary to verify that each point is a closed set. Indeed, by Proposition A51.5, it

suffices to show that {e} is a closed set.

Warning. Many authors include “Hausdorff” in their definition of topological group.

A5.1.11 Remark. The vast majority of work on topological groups deals only

with Hausdorff topological groups. (Indeed many authors include “Hausdorff” in their

definition of topological group.) We will see one reason for this shortly. However, it

is natural to ask: Does every group admit a Hausdorff topology which makes it into

a topological group? The answer is obviously “yes”–the discrete topology. But we

mention the following problem.

Question. Does every group admit a Hausdorff non-discrete group topology which

makes it into a topological group?

Shelah [202] provided a negative answer, under the assumption of the continuum

hypothesis. However in the special case that the group is abelian (that is,

commutative) the answer is “yes” and we shall prove this soon. �



335

Exercises A5.1

1. Let (G,τ ) be a topological group, e its identity element, and k any element of G.

If U is any neighbourhood of e, show that there exists an open neighbourhood

V of e such that

(i) V = V −1,

(ii) V 2 ⊆ U , and

(iii) kV k−1 ⊆ U . (In fact, with more effort you can show that if K is any compact

subset of (G,τ ) then V can be chosen also to have the property: (iv) for

any k ∈ K, kV k−1 ⊆ U .)

2. (i) Let G be any group and let N = {N} be a family of normal subgroups of

G. Show that the family of all sets of the form gN , as g runs through G

and N runs through N is an open subbasis for a topological group topology

on G. Such a topology is called a subgroup topology.

(ii) Prove that every topological group topology on a finite group is a

subgroup topology with N consisting of precisely one normal subgroup.

3. Show that

(ii) if (G,τ ) is a topological group, then (G,τ ) is a regular space;

(iii) any regular T0-space is Hausdorff, and hence any topological group which

is a T0-space is Hausdorff.

4. Let (G,τ ) be a topological group, A and B subsets of G and g any element of

G. Show that

(i) If A is open, then gA is open.

(ii) If A is open and B is arbitrary, then AB is open.

(iii) If A and B are compact, then AB is compact.

(iv) If A is compact and B is closed, then AB is closed.

(v)* If A and B are closed, then AB need not be closed.
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5. Let S be a compact subset of a metrizable topological group G, such that

xy ∈ S if x and y are in S. Show that for each x ∈ S, xS = S. (Let y be a cluster

point of the sequence x, x2, x3, . . . in S and show that yS =
⋂∞
n=1 x

nS; deduce that

yxS = yS.) Hence show that S is a subgroup of G. (Cf. Hewitt and Ross [104],

Theorem 9.16.)

A5.2 Subgroups and Quotient of Topological Groups

A5.2.1 Definition. Let G1 and G2 be topological groups. A map f : G1 → G2 is

said to be a continuous homomorphism if it is both a homomorphism of groups

and continuous. If f is also a homeomorphism then it is said to be a topological

group isomorphism or a topological isomorphism and G1 and G2 are said to be

topologically isomorphic.

A5.2.2 Example. Let R be the additive group of real numbers with the usual

topology and R× the multiplicative group of positive real numbers with the usual

topology. Then R and R× are topologically isomorphic, where the topological

isomorphism R → R× is x 7→ ex. (Hence we need not mention this group R× again,

since, as topological groups, R and R× are the same.) �

A5.2.3 Proposition. Let G be a topological group and H a subgroup of G.

With its subspace topology, H is a topological group.

Proof. The mapping (x, y) 7→ xy of H ×H onto H and the mapping x 7→ x−1 of H

onto H are continuous since they are restrictions of the corresponding mappings of

G×G and G. �

A5.2.4 Examples. (i) Z ≤ R; (ii) Q ≤ R. �
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A5.2.5 Proposition. Let H be a subgroup of a topological group G. Then

(i) the closure H of H is a subgroup of G;

(ii) if H is a normal subgroup of G, then H is a normal subgroup of G;

(iii) if G is Hausdorff and H is abelian, then H is abelian.

Proof. Exercise �

A5.2.6 Corollary. Let G be a topological group. Then

(i) {e} is a closed normal subgroup of G; indeed, it is the smallest closed

subgroup of G;

(ii) if g ∈ G, then {g} is the coset g{e} = {e}g;

(iii) If G is Hausdorff then {e} = {e}.

Proof. This follows immediately from Proposition A5.2.5 (ii) by noting that {e}
is a normal subgroup of G.

A5.2.7 Proposition. Any open subgroup H of a topological group G is (also)

closed.

Proof. Let xi, i ∈ I be a set of right coset representatives of H in G. So

G =
⋃
i∈I Hxi, where Hxi ∩Hxj = Ø, for any distinct i and j in the index set I.

Since H is open, so is Hxi open, for each i ∈ I.

Of course for some i0 ∈ I, Hxi0 = H, that is, we have G = H ∪
(⋃

i∈J Hxi
)
, where J =

I\{i0}.

These two terms are disjoint and the second term, being the union of open sets,

is open. So H is the complement (in G) of an open set, and is therefore closed in

G.
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Note that the converse of Proposition A5.2.7 is false. For example, Z is a closed

subgroup of R, but it is not an open subgroup of R.

A5.2.8 Proposition. Let H be a subgroup of a Hausdorff group G. If H

is locally compact, then H is closed in G. In particular this is the case if H is

discrete.

Proof. Let K be a compact neighbourhood in H of e. Then there exists a

neighbourhood U in G of e such that U ∩H = K. In particular, U ∩H is closed in G.

Let V be a neighbourhood in G of e such that V 2 ⊆ U .

If x ∈ H, then as H is a group (Proposition A5.2.5), x−1 ∈ H. So there exists an

element y ∈ V x−1 ∩H. We will show that yx ∈ H. As y ∈ H, this will imply that x ∈ H
and hence H is closed, as required.

To show that yx ∈ H we verify that yx is a limit point of U ∩ H. As U ∩ H is

closed this will imply that yx ∈ U ∩H and so, in particular, yx ∈ H.

Let O be an arbitrary neighbourhood of yx. Then y−1O is a neighbourhood

of x, and so y−1O ∩ xV is a neighbourhood of x. As x ∈ H, there is an element

h ∈ (y−1O ∩ xV ) ∩ H. So yh ∈ O. Also yh ∈ (V x−1(xV ) = V 2 ⊆ U , and yh ∈ H; that is,

yh ∈ O ∩ (U ∩ H). As O is arbitrary, this says that yx is a limit point of U ∩ H, as

required.

A5.2.9 Proposition. Let U be a symmetric neighbourhood of e in a

topological group G. Then H =
∞⋃
n=1

Un is an open (and closed) subgroup of

G.

Proof. Clearly H is a subgroup of G.

Let h ∈ H. Then h ∈ Un, for some n.

So h ∈ hU ⊆ Un+1 ⊆ H; that is, H contains the neighbourhood hU of h.

As h was an arbitrary element of H, H is open in G. It is also closed in G, by

Proposition A5.2.7.
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A5.2.10 Corollary. Let U be any neighbourhood of e in a connected

topological group G. Then G =
∞⋃
n=1

Un; that is, any connected group is generated

by any neighbourhood of e.

Proof. Let V be a symmetric neighbourhood of e such that V ⊆ U . By Proposition

A5.2.9, H =
∞⋃
n=1

V n is an open and closed subgroup of G.

As G is connected, H = G; that is G =
∞⋃
n=1

V n.

As V ⊆ U , V n ⊆ Un, for each n and so G =
∞⋃
n=1

Un, as required.

A5.2.11 Definition. A topological group G is said to be compactly generated

if there exists a compact subset X of G such that G is the smallest subgroup

(of G) containing X.

A5.2.12 Examples.

(i) R is compactly generated by [0, 1] (or any other non-trivial compact interval).

(ii) Of course, any compact group is compactly generated.

A5.2.13 Corollary. Any connected locally compact group is compactly

generated.

Proof. Let K be any compact neighbourhood of e. Then by Corollary A5.2.10,

G =
∞⋃
n=1

Kn; that is, G is compactly generated.

A5.2.14 Remark. In due course we shall describe the structure of compactly

generated locally compact Hausdorff abelian groups. We now see that this class

includes all connected locally compact Hausdorff abelian groups.

Notation. By LCA-group we shall mean locally compact Hausdorff abelian topological

group.
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A5.2.15 Proposition. The component of the identity (that is, the largest

connected subset containing e) of a topological group is a closed normal

subgroup.

Proof. Let C be the component of the identity in a topological group G. As in

any topological space components are closed sets, C is closed.

Let a ∈ C. Then a−1C ⊆ C, as a−1C is connected (being a homeomorphic image

of C) and contains e.

So
⋃
a∈C

a−1C = C−1C ⊆ C, which implies that C is a subgroup.

To see that C is a normal subgroup, simply note that for each x in G, x−1Cx is a

connected set containing e and so x−1Cx ⊆ C.

A5.2.16 Proposition. Let N be a normal subgroup of a topological group

G. If the quotient group G/N is given the quotient topology under the canonical

homomorphism p : G → G/N (that is, U is open in G/N if and only if p−1(U) is

open in G), then G/N becomes a topological group. Further, the map p is not

only continuous but also open. (A map is said to be open if the image of every

open set is open.)

Proof. The verification that G/N with the quotient topology is a topological group

is routine. That the map p is continuous is obvious (and true for all quotient maps

of topological spaces).

To see that p is an open map, let O be an open set in G. Then p−1(p(O)) = NO ⊆ G.

Since O is open, NO is open. (See Exercises A5.2 #4.) So by the definitin of the

quotient topology on G/N , p(O) is open in G/N ; that is, p is an open map.

A5.2.17 Remarks.

(i) Note that quotient maps of topological spaces are not necessarily open maps.

(ii) Quotient maps of topological groups are not necessarily closed maps. For

example, if R2 denote the product group R×R with the usual topology, and p is

the projection of R2 onto its first factor R, then the set S =
{(
x, 1

x

)
: x ∈ R, x 6= 0

}
is closed in R2 and p is a quotient map with p(S) not closed in R. �
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A5.2.18 Proposition. If G is a topological group and N is a compact normal

subgroup of G then the canonical homomorphism p : G → G/N is a closed map.

The homomorphism p is also an open map.

Proof. If S is a closed subset of G, then p−1(p(S)) = NS which is the product in

G of a compact set and a closed set. By Exercises A5.1 #4 then, this product is

a closed set. So p(S) is closed in G/N and p is a closed map. As p is a quotient

mapping, Proposition A5.2.16 implies that it is an open map.

A5.2.19 Definition. A topological space is said to be totally disconnected if

the component of each point is the point itself.

A5.2.20 Proposition. If G is any topological group and C is the component

of the identity, then G/C is a totally disconnected topological group.

Proof. Note that C is a normal subgroup of G and so G/C is a topological group.

The proof that G/C is totally disconnected is left as an exercise. �

A5.2.21 Proposition. If G/N is any quotient group of a locally compact

group G, then G/N is locally compact.

Proof. Simply observe that any open continuous image of a locally compact space

is locally compact.

A5.2.22 Proposition. Let G be a topological group and N a normal

subgroup. Then G/N is discrete if and only if N is open. Also G/N is Hausdorff

if and only if N is closed.

Proof. This is obvious (noting that a T1-group is Hausdorff).
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Exercises A5.2

1. Let G and H be topological groups and f : G→ H a homomorphism. Show that

f is continuous if and only if it is continuous at the identity; that is, if and only

if for each neighbourhood U in H of e, there exists a neighbourhood V in G of

e such that f(V ) ⊆ U .

2. Show that the circle group T is topologically isomorphic to the quotient group

R/Z.

3. Let B1 and B2 be (real) Banach spaces. Verify that

(i) B1 and B2, with the topologies determined by their norms, are topological

groups.

(ii) If T : B1 → B2 is a continuous homomorphism (of topological groups) then

T is a continuous linear transformation. (So if B1 and B2 are “isomorphic as

topological groups” then they are “isomorphic as topological vector spaces”

but not necessarily “isomorphic as Banach spaces”.)

4. Let H be a subgroup of a topological group G. Show that H is open in G if and

only if H has non-empty interior (that is, if and only if H contains a non-empty

open subset of G).

5. Let H be a subgroup of a topological group G. Show that

(i) H is a subgroup of G.

(ii) If H is a normal subgroup of G, then H is a normal subgroup of G.

(iii) If G is Hausdorff and H is abelian, then H is abelian.

6. Let Y be a dense subspace of a Hausdorff space X. If Y is locally compact,

show that Y is open in X. Hence show that a locally compact subgroup of a

Hausdorff group is closed.
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7. Let C be the component of the identity in a topological group G. Show that G/C

is a Hausdorff totally disconnected topological group. Further show that if f is

any continuous homomorphism of G into any totally disconnected topological

group H, then there exists a continuous homomorphism g : G/C → H such that

gp = f , where p is the projection p : G→ G/C.

8. Show that the commutator subgroup [G,G] of a connected topological group G

is connected. ([G,G] is generated by {g−11 g−12 g1g2 : g1, g2 ∈ G}.)

9. If H is a totally disconnected normal subgroup of a connected Hausdorff group

G, show that H lies in the centre, Z(G), of G (that is, gh = hg, for all g ∈ G and

h ∈ H).

[Hint: Fix h ∈ H and observe that the map g 7→ ghg−1 takes G into H.]

10. (i) Let G be any topological group. Verify that G/{e} is a Hausdorff topological

group. Show that if H is any Hausdorff group and f : G → H is a

continuous homomorphism, then there exists a continuous homomorphism

g : G/{e} → H such that gp = f , where p is the canonical map p : G→ G/{e}.

(This result is the usual reason given for studying Hausdorff topological

groups rather than arbitrary topological groups. However, the following

result which says in effect that all of the topology of a topological group

lies in its “Hausdorffization”, namely G/{e}, is perhaps a better reason.)

(ii) Let Gi denote the group G with the indiscrete topology and i : G → Gi

the identity map. Verify that the map p × i : G → G/{e} × Gi, given by

p× i(g) = (p(g), i(g)), is a topological group isomorphism of G onto its image

p× i(G).

11. Show that every Hausdorff group, H, is topologically isomorphic to a closed

subgroup of an arcwise connected, locally arcwise connected Hausdorff group

G. (Consider the set G of all functions f : [0, 1)→ H such that there is a sequence

0 = a0 < a1 < a2 < · · · < an = 1 with f being constant on each [ak, ak−1). Define a

group structure on G by fg(t) = f(t)g(t) and f−1(t) = (f(t))−1, where f and g ∈ G
and t ∈ [0, 1). The identity of G is the function identically equal to e in H. For

ε > 0 and any neighbourhood V of e in H let U(V, ε) be the set of all f such that

λ({t ∈ [0, 1) : f(t) 6∈ V }) < ε, where λ is Lebesgue measure on [0, 1). The set of

all U(V, ε) is an open basis for a group topology on G. The constant functions

form a closed subgroup of G topologically isomorphic to H.)
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A5.3 Embedding in Divisible Groups

A5.3.1 Remark. Products of topological spaces are discussed in detail in

Chapters 8, 9 and 10. The most important result on products is, of course,

Tychonoff’s Theorem 10.3.4 which says that any (finite or infinite) product (with

the product topology) of compact topological spaces is compact. Further, Theorem

10.3.4 says that a product of topological spaces {(Xi,τ i) : i ∈ I} is compact only if

each of the spaces (Xi,τ i) is compact.

If each Gi is a group then
∏
i∈I
Gi has the obvious group structure (

∏
i∈I
gi ·

∏
i∈I
hi =∏

i∈I
(gihi), where gi and hi ∈ Gi).

If {Gi : i ∈ I} is a family of groups then the restricted direct product (weak direct

product), denoted
∏
i∈I

rGi, is the subgroup of
∏
i∈I
Gi consisting of elements

∏
i∈I
gi, with

gi = e, for all but a finite number of i ∈ I.

From now on, if {Gi : i ∈ I} is a family of topological groups then
∏
i∈I
Gi will

denote the direct product with the product topology. Further
∏
i∈I

rGi will denote the

restricted direct product with the topology induced as a subspace of
∏
i∈I
Gi.

A5.3.2 Proposition. If each Gi, i ∈ I is a topological group, then
∏
i∈I
Gi is a

topological group. Further
∏
i∈I

rGi is a dense subgroup of
∏
i∈I
Gi.

Proof. Exercise.

A5.3.3 Proposition. Let {Gi : i ∈ I} be a family of topological groups. Then

(i)
∏
i∈I
Gi is locally compact if and only if each Gi is locally compact and all but

a finite number of Gi are compact.

(ii)
∏
i∈I

rGi is locally compact Hausdorff if and only if each Gi is locally compact

Hausdorff and Gi = {e} for all but a finite number of Gi.

Proof. Exercise.
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To prove the result we foreshadowed: every infinite abelian group admits a

non-discrete Hausdorff group topology we need some basic group theory.

A5.3.4 Definition. A group D is said to be divisible if for each n ∈ N,

{xn : x ∈ D} = D; that is, every element of D has an nth root.

A5.3.5 Examples. It is easily seen that the groups R and T are divisible, but the

group Z is not divisible.

A5.3.6 Proposition. Let H be a subgroup of an abelian group G. If φ is any

homomorphism of H into a divisible abelian group D, then φ can be extended to

a homomorphism Φ of G into D.

Proof. By Zorn’s Lemma 10.2.16, it suffices to show that if x 6∈ H, φ can be

extended to the group H0 = {xnh : h ∈ H,n ∈ Z}.

Case (i). Assume xn 6∈ H, n ∈ N. Then define Φ(xnh) = φ(h), for all n ∈ Z. Clearly Φ is

well-defined, a homomorphism, and extends φ on H.

Case (ii). Let k ≥ 2 be the least positive integer n such that xn ∈ H. So φ(xk) = d ∈ D.

As D is divisible, there is a z ∈ D such that zk = d. Define Φ(xnh) = φ(h)zn, for all

n ∈ Z. Clearly Φ is well-defined, a homomorphism and extends φ on H.
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A5.3.7 Corollary. If G is an abelian group, then for any g and h in G, with

g 6= h, there exists a homomorphism φ : G → T such that φ(g) 6= φ(h); that is, φ

separates points of G.

Proof. Clearly it suffices to show that for each g 6= e in G, there exists a

homomorphism φ : G→ T such that φ(g) 6= e.

Case (i). Assume gn = e, and gk 6= e for 0 < k < n. Let H = {gm : m ∈ Z}. Define

φ : H → T by φ(g) = an nth root of unity = r, say, (r 6= e), and φ(gm) = rm, for each m.

Now extend φ to G by Proposition A5.3.6.

Case (ii). Assume gn 6= e, for all n > 0. Define φ(g) = z, for any z 6= e in T. Extend φ

to H and then, by Proposition A5.3.6, to G.

For later use we also record the following corollary of Proposition A5.3.6.

A5.3.8 Proposition. Let H be an open divisible subgroup of an abelian

topological group G. Then G is topologically isomorphic to H × G/H. (Clearly

G/H is a discrete topological group.)

Proof. Exercise.

A5.3.9 Theorem. If G is any infinite abelian group, then G admits a non-

discrete Hausdorff group topology.

Proof. Let {φi : i ∈ I} be the family of distinct homomorphisms of G into T. Put

H =
∏
i∈I
Ti, where each Ti = T. Define a map f : G→ H =

∏
i∈I
Ti by putting f(g) =

∏
i∈I
φi(g).

Since each φi is a homomorphism, f is also a homomorphism. By Corollary A5.3.7,

f is also one-one; that is, G is isomorphic to the subgroup f(G) of H.

As H is a Hausdorff topological group, f(G), with the topology induced from

H, is also a Hausdorff topological group. It only remains to show that f(G) is not

discrete.

Suppose f(G) is discrete. Then, by Proposition A5.2.8, f(G) would be a closed

subgroup of H. But by Tychonoff’s Theorem 10.3.4, H is compact and so f(G)would

be compact; that is, f(G) would be an infinite discrete compact space–which is

impossible. So we have a contradiction, and thus f(G) is not discrete.
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A5.3.10 Remark. Corollary A5.3.7 was essential to the proof of Theorem A5.3.9.

This Corollary is a special case of a more general theorem which will be discussed

later. We state the result below.

A5.3.11 Theorem. If G is any LCA-group, then for any g and h in G, with

g 6= h, there exists a continuous homomorphism φ : G→ T such that φ(g) 6= φ(h).

Exercises A5.3

1. If {Gi : i ∈ I} is a family of topological groups, show that

(i)
∏
i∈I
Gi is a topological group;

(ii)
∏
i∈I

rGi is a dense subgroup of
∏
i∈I
Gi;

(iii)
∏
i∈I
Gi is locally compact if and only if each Gi is locally compact and all but

a finite number of Gi are compact;

(iv)
∏
i∈I

rGi is locally compact Hausdorff if and only if each Gi is locally compact

Hausdorff and Gi = {e} for all but a finite number of Gi.

2. Show that if G is an abelian topological group with an open divisible subgroup

H, then G is topologically isomorphic to H ×G/H.

3. Let G be a torsion-free abelian group (that is, gn 6= e for each g 6= e in G, and

each n ∈ N). Show that if g and h are in G with g 6= h, then there exists a

homomorphism φ of G into R such that φ(g) 6= φ(h).
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4. Let G be a locally compact totally disconnected topological group.

(i) Show that there is a neighbourhood base of the identity consisting of

compact open subgroups.

(Hint: You may assume that any locally compact Hausdorff totally disconnected

topological space has a base for its topology consisting of compact open

sets.)

(ii) If G is compact, show that the “subgroups” in (i) can be chosen to be

normal.

(iii) Hence show that any compact totally disconnected topological group is

topologically isomorphic to a closed subgroup of a product of finite discrete

groups.

(Hint: Let {Ai : i ∈ I} be a base of neighbourhoods of the identity consisting

of open normal subgroups. Let φi : G → G/Ai, i ∈ I, be the canonical

homomorphisms, and define Φ : G→
∏
i∈I

(G/Ai) by putting Φ(g) =
∏
i∈I
φi(gi).)

5. Let f : R → T be the canonical map and θ any irrational number. On the

topological space G = R2 × T2 define an operation.

(x1, x2, t1, t2) · (x′1, x′2, t′1, t′2) = (x1 + x′1, x2 + x′2, t1 + t′1 + f(x2x
′
1), t2 + t′2 + f(θx2x

′
1)).

Show that, with this operation, G is a topological group and that the commutator

subgroup of G is not closed in G. (The commutator subgroup of a group G is

the subgroup of G generated by the set {g−1h−1gh : g, h ∈ G}.)

6. Let I be a set directed by a partial ordering ≥. For each i ∈ I, let there be given

a Hausdorff topological group Gi. Assume that for each i and j in I such that

i < j, there is an open continuous homomorphism fji of Gj into Gi. Assume

further that if i < j < k, then fki = fjifkj. The object consisting of I, the groups

Gi and the mappings fji, is called an inverse mapping system or a projective

mapping system. The subset H of the product group G =
∏
i∈I
Gi consisting of all∏

i∈I
(xi) such that if i < j then xi = fji(xj) is called the injective limit or projective

limit of the inverse mapping system. Show that H is a closed subgroup of G.



349

A5.4 Baire Category and Open Mapping Theorems

A5.4.1 Theorem. (Baire Category Theorem for Locally Compact Spaces)

If X is a locally compact regular space, then X is not the union of a countable

collection of closed sets all having empty interior.

Proof. Suppose that X =
∞⋃
n=1

An, where each An is closed and Int(An) = φ, for each

n. Put Dn = X\An. Then each Dn is open and dense in X. We shall show that
∞⋂
n=1

Dn 6= Ø, contradicting the equality X =
∞⋃
n=1

An.

Let U0 be a non-empty open subset of X such that U0 is compact. As D1 is

dense in X, U0 ∩D1 is a non-empty open subset of X. Using the regularity of X we

can choose a non-empty open set U1 such that U1 ⊆ U0 ∩D1. Inductively define Un so

that each Un is a non-empty open set and Un ⊆ Un−1 ∩Dn. Since U0 is compact and

each Un is non-empty,
∞⋂
n=1

Un 6= Ø. This implies
∞⋂
n=1

Dn 6= Ø. This contradiction the

supposition is false and so the theorem is proved.

A5.4.2 Remark. We saw that the Baire Category Theorem was proved for

complete metric spaces in Theorem 6.5.1. The above Theorem also remains valid

if “locally compact regular” is replaced by “locally compact Hausdorff”.

A5.4.3 Corollary. Let G be any countable locally compact Hausdorff

topological group. Then G has the discrete topology.

Proof. Exercise.
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A5.4.4 Theorem. (Open Mapping Theorem for Locally Compact Groups)

Let G be a locally compact group which is σ-compact; that is, G =
∞⋃
n=1

An, where

each An is compact. Let f be any continuous homomorphism of G onto a locally

compact Hausdorff group H. Then f is an open mapping.

Proof. Let U be the family of all symmetric neighbourhoods of e in G and U ′ the

family of all neighbourhoods of e in H. It suffices to show that for every U ∈ U there

is a U ′ ∈ U ′ such that U ′ ⊆ f(U).

Let U ∈ U. Then there exists a V ∈ U having the property that V is compact

and (V )−1V ⊆ U . The family of sets {xV : x ∈ G} is then an open cover of G and

hence also of each compact set An. So a finite collection of these sets will cover any

given An. So a finite collection of these sets will cover any given An. Thus there is

a countable collection {xnV : n ∈ N} which covers G.

So H =
∞⋃
n=1

f(xnV ) =
∞⋃
n=1

f(xnV ) =
∞⋃
n=1

f(xn)f(V ). This expresses H as a countable

union of closed sets, and by the Baire Category Theorem 5.4.1, one of them must

have non-empty interior; that is, f(xm)f(V ) contains an open set. Then f(V ) contains

an open subset V ′ of H.

To complete the proof select any point x′ of V ′ and put U ′ = (x′)−1V ′. Then we

have

U ′ = (x′)−1V ′ ⊆ (V ′)−1V ′ ⊆ (f(V ))−1f(V ) = f((V )−1V ) ⊆ f(U),

as required.

A5.4.5 Remark. We met the Open Mapping Theorem for Banach Spaces in

Theorem 6.5.5

Exercises A5.4

1. Show that any countable locally compact Hausdorff group has the discrete

topology.
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2. Show that the Open Mapping Theorem A5.4.4 does not remain valid if either

of the conditions “σ-compact” or “onto” is deleted.

3. Show that any continuous homomorphism of a compact group onto a Hausdorff

group is an open mapping.

4. Show that for any n ∈ N, the compact topological group Tn is topologically

isomorphic to the quotient group Rn/Zn.

5. (i) Let φ be a homomorphism of a topological group G into a topological group

H. If X is a non-empty subset of G such that the restriction φ : X → H is

an open map, show that φ : G→ H is also an open map.

[Hint: For any subset U of G, φ(U) =
⋃
g∈G

φ(U ∩ gX).]

(ii) Hence show that if G and H are locally compact Hausdorff groups with φ a

continuous homomorphism : G → H such that for some compact subset K

of G, φ(K) generates H algebraically, then φ is an open map.

[Hint: Show that there is a compact neighbourhood U of e such that K ⊆ U .

Put X = the subgroup generated algebraically by U .]

6. Let G and H be topological groups, and let η be a homomorphism of H into

the group of automorphisms of G. Define a group structure on the set G × H
by putting

(g1, h1) · (g2, h2) = (g1η(h1)(g2), h1h2).

Further, let (g, h) 7→ η(h)(g) be a continuous map of G×H onto G. Show that

(i) Each η(h) is a homeomorphism of G onto itself; and

(ii) With the product topology and this group structure G×H is a topological

group. (It is called the semidirect product of G by H that is determined by

η, and is denoted by Goη H.)
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7. (i) Let G be a σ-compact locally compact Hausdorff topological group with N

a closed normal subgroup of G and H a closed subgroup of G such that

G = NH and N ∩ H = {e}. Show that G is topologically isomorphic to an

appropriately defined semidirect product N oη H.

[Hint: Let η(h)(n) = h−1nh, h ∈ H and n ∈ N .]

(ii) If H is also normal, show that G is topologically isomorphic to N ×H.

(iii) If A and B are closed compactly generated subgroups of a locally compact

Hausdorff abelian topological group G such that A ∩ B = {e} and G = AB,

show that G is topologically isomorphic to A×B.

8. Let G and H be Hausdorff topological groups and f a continuous homomorphism

of G into H. If G has a neighbourhood U of e such that U is compact and f(U)

is a neighbourhood of e in H, show that f is an open map.

A5.5 Subgroups and Quotient Groups of RRRn

In this section we expose the structure of the closed subgroups and Hausdorff

quotient groups of Rn, n ≥ 1.

Notation. Unless explicitly stated otherwise, for the remainder of this chapter we

shall focus our attention on abelian groups which will in future be written additively.

However, we shall still refer to the product of two groups A and B (and denote it

by A × B) rather than the sum of the two groups. We shall also use An to denote

the product of n copies of A and
∏
i∈I
Ai for the product of the groups Ai, i ∈ I. The

identity of an abelian group will be denoted by 0.

A5.5.1 Proposition. Every non-discrete subgroup G of R is dense.

Proof. We have to show that for each x ∈ R and each ε > 0, there exists an

element g ∈ G ∩ [x− ε, x+ ε].

As G is not discrete, 0 is not an isolated point. So there exists an element

xε ∈ (G \ {0})∩ [0, ε]. Then the intervals [nxε, (n+ 1)xε], n = 0,±1,±2, . . . cover R and are

of length ≤ ε. So for some n, nxε ∈ [x− ε, x+ ε] and of course nxε ∈ G.
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A5.5.2 Proposition. Let G be a closed subgroup of R. Then G = {0}, G = R
or G is a discrete group of the form aZ = {0, a,−a, 2a,−2a, . . . }, for some a > 0.

Proof. Assume G 6= R. As G is closed, and hence not dense in R, G must be

discrete. If G 6= {0}, then G contains some positive real number b. So [0, b] ∩ G is

a closed non-empty subset of the compact set [0, b]. Thus [0, b] ∩ G is compact and

discrete. Hence [0, b] ∩G is finite, and so there exists a least element a > 0 in G.

For each x ∈ G, let
[
x
a

]
denote the integer part of x

a
. Then x −

[
x
a

]
a ∈ G and

0 ≤ x−
[
x
a

]
a < a. So x−

[
x
a

]
a = 0; that is, x = na, for some n ∈ Z, as required.

A5.5.3 Corollary. If a, b ∈ R then gp {a, b}, the subgroup of R generated by

{a, b}, is closed if and only if a and b are rationally dependent. [Real numbers a

and b are said to be rationally dependent if there exists integers n and m such

that na = bm.]

Proof. Exercise.

A5.5.4 Examples. gp {1,
√

2} and gp {
√

2,
√

3} are dense in R.

A5.5.5 Corollary. Every proper Hausdorff quotient group of R is topologically

isomorphic to T.

Proof. If R/G is a proper Hausdorff quotient group of R, then, by Proposition

A5.2.22, G is a closed subgroup of R. By Proposition A5.5.2, G is of the form aZ,

a > 0. Noting that the map x → 1
a
x is a topological group isomorphism of R onto

itself such that aZ maps to Z, we see that R/aZ is topologically isomorphic to R/Z
which, we know, is topologically isomorphic to T.
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A5.5.6 Corollary. Every proper closed subgroup of T is finite.

Proof. Identify T with the quotient group R/Z and let p : R→ R/Z be the canonical

quotient homomorphism. If G is any proper closed subgroup of R/Z then p−1(G) is

a proper closed subgroup of R. So p−1(G) is discrete. By Proposition A5.2.16, the

restriction p : p−1(G) → G is an open map, so we see that G is discrete. As G is also

compact, it is finite.

We now proceed to the investigation of closed subgroups of Rn, for n ≥ 1. Here

we use the fact that Rn is a vector space over the field of real numbers.

Notation. If A is a subset of Rn, we denote by spR(A) the subgroup

{α1a1 + · · ·+ αmam : αi ∈ R, ai ∈ A, i = 1, . . . ,m, m a positive integer};

and by spQ(A) the subgroup

{α1a1 + · · ·+ αmam : αi ∈ Q, ai ∈ A, i = 1, . . . , m, m a positive integer};

and by gp (A) the subgroup of Rn generated by A.

Clearly gp (A) ⊆ spQ(A) ⊆ spR(A). We define rank (A) to be the dimension of the

vector space spR(A).

A5.5.7 Proposition. If {a1, . . . , am} is a linearly independent subset of Rn, then

gp {a1, . . . , am} is topologically isomorphic to Zm.

Proof. Choose elements am+1, . . . , an so that {a1, . . . , am, am+1, . . . , an} is a basis for

Rn. It is clear that if {c1, . . . , cn} is the canonical basis for Rn, then gp {c1, . . . , cm} is

topologically isomorphic to Zm. By Exercises A5.5#2, every linear transformation

of Rn onto itself is a homeomorphism. So the linear map taking ai to ci, i = 1, . . . , n,

yields a topological group isomorphism of gp {a1, . . . , am} onto gp {c1, . . . , cm} = Zm.
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A5.5.8 Proposition. Let G be a discrete subgroup of Rn of rank p, and

a1, . . . , ap ∈ G a basis for spR(G). Let P be the closed parallelotope with centre

0 and basis vectors a1, . . . , ap; that is, P =

{
P∑
i=1

riai : −1 ≤ ri ≤ 1, i = 1, . . . , p

}
. Then

G∩P is finite and gp (G∩P ) = G. Further, every point in G is a linear combination

of {a1, . . . , ap} with rational coefficients; that is, G ⊆ spQ{a1, . . . , ap}.

Proof. As P is compact and G is discrete (and closed in Rn), G∩P is discrete and

compact, and hence finite.

Now G ⊆ spR{a1, . . . , ap} implies that each x ∈ G can be written as x =
p∑
i=1

tiai,

ti ∈ R. For each positive integer m, the point

zm = mx−
p∑
i=1

[mti]ai =

p∑
i=1

(mti − [mti])ai

where [ ] denotes “integer part of”, belongs to G. As 0 ≤ mti − [mti] < 1, zm ∈ P .

Hence x = z1 +
p∑
i=1

[ti]ai, which says that gp (G ∩ P ) = G.

Further, as G ∩ P is finite there exist integers h and k such that zh = zk. So

(h− k)ti = [hti]− [kti], x ∈ spQ{a1, . . . , ap}.

A5.5.9 Corollary. Let {a1, . . . , ap} be a linearly independent subset of Rn, and

b =
p∑
i=1

tiai, ti ∈ R. Then gp {a1, . . . , ap, b} is discrete if and only if t1, . . . , tp are

rational numbers.

Proof. Exercise.
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A5.5.10 Theorem. Every discrete subgroup G of Rn of rank p is generated

by p linearly independent vectors, and hence is topologically isomorphic to Zp.

Proof. Since G is of rank p, G ⊆ spR{a1, . . . , ap}, where a1, . . . , ap are linearly

independent elements of G. By Proposition A5.5.8, G = gp {g1, . . . , gr} where each

gi ∈ spQ{a1, . . . , ap}. So there exists a d ∈ Z such that gi ∈ gp
{

1
d
a1, . . . ,

1
d
ap
}

, i = 1, . . . , r.

Now, if {b1, . . . , bp} is a linearly independent subset of G, then bi =
∑
βijaj, where

the determinant, det(βij) 6= 0, and βij ∈ 1
d
Z. So det(βij) ∈ 1

dp
Z. So out of all such

{b1, . . . , bp} there exists one with |det(βij)| minimal. Let this set be denoted by

{b1, . . . , bp}. We claim that G = gp {b1, . . . , bp} and hence is topologically isomorphic

to Zp.

Suppose G 6= gp {b1, . . . , bp}. Then there exists an element g ∈ G with g =
p∑
i=1

λibi

and not all λi ∈ Z. Without loss of generality we can assume that λ1 = r
s
, r 6= 0 and

s > 1. Since b1 ∈ G we can also assume that |λ1| < 1 (by subtracting multiples of b1,

if necessary). Then putting b′1 = g, b′i = bi, i = 2, . . . , p and b′i =
∑
β′ijaj we see that

det(β′ij) = det


λ1 0 0 . . . 0
λ2 1 0 . . . 0
λ3 0 1 . . . 0
...

...
...

. . .
...

λp 0 0 . . . 1

 det(βij) = λ1 det(βij).

As |λ1| < 1 this means that
∣∣det(β′ij)

∣∣ < |det(βij)|, which is a contradiction.
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A5.5.11 Proposition. Every non-discrete closed subgroup H of Rn, n ≥ 1,

contains a line through zero.

Proof. As H is non-discrete there exists a sequence h1, h2, . . . of points in H

converging to 0, with each hn 6= 0. Let C be an open cube with centre 0 containing

all the hn. Let mn denote the largest integer m > 0 such that mhn ∈ C. The points

mnhn, n = 1, 2, . . . lie in a compact set C and therefore have a cluster point a ∈ C ∩H.

If ‖mnhn − a‖ ≤ ε we have ‖(mn + 1)hn − a‖ ≤ ε+ ‖hn‖, where ‖ ‖ denotes the usual

norm in Rn. Since hn → 0 as n → ∞ it follows that a is also a cluster point of the

sequence (mn + 1)hn, n = 1, 2, . . . , whose points belong to the closed set Rn \C. Hence

a ∈ C ∩ (Rn \ C)–the boundary of C, which implies a 6= 0.

Let t be any real number. Since |tmn − [tmn]| < 1, the relation ‖mnhn − a‖ ≤ ε

implies that ‖[tmn]hn − ta‖ ≤ |t|ε + ‖hn‖; since hn → 0 as n → ∞, ta is a limit point of

the sequence [tmn]hn, n = 1, 2, . . . . But the points of this sequence belong to H and

so ta ∈ H, since H is closed. So H contains the line through a 6= 0 and 0.
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A5.5.12 Theorem. Let G be a closed subgroup of Rn, n ≥ 1. Then there are

(closed) vector subspaces U , V and W of Rn such that

(i) Rn = U × V ×W

(ii) G ∩ U = U

(iii) G ∩ V is discrete

(iv) G ∩W = {0}

(v) G = (G ∩ U)× (G ∩ V ).

Proof. Let U be the union of all lines through 0 lying entirely in G. We claim that

U is a vector subspace of Rn.

To see this let x and y be in U and λ, µ and δ ∈ R. Then δλx is in U and hence

also in G. Similarly δµy ∈ G. So δ(λx+µy) = δλx+ δµy ∈ G. As this is true for all δ ∈ R,

we have that λx+ µy ∈ U . So U is a vector subspace of Rn, and G ∩ U = U .

Let U ′ be any complementary subspace of U ; that is, Rn = U × U ′. So if g ∈ G,

then g = h+ k, h ∈ U , k ∈ U ′. As U ⊆ G, h ∈ G so k = g− h ∈ G. Hence G = U × (G∩U ′).

Put V = spR(G ∩ U ′) and W equal to a complementary subspace in U ′ of V . So

G∩W = {0}. Clearly G∩V contains no lines through 0, which by Proposition A5.5.11,

implies that G ∩ V is discrete.

A5.5.13 Theorem. Let G be a closed subgroup of Rn, n ≥ 1. If r equals the

rank of G (that is, spR(G) has dimension r) then there exists a basis a1, . . . , an of

Rn such that

G = spR{a1, . . . , ap} × gp {ap+1, . . . , ar}.

So G is topologically isomorphic to Rp × Zr−p and the quotient group Rn/G is

topologically isomorphic to Tr−p × Rn−r.

Proof. Exercise. �
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Before stating the next theorem let us record some facts about free abelian

groups.

A5.5.14 Definition. A group F is said to be a free abelian group if it is the

restricted direct product of a finite or infinite number of infinite cyclic groups.

Each of these infinite cyclic groups has a single generator and the set S of these

generators is said to be a basis of F .

A5.5.15 Remarks.

(i) It can be shown that an abelian group F is a free abelian group with basis S if

and only if S is a subset of F with the property that every map f of S into any

abelian group G can be extended uniquely to a homomorphism of F into G.

(ii) One consequence of (i) is that any abelian group G is a quotient group of some

free abelian group. (Let F be the free abelian group with basis S of the same

cardinality as G. Then there is a bijection φ of S onto G. Extend this map to

a homomorphism of F onto G.)

(iii) Proposition A5.5.7 together with Theorem A5.5.10 show that any subgroup of

Zn is isomorphic to Zm, for some m. In other words, any subgroup of a free

abelian group with finite basis is a free abelian group with finite basis. It can

be shown that any subgroup of a free abelian group is a free abelian group. For

details see A.G. Kurosh Kurosh [145].

(iv) Finally, we record that if the abelian group G admits a homomorphism φ onto

a free abelian group F then G is isomorphic to F × A, where A is the kernel of

φ. (Note that is suffices to produce a homomorphism θ of F into G such that

φθ is the identity map of F . To produce θ, let S be a basis of F and for each

s ∈ S choose a gs ∈ G such that φ(gs) = s. As F is a free abelian group the map

s → gs of S into G can be extended to a homomorphism θ of F into G. Clearly

φθ acts identically on F .)
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A5.5.16 Theorem. Let H = V × F , where V is a divisible abelian Hausdorff

group and F is a discrete free abelian group. If G is a closed subgroup of H,

then there exists a discrete free abelian subgroup F ′ of H isomorphic to F such

that (i) H = V × F ′, and (ii) G = (G ∩ V )× (G ∩ F ′).

Proof. Let π1 : H → V and π2 : H → F be the projections. The restriction of π2 to G

is a homomorphism from G to F with kernel G ∩ V . Since F is a free abelian group,

and every subgroup of a free abelian group is a free abelian group, G/(G ∩ V ) is free

abelian, and therefore, by the above Remark (iv), G is algebraically isomorphic to

(G ∩ V )× C, where C is a free abelian subgroup of G.

Let p1 and p2 be the restrictions of π1 and π2 to C, respectively. Then p2 is

one-one as C ∩ V = C ∩G ∩ V = {0}.

C F

V

................................................................................................................................................................... ............
p2

..............................................................................................................................................................
.....
.......
.....

p1

.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
................
............

θ

We can define a homomorphism θ : p2(C)→ V by putting θ(p2(c)) = p1(c) and then

use Proposition 5.3.6 to extend θ to a homomorphism of F into the divisible group

V . So θp2 = p1. If we now define a homomorphism φ : F → H by φ(x) = θ(x) + x and

put F ′ = φ(F ) we have that H = V × F ′, algebraically; the decomposition being given

by

v + f = [v − θ(f)] + [θ(f) + f ], v ∈ V and f ∈ F.

Also C ⊆ F ′, since for each c in C we have

c = p1(c) + p2(c) = θ(p2(c)) + p2(c) = φ(p2(c)) ∈ φ(F ) = F ′.

So (i) and (ii) are satisfied algebraically.

Now φ : F → F ′ is an algebraic isomorphism and since φ−1 is induced by π2, φ−1

is continuous. But F is discrete, so φ is a homeomorphism and F ′ is a discrete free

abelian group.
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To show that H has the product topology with respect to the decomposition

H = V × F ′, it suffices to show that the corresponding projections π′1 : H → V and

π′2 : H → F ′ are continuous. But this is clearly the case since π′1(h) = π1(h)−θ(π2(h)) and

π′2(h) = π2(h) + θ(π2(h)), for each h ∈ H. Hence the decomposition G = (G∩ V )× (G∩F ′)
also has the product topology.

A5.5.17 Corollary. Let G be a closed subgroup of Rn × Zm. Then G is

topologically isomorphic to Ra × Zb, where a ≤ n and a + b ≤ n + m. Further,

(Rn × Zm)/G is topologically isomorphic to Rc × Td × D, where D is a discrete

finitely generated abelian group (with f ≤ m generators) and c+ d ≤ n.

Proof. Exercise. �

A5.5.18 Corollary. Let G be a closed subgroup of Rn × Tm ×D, where D is a

discrete abelian group. Then G is topologically isomorphic to Ra×Tb×D′, where

D′ is a discrete group and a+ b ≤ n+m. Further (Rn × Tm ×D)/G is topologically

isomorphic to Rc × Td ×D′′, where D′′ is a discrete group and c+ d ≤ n+m.

Proof. Let F be a discrete free abelian group with D as a quotient group. (See

Remarks A5.5.15.) Then there is a natural quotient homomorphism p of Rn+m × F
onto Rn × Tm × D. So G is a quotient group of p−1(G) ≤ Rn+m × F . Now Theorem

5.5.16 together with Theorem A5.5.13 describe both p−1(G) and the kernel of the

map of p−1(G) onto G, and yield the result.

A5.5.19 Remark. In Corollary A5.5.18 we have not said that a ≤ n, b ≤ m and

c ≤ n. These inequalities are indeed true. They follow from the above and the

Pontryagin-van Kempen Duality Theorem.
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A5.5.20 Corollary. Let G be a closed subgroup of Tn. Then G is topologically

isomorphic to Ta ×D where D is a finite discrete group and a ≤ n.

Proof. Exercise.

A5.5.21 Definition. The topological groups G and H are said to be locally

isomorphic if there are neighbourhoods V of e in G and U of e in H and a

homeomorphism f of V onto U such that if x, y and xy all belong to V then

f(xy) = f(x)f(y).

A5.5.22 Example. R and T are obviously locally isomorpic topological groups.

A5.5.23 Proposition. If D is a discrete normal subgroup of a topological

group G, then G and G/D are locally isomorphic.

Proof. Exercise.

A5.5.24 Lemma. Let U be a neighbourhood of 0 in an abelian topological

group G and V be a neighbourhood of 0 in Rn, n ≥ 1. If there is a continuous map

f of V onto U such that x ∈ V , y ∈ V and x + y ∈ V implies f(x + y) = f(x) + f(y),

then f can be extended to a continuous homomorphism of Rn onto the open

subgroup of G generated by U .

Proof. Exercise �
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A5.5.25 Theorem. Let G be a Hausdorff abelian topological group locally

isomorphic to Rn, n ≥ 1. Then G is topologically isomorphic to Ra×Tb×D, where

D is a discrete group and a+ b = n.

Proof. By Lemma A5.5.24 there is a continuous homomorphism f of Rn onto

an open subgroup H of G. As G is locally isomorphic to Rn, it has a compact

neighbourhood of 0 and so is locally compact. Hence H is locally compact and the

Open Mapping Theorem A5.4.4 says that f is an open map; that is, H is a quotient

group of Rn. Further the kernel K of f is discrete since otherwise there would be

elements x 6= 0 of K arbitrarily close to 0 such that f(x) = 0, which is false as f maps

a neighbourhood of 0 homeomorphically into G. So Theorem A5.5.13 tells us that

H is topologically isomorphic to Ra × Tb, with a+ b = n.

Now H is an open divisible subgroup of G which, by Proposition A5.3.8, implies

that G is topologically isomorphic to H ×D, where D = G/H is discrete. Thus G is

topologically isomorphic to Ra × Tb ×D, as required.

The next corollary follows immediately.

A5.5.26 Corollary. Any connected topological group locally isomorphic to

Rn, n ≥ 1, is topologically isomorphic to Ra × Tb, where a+ b = n.

A5.5.27 Remark. We conclude this section by noting that some of the results

presented here can be extended from finite to infinite products of copies of R.

For example, it is known that any closed subgroup of a countable product
∞∏
i=1

Ri

of isomorphic copies Ri of R is topologically isomorphic to a countable product of

isomorphic copies of R and Z. However, this result does not extend to uncountable

products. For details of the countable products case, R. Brown and Morris [193]

and Leptin [149]. The uncountable case is best considered in the context of pro-Lie

groups, Hofmann and Morris [112].
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Exercises A5.5

1. If a, b ∈ R show that the subgroup of R generated by {a, b} is closed if and only

if a and b are rationally dependent.

2. Prove that any linear transformation of the vector space Rn, n ≥ 1, onto itself

is a homeomorphism.

3. (i) Let {a1, . . . , ap} be a linearly independent subset of Rn, n ≥ 1, and b =
p∑
i=1

tiai,

ti ∈ R. Show that gp {a1, . . . , ap, b} is discrete if and only if t1, . . . , tp are rational

numbers.

(ii) Hence prove the following (diophantine approximation) result: Let θ1, . . . , θn

be n real numbers. In order that for each ε > 0 there exist an integer q and

n integers pi, i = 1, . . . , n such that

|qθi − pi| ≤ ε, i = 1, . . . , n

where the left hand side of at least one of these inequalities does not vanish,

it is necessary and sufficient that at least one of the θi be irrational.

4. Prove Theorem A5.5.13 using the results preceding the Theorem.

5. Prove Corollary A5.5.17 using the results preceding the Corollary.

5. Prove Corollary A5.5.20 using the results preceding the Corollary.

6. Prove Proposition A5.5.23 using the results preceding the Proposition.

7. Prove that if a, b, n,m are integers with a+ b = n+m and D1 and D2 are discrete

groups, then Ra × Tb ×D1 is locally isomorphic to Rn × Tm ×D2.

8. Show that if G and H are locally isomorphic topological groups then there exists

a neighbourhood V ′ of e in G and U ′ of e in H and a homeomorphism f of V ′

onto U ′ such that if x, y and xy all belong to V ′ then f(xy) = f(x)f(y) and if x′,

y′ and x′y′ all belong to U ′ then f−1(x′y′) = f−1(x′)f−1(y′).
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9. (i) Verify that any topological group locally isomorphic to a Hausdorff topological

group is Hausdorff.

(ii) Verify that any connected topological group locally isomorphic to an abelian

group is abelian.

(iii) Deduce that any connected topological group locally isomorphic to Rn,

n ≥ 1, is topologically isomorphic to Ra × Tb, where a+ b = n.

10. Prove Proposition A5.5.24 using the results preceding the Proposition.

11. Let U be a neighbourhood of 0 in an abelian topological group G and V a

neighbourhood of 0 in Rn, n ≥ 1. If there is a continuous map f of V onto U

such that x ∈ V , y ∈ V and x + y ∈ V implies f(x + y) = f(x) + f(y), show that f

can be extended to a continuous homomorphism of Rn onto the open subgroup

of G generated by U .
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Sierpiński, 283

Tychonoff

topology, 222

Tychonoff space, 235, 236–238, 240, 243,

245, 247, 248, 250

Tychonoff’s Theorem, 178, 221, 226,

232, 234

Ulam, Stanislaw, 279

uncountable set, 257

union

empty, 23

unit ball, 166

unitary

matrix, 331

unitary group, 331

special, 331

upper bound, 69, 229, 230, 231, 233

upper semicontinuous, 152

Urysohn’s Lemma, 246

Urysohn’s Metrization Theorem, 242

Urysohn’s Theorem, 207, 243

Urysohn’s Theorem and its Converse, 209

usual topology, 75

van der Waerden, Bartel Leendert, 280

vector space

normed, 111

weak direct product, 344



398 INDEX

weather, 290

Weierstrass Intermediate Value Theorem,

102

Well-Ordering Theorem, 230

Z, 42, 75

0-dimensional, 105

Zaremba, Stanislaw, 284

Zentralblatt für Mathematik, 285

zero-dimensional, 105

Zorn’s Lemma, 226, 230, 230, 231, 233


