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DISCUSSION

Written Discussion: By John von Neumann, Institute for Advanced
Study, Princeton, N. J.

The considerations that follow deal with the changes of bubble-volume
due to diffusion, that occur in a two-dimensional bubble-froth (a “Flat
Cell”), as shown in Fig. 12 of Dr. C. S. Smith’s paper (to be quoted as
“G.L.”). As pointed out on page 79, G.L., such changes of volume are
due to the diffusion of the gas that fills the bubbles, through the liquid
film that forms the (separating) bubble-walls, This diffusion is caused
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by the pressure difference between adjacent cells (cf. loc. cit. above). In
first approximation it is proportional to this pressure difference. To be
more precise: The diffusion-flow across a particular bubble-wall is (in the
approximation referred to above) proportional to the pressure difference
between the two bubbles adjacent to this wall, multiplied by the length
of the wall.

The pressure difference of the two adjacent bubbles, at a given point
P of a wall, is 2v/R, where 7 is the surface tension of the liquid forming
the froth, and R is the radius of curvature of the wall at P (cf. page 77,
G.L.). ~ 1s constant throughout the froth. Let P move over one wall-
side, i.e., one side separating two given bubbles. Then these two bubbles
and their respective pressures are fixed, hence the pressure difference
between them is fixed, and so 2%/R must be constant. R is therefore
constant, i.e., the side in question is a circular arc. Each bubble is bounded
by a polygon formed of circular arcs.

Consider such an arc, of radius R and angular aperture a. The pres-
sure difference across it is 2v/R, the length of the arc is Ra. Hence the
diffusion-flow across this arc (wall-side) is proportional- to 2v/R - Ra
= 2% &, 1., L0 &

Consider next a bubble in its entirety. Let the bounding circular-arc-
polygon have n sides. These sides are circular arcs; let their angular aper-
tures be a1 ,..., an, respectively. Let the angle between sides i and 141
(side n+1 is side 1 !) be ¢;, i.e., the angles are %, ..., 8., respectively.
Actually each ¢; = 120° = 2#/3 (cf. page 75, G.L.), but this is not relevant
yet.

Replace each arc by its chord, then an ordinary (rectilinear) polygon

obtains. The replacement of arc i by its chord increases each adjacent

1 oy 1 1
polygonal angle bYEal. Hence 9; is increased byﬁz_‘ai—l —|—7§ ai. The cor-

responding external angle of the rectilinear polygon obtains by comple-
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menting this to 180° = =, i.e., it is = — &, — 511 — 5 ai. The sum of all

-

external angles of the rectilinear polygon is 360° = 2=, 1.e.,
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and, using ¢; =" (cf. above),
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Now it was pointed out, above, that the diffusion-flow across the side
is proportional to ai. Note that ai may be >0 as well as <0. a; >0
(< 0) means that the side in question is convex (concave); hence the
bubble in question loses (gains) gas across this side by diffusion. (Cf.
Fig. 10, G.L..) Thus the diffusion-flow’s proportionality to a; holds even
with respect to the signs (i.e., the coefficient of proportionality is positive),
if the flow is interpreted as a rate of loss of gas.

In this sense, then, the total diffusion flow of a bubble, i.e., its total

A . : 6—n
gas-loss-rate, is (positively) proportional to 2 a; = o (cf. above), i.e.,

to 6 — n, Or, equivalently:
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In a two-dimensional bubble-froth the total gas-gain-rate of any
bubble is (positively) proportional ton — 6, where n is the number
of sides of the bubble (i.e., of its bounding circular-arc-polygon).
The (positive) coefficient of proportionality depends only on the
general properties of the froth and of its containing “Flat Cell”.

Thus every hexagonal bubble (irrespective of further details of
shape!) has a constant-gas-content, every pentagonal bubble loses gas at
the same rate; every heptagonal bubble gains gas at the same rate as the
pentagonal ones lose it; every tetragonal (octagonal) bubble loses (gains)
gas at twice the rate at which pentagonal (heptagonal) bubbles lose
(gain) it, etc.

Note, that these results apply only to the continuous changes of gas-
content due to diffusion. There remains the problem of finding a com-
parably simple characterization of the total changes of bubble-shapes due

- to these changes of gas-content. There remains, also, the problem of

doing the same for the discontinuous changes that occur when a side dis-
appears (cf. pages 78, 79, G.L..). Finally, these results are valid in two, but
not in three, dimensions. ' :

Written Discussion: By Edwin B. Matzke, professor of botany,
Columbia University, New York.

From a biological standpoint, Dr. Smith’s article on “Grain Shapes
and Other Metallurgical Applications of Topology” serves to bring into
focus the close interrelationship, within limits, of concepts of space par-
tition in such diverse fields as mathematics, metallurgy, and cellular con-
figurations in plant and animal tissues.

The significance of 57 as the average number of sides per face has not
been appreciated in biological literature. It is obvious in the Kelvin

tetrakaidecahedron with 6 quadrilateral and 8 hexagonal faces, and Lewis

showed 1n 1925 how quadrilateral and hexagonal faces might be replaced
by pairs of pentagons.

Although, as Dr. Smith says (page 97), topological principles have
not been invoked in the Columbia Laboratory, the “(6 — n) rule” has been
applied since the assembling of data was begun. The sampling of bubbles,
referred to on page 97, was as complete as possible, within a given core,
under the experimental conditions of study and tabulation, using a binoc-
ular stereoscopic dissecting microscope. The number and kinds of faces
were tabulated for as many bubbles as could be seen with the instrument
used ; this included most, but not necessarily all, of the bubbles within a
given core. '

Many of Dr. Smith’s topological demonstrations seem, upon reflec-
tion, almost as obvious as they are inevitable. It is now not often real-
ized that, until Lewis’s work in 1923, cells in undifferentiated plant and
animal tissues were almost universally considered to be rhombic dodec-
ahedra, and that in spite of convincing experimental evidence to the con-
trary, the Kelvin tetrakaidecahedra have been erroneously accepted as the
shapes of bubbles in foam in scientific literature, even within the present
decade. In helping to sweep away these and other misconceptions, and
in clearing the air generally, many of Dr. Smith’s demonstrations and
conclusions will be of marked importance. Among such the following
may be cited: “It should be apparent . . .. .. that there is considerable
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freedom in space filling under the given conditions, and that no one shape
can possibly be regarded as that of the ‘typical’ grain unless the grains
are arranged with the symmetry of a lattice”; “Moreover, random' con-
tacts of bodies of approximately uniform size would tend to give faces
more nearly of equal area than those of the 14-sided body.”

Written Discussion: By W. M. Williams, Institute for the Study of
Metals, University of Chicago, Chicago.

In his discussion of grain shapes, Dr. Smith mentions the use of
stereoscopic microradiography in examining the true structure of a metal
in three dimensions. I think it is worthwhile giving one or two prelimi-
nary observations which have been made on annealed and quenched
aluminum-tin alloys (2 atomic per cent Sn) using this method.

The technique itself is very simple; a beam of “white” radiation
from a tungsten target (50 kv., 20 m.a.) is directed at a specimen of
convenient thickness (about 1 mm., say) and the X-ray shadow of the
metal structure is registered on a fine-grained photographic plate placed
in close contact behind the specimen. FEastman 548-0 spectroscopic plates

Fig. 27—Typical Grains in Annealed and Quenched Al-Sn Alloy.

are very suitable for this purpose. Two such microradiographs are taken,
at two different angles of retation around a vertical axis. The angle of
rotation between the two microradiographs is usually about 4 to 6 degrees.
The microradiographs are then enlarged and viewed in a stereoscope in
the usual way. In the negative enlargements the once-liquid tin phase
appears black, and is seen to have spread continuously along the grain
edges, thus outlining the almost transparent aluminum grains.

The close resemblance of the grain structure to an ordinary soap
froth is very evident, with four edges and four grains usually meeting at
a point, with three grains meeting along a common edge, and so on. The
two grains shown in Fig. 27 are typical grains in the well-annealed alloy,
and illustrate the normal case of three edges to every vertex, and the pre-
ponderance of 4-, 5-, and 6-sided polygons. Fifty such grains occupying
a continuous volume have been examined, and the types of faces classi-
fied. Fig. 28 shows the frequency distribution for the 50 aluminum-tin
alloy grains and a re-plot of Desch’s results on B-brass. The results are




