Spin 5-blocks in covering groups of the symmetric and alternating groups:
Using spinsym package written by Lukas Maas.
Block information:
- Defect.
- k(B),l(B) invariants.
- Core.
- Decomposition Matrix sorted by number of prime parts.
Defect = 3
k(B) = 30, l(B) = 20
[ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 12, 12, 14, 14, 16, 16, 42, 42 ]
- 2.Sym(18)
5-block 38, [ 3 ]
- 2.Alt(17)
5-block 18, [ 2 ]
[ 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 14, 14, 16, 16, 20, 20 ]
- 2.Alt(18)
5-block 20, [ 2, 1 ]
[ 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 10, 10, 20, 20, 26, 26 ]
- 2.Sym(15)
5-block 27, [ ]
[ 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 16, 16, 16, 16, 20, 20, 28, 28 ]
- 2.Sym(16)
5-block 30, [ 1 ]
k(B) = 27, l(B) = 10
[ 6, 6, 10, 10, 12, 12, 12, 18, 39, 49 ]
- 2.Alt(15)
5-block 16, [ 1 ]
[ 6, 6, 9, 9, 10, 12, 22, 27, 31, 83 ]
- 2.Sym(17)
5-block 28, [ 2 ]
- 2.Alt(18)
5-block 21, [ 3 ]
[ 4, 10, 10, 12, 12, 18, 19, 26, 30, 39 ]
- 2.Sym(18)
5-block 37, [ 2, 1 ]
[ 4, 6, 6, 9, 10, 12, 29, 31, 39, 55 ]
- 2.Alt(16)
5-block 19, [ 1 ]
Defect = 2
k(B) = 13, l(B) = 10
[ 3, 3, 4, 4, 4, 4, 4, 4, 5, 5 ]
- 2.Sym(17)
5-block 29, [ 4, 3 ]
- 2.Sym(13)
5-block 18, [ 2, 1 ]
- 2.Alt(16)
5-block 20, [ 4, 2 ]
- 2.Alt(14)
5-block 13, [ 3, 1 ]
[ 3, 3, 3, 3, 4, 4, 5, 5, 7, 7 ]
- 2.Sym(12)
5-block 20, [ 2 ]
- 2.Alt(13)
5-block 10, [ 3 ]
[ 2, 2, 4, 4, 4, 4, 5, 5, 5, 5 ]
[ 2, 2, 3, 3, 5, 5, 5, 5, 5, 5 ]
- 2.Alt(11)
5-block 8, [ 1 ]
[ 2, 2, 3, 3, 4, 4, 5, 5, 7, 7 ]
- 2.Sym(17)
5-block 27, [ 6, 1 ]
[ 2, 2, 3, 3, 3, 3, 6, 6, 9, 9 ]
- 2.Sym(14)
5-block 21, [ 4 ]
k(B) = 11, l(B) = 5
[ 5, 6, 6, 6, 9 ]
- 2.Sym(16)
5-block 31, [ 4, 2 ]
- 2.Sym(14)
5-block 22, [ 3, 1 ]
- 2.Alt(17)
5-block 19, [ 4, 3 ]
- 2.Alt(13)
5-block 11, [ 2, 1 ]
[ 3, 3, 6, 9, 13 ]
- 2.Sym(13)
5-block 17, [ 3 ]
- 2.Alt(12)
5-block 14, [ 2 ]
[ 2, 5, 6, 9, 13 ]
- 2.Alt(17)
5-block 17, [ 6, 1 ]
[ 2, 4, 6, 9, 9 ]
- 2.Sym(10)
5-block 16, [ ]
[ 2, 3, 7, 9, 9 ]
- 2.Sym(11)
5-block 14, [ 1 ]
[ 2, 3, 5, 10, 17 ]
- 2.Alt(14)
5-block 12, [ 4 ]
Defect = 1
k(B) = 5, l(B) = 4
[ 2, 2, 2, 2 ]
- 2.Sym(9)
5-block 12, [ 3, 1 ]
- 2.Sym(8)
5-block 11, [ 3 ]
- 2.Sym(6)
5-block 8, [ 1 ]
- 2.Sym(5)
5-block 4, [ ]
- 2.Sym(18)
5-block 39, [ 7, 4, 2 ]
- 2.Sym(14)
5-block 23, [ 6, 2, 1 ]
- 2.Sym(11)
5-block 15, [ 4, 2 ]
- 2.Alt(9)
5-block 8, [ 4 ]
- 2.Alt(8)
5-block 9, [ 2, 1 ]
- 2.Alt(7)
5-block 6, [ 2 ]
- 2.Alt(18)
5-block 25, [ 9, 4 ]
- 2.Alt(17)
5-block 20, [ 8, 3, 1 ]
- 2.Alt(16)
5-block 23, [ 8, 3 ]
- 2.Alt(15)
5-block 18, [ 7, 2, 1 ]
- 2.Alt(15)
5-block 17, [ 6, 3, 1 ]
- 2.Alt(14)
5-block 15, [ 7, 2 ]
- 2.Alt(12)
5-block 16, [ 6, 1 ]
- 2.Alt(12)
5-block 15, [ 4, 3 ]
k(B) = 4, l(B) = 2
[ 3, 3 ]
- 2.Sym(9)
5-block 11, [ 4 ]
- 2.Sym(7)
5-block 8, [ 2 ]
- 2.Sym(18)
5-block 41, [ 9, 4 ]
- 2.Sym(16)
5-block 33, [ 8, 3 ]
- 2.Sym(14)
5-block 24, [ 7, 2 ]
- 2.Sym(12)
5-block 22, [ 6, 1 ]
- 2.Alt(8)
5-block 8, [ 3 ]
- 2.Alt(6)
5-block 5, [ 1 ]
[ 2, 3 ]
- 2.Sym(8)
5-block 12, [ 2, 1 ]
- 2.Sym(17)
5-block 30, [ 8, 3, 1 ]
- 2.Sym(15)
5-block 29, [ 7, 2, 1 ]
- 2.Sym(15)
5-block 28, [ 6, 3, 1 ]
- 2.Sym(12)
5-block 21, [ 4, 3 ]
- 2.Alt(9)
5-block 9, [ 3, 1 ]
- 2.Alt(5)
5-block 3, [ ]
- 2.Alt(18)
5-block 22, [ 7, 4, 2 ]
- 2.Alt(14)
5-block 14, [ 6, 2, 1 ]
- 2.Alt(11)
5-block 9, [ 4, 2 ]
Defect = 0
k(B) = 1, l(B) = 1
[ 1 ]
- 2.Sym(9)
5-block 15, [ 7, 2 ]
- 2.Sym(9)
5-block 14, [ 7, 2 ]
- 2.Sym(9)
5-block 13, [ 6, 2, 1 ]
- 2.Sym(7)
5-block 9, [ 4, 3 ]
- 2.Sym(7)
5-block 12, [ 6, 1 ]
- 2.Sym(7)
5-block 11, [ 6, 1 ]
- 2.Sym(7)
5-block 10, [ 4, 3 ]
- 2.Sym(6)
5-block 9, [ 4, 2 ]
- 2.Sym(18)
5-block 43, [ 11, 6, 1 ]
- 2.Sym(18)
5-block 42, [ 11, 6, 1 ]
- 2.Sym(18)
5-block 40, [ 8, 6, 3, 1 ]
- 2.Sym(16)
5-block 35, [ 9, 4, 3 ]
- 2.Sym(16)
5-block 34, [ 9, 4, 3 ]
- 2.Sym(16)
5-block 32, [ 7, 6, 2, 1 ]
- 2.Sym(15)
5-block 31, [ 9, 4, 2 ]
- 2.Sym(15)
5-block 30, [ 8, 4, 3 ]
- 2.Sym(13)
5-block 21, [ 9, 4 ]
- 2.Sym(13)
5-block 20, [ 9, 4 ]
- 2.Sym(13)
5-block 19, [ 7, 4, 2 ]
- 2.Sym(12)
5-block 24, [ 8, 3, 1 ]
- 2.Sym(12)
5-block 23, [ 8, 3, 1 ]
- 2.Sym(11)
5-block 17, [ 8, 3 ]
- 2.Sym(11)
5-block 16, [ 8, 3 ]
- 2.Sym(10)
5-block 20, [ 7, 2, 1 ]
- 2.Sym(10)
5-block 19, [ 7, 2, 1 ]
- 2.Sym(10)
5-block 18, [ 6, 3, 1 ]
- 2.Sym(10)
5-block 17, [ 6, 3, 1 ]
- 2.Alt(9)
5-block 12, [ 7, 2 ]
- 2.Alt(9)
5-block 11, [ 6, 2, 1 ]
- 2.Alt(9)
5-block 10, [ 6, 2, 1 ]
- 2.Alt(7)
5-block 8, [ 6, 2 ]
- 2.Alt(7)
5-block 7, [ 4, 3 ]
- 2.Alt(6)
5-block 7, [ 4, 2 ]
- 2.Alt(6)
5-block 6, [ 4, 2 ]
- 2.Alt(18)
5-block 26, [ 11, 6, 1 ]
- 2.Alt(18)
5-block 24, [ 8, 6, 3, 1 ]
- 2.Alt(18)
5-block 23, [ 8, 6, 3, 1 ]
- 2.Alt(16)
5-block 24, [ 9, 4, 3 ]
- 2.Alt(16)
5-block 22, [ 7, 6, 2, 1 ]
- 2.Alt(16)
5-block 21, [ 7, 6, 2, 1 ]
- 2.Alt(15)
5-block 22, [ 9, 4, 2 ]
- 2.Alt(15)
5-block 21, [ 9, 4, 2 ]
- 2.Alt(15)
5-block 20, [ 8, 4, 3 ]
- 2.Alt(15)
5-block 19, [ 8, 4, 3 ]
- 2.Alt(13)
5-block 14, [ 9, 4 ]
- 2.Alt(13)
5-block 13, [ 7, 4, 2 ]
- 2.Alt(13)
5-block 12, [ 7, 4, 2 ]
- 2.Alt(12)
5-block 17, [ 8, 3, 1 ]
- 2.Alt(11)
5-block 10, [ 8, 3 ]
- 2.Alt(10)
5-block 11, [ 7, 2, 1 ]
- 2.Alt(10)
5-block 10, [ 6, 3, 1 ]
Last Update: November 18, 2012,using IndexOfSpinBlocks.gap, created by M.Schaps
and GAP4, version 4.5; Aachen, St Andrews, 1999, http://www-gap.dcs.st-and.ac.u,/~gap