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This short paper presents an original, simple demonstration of the Fundamental
Theorem of Calculus. This theorem asserts that finding slopes of tangent lines (i.e.
differentiation) and finding areas under curves (i.e. integration) are inverse operations
save a constant. Can we prove this? Yes. Most textbooks, in fact, present an elegant,
simple proof for this theorem. However, the standard proofs usually omit references to
curves, slopes, and areas--a weakness that can make the proof unnecessarily abstract and

difficult to understand.

In the next few pages we demonstrate visually the inverse relationship between
differentiation and integration; we will see that finding areas under a curve is really the
“opposite” of finding slopes of tangent-lines. Before beginning, I assume that the reader

is familiar with Riemann’s Sums and thus the correspondence between the function

lim z h(x, )Ax and the area under a curve.
Ax—0 )

For our demonstration, we will need some
arbitrary function. For this, we will use the function

fix) = x*. To the right is a graph of that function:
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Figure 1. f(x)



If we so wanted, we could construct a graph of the slope of every line tangent to
fi{x) at x. Looking at the above graph we see that a line tangent to f{x) at x = 0.2 would
have a slope of 0.4; a line tangent at x = 0.6 would have a slope of 1.2; and a line tangent
at x = 1 would have a slope of 2. Plotting these and similar points we would end up

drawing a graph that looks like this:
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Figure 2. f(x)

This graph is actually the plot of the function f’(x) = 2x, or what we usually call the

derivative of f{x). So far we’ve discussed differentiation; let’s move on to integration.

Imagine we wanted to reverse the above procedure. Imagine we are given an
arbitrary function g(x) and asked to draw the graph of another function G(x) with the
following condition: the slope of every line tangent to G(x) at some x is determined by

g(x). How would we go about constructing G(x)?

Let’s use a simple example. We begin with the function g(x) = 2x. We would
like to draw the graph of another function G(x) whose tangent-line slopes are determined
by g(x). For instance, the line tangent to G(x) at x = 0.1 should have the slope g(0.1), or

0.2; the line tangent to G(x) at x = 0.3 should have the slope g(0.3), or 0.6; and so on.



While we don’t know yet what the graph of the function G(x) looks like, we can already

draw a few of its tangent lines:
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Figure 3. The Infancy of G(x)

Remember, we are not yet drawing G(x). All we are plotting are some of its tangent
lines, albeit vertically displaced. From the above graph you can see how the segment of
G(x) that passes through x = 0.1 has a slope of g(0.1), or 0.2; the segment that passes

through x = 0.3 will have a slope of 0.6; and so on. We’re on the right track!

However, the segments above clearly do not compose the function G(x) we are
trying so hard to construct. First, the segments do not compose a continuous function.
Second, most of the graph provides us with inaccurate information. For example, from
looking at the above graph, you would think that the slope of line tangent to G(x) at x =

0.35 is 0.6; however, the correct slope should really be g(0.35), or 0.7.



To solve both problems, we will need to 1) join the segments together and 2)

make the segments significantly smaller. Let’s solve the first problem first.

enough we have, in the graph below, connected the segments:
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Figure 4. The Adolescence of G(x)

Easily

Before we move on to solving the second problem, let us calculate the function

for the graph we have above. Let’s say we wanted to determine the y-value for a given x

on the above graph, what would we do? For example, imagine we wanted to know what

the y-value was at x = 0.6. The easiest way to do this is probably to add up the heights of

the three segments that lie between 0 and 0.6. To do that, we need to figure out the

heights of each segment.



We all know from elementary school that slope = %€ Since we know the run
run

of each segment, in our case it is 0.2, and we also know the slope, given by g(x), we can
easily solve for the run, or height, of each segment. In our case, the y-value at x = 0.6
would be h; + hy + h3, where h, is the height of segment x. Each h, in turn is Ax * m,
where Ax is the segment length, or the run, and m is the slope. That would translate into
0.2*%0.2 + 0.2*%0.6 + 0.2*1.0, or a final answer of 0.36. Looking at the graph on the
previous page, the reader will see that the y-value at x = 0.6 is indeed 0.36. If we wanted

to rewrite the above calculations in a more mathematical notation we could write:

(1) Y g(x)Ax

where 7 is the number of segments, Ax is the segment length (in our case 0.2), and x; is

the x-value for each segment k (in our example the x; values were 0.1, 0.3, and 0.5).

Now, to complete the demonstration, we will attend to the second problem raised
earlier. We noted that the segments were just too large; the slopes of the lines tangent to
G(x) at points other than the segment midpoints did not equal g(x). The y-values at points
like 0.37 and 0.81 were incorrectly given as 0.6 and 1.8, when they should in fact have
been 0.74 and 1.62. Thankfully, since we already have (1), resolving this problem is
trivial. All we need to do is make the segment length Ax very, very small. That way,
we’ll be able to obtain the correct y-value for any given x. To do this, we’ll just rewrite
the above equation adding a limit that tells the reader that we want Ax to be as close to

zero as possible:



(2) limY g(x)Ax
k=1

Now the equation is a perfect tool to draw any function G(x) whose derivative is the

given g(x). We managed to do derivation “backwards!”

Graphing our latest version of the function, we get

1.2p00

-0.2000 1.2000

-0.4000

Figure 5. A Fully Developed G(x)

At this point I hope that the above function rings a bell. Aside from being the
function that describes derivation “backwards,” it is also the one that describes
integration “forwards.” In fact, it is the same equation that you’ll reach when using

Riemann’s Sums to find the area under a curve!

Thus, in a brief few pages we have shown that the method for finding slopes of
tangent lines is the “opposite” of the method for finding areas under a curve--and so we

have the Fundamental Theorem of Calculus!



