LIFTING MCKAY GRAPHS AND
RELATIONS TO PRIME EXTENSIONS

MouaMMED HASAN ALI AND MARY SCHAPS

ABSTRACT. We give an algorithmic procedure for constructing the quivers and homo-
geneous relations of the Brauer correspondents of blocks of abelian noncyclic defect
group in the almost simple groups in the ATLAS. This is one step in a program
to compute the structure of the indecomposable projectives for these blocks. As an
illustration, we determine an explicit tilting complex for the non-principal 3-block of
the central extension of PSL(3,4) by Cb.

§0. Introduction.

One of the important outstanding problems in the theory of modular group rep-
resentations is the determination of the structure of the projective indecomposables
of blocks B in simple or almost simple groups. Recent work on the Broué conjec-
ture (the conjecture that blocks of abelian defect group are derived equivalent to
the Brauer correspondent b, cf. [Br|, [O],[H]) leads in many cases to explicit tilting
complexes P*, cf. [BB]|. In these cases, the desired block is Morita equivalent to
the endomorphism ring of P* in the homotopy category of complexes of projective
modules over the Brauer correspondent b of the block B. Both the verification that
the complex P* is a tilting complex producing the desired block, and the calculation
of the endomorphism ring of the complex in the derived category can be done more
efficiently if the structure of b is well understood. This can be done in a particularly

compact fashion by giving the quiver and relations of the block b.

1991 Mathematics Subject Classification. 20C15, 20C05, 20C20.
Research partially supported by a grant from the Bar-Ilan Research Authority and the
Emmy Noether Research Institute for Mathematics of the Minerva Foundation of Germany.

Typeset by ApS-TEX



2 MOHAMMED HASAN ALI AND MARY SCHAPS

There is, furthermore, a natural grading on b, compatible with the filtration by
the power of the radical in the group algebra of the defect group. It is induced by the
image V of a splitting of Rad(b)/Rad?(b) into Rad b, a homogeneous basis for the
subspace of weight d being given by monomials of degree d in basis vectors of V. If we
could find a homogeneous basis for the endomorphism ring of the tilting complex,
then we could try to transfer the grading to the blocks B of the larger group, as was
done for the cyclic case in [SZ4]|. This would also mean that the Donald-Flanigan
deformation guaranteed in [MS] could be made homogeneous, with parameter-ring
Kt].

In this paper we concentrate on the noncyclic case where the defect group @) of
bis Cy x Cy or Cy x Cy x Cy. This covers most of the noncyclic blocks of abelian
defect group in the ATLAS groups and their subgroups [C]. We first note a general
result about the construction of the quiver of b in §2, and then give an algorithm
for constructing the relations in §3, followed by some examples. In §4 we show that
the differentials on the tilting complex can be chosen to be homogeneous. Finally,
in §5 we give an explicit tilting complex for the non-principal 3-block of the central

extension of PSL(3,4) by Cs.

§1. Quivers and relations for blocks with normal defect group.

Before discussing the case of abelian defect group in particular, we first review
what is known in general about the quivers and relations of blocks of normal defect
group. By a fundamental result of Kiilshammer [K]|, all such blocks are isomorphic
to M, (K7[Q x G']), where K is a sufficiently large field of characteristic ¢, @ is
the defect group, G’ is an ¢’ group acting faithfully on @, and ~ is a Hochschild
cohomology two-cycle for G’ into K*. The matrix algebra does not affect the quivers
and relations, and we incorporate ~y into the group theory by passing to a central
extension G of G’ with kernel N, as in [Re], where N is cyclic of order equal to the

order of v in H?(G’, K*). The original block is thus Morita equivalent to one of the
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blocks of () x G; these blocks all have the same K-dimension and are in one-to-one
correspondence with the irreducible characters of the abelian group N.

We recall the definition of the McKay graph, which we will use to obtain the
quiver of the desired block of @) x G.

Definition. Let G be a finite group, let K be a sufficiently large field of char-
acteristic ¢ not dividing |G|, and let X be any character of G (not necessarily

irreducible). The McKay graph D(G, X) is the directed graph with

(1) Vertices X; labeled by elements of Irr(G), i =1,...,r.

(2) For each pair of vertices X;, X;, a number n;; = (X;,X - X;)g arrows
from X; to X;, where X - X; is the class function formed by pointwise
multiplication, that is, (X - X;)(g9) = X(g) - X,;(¢) and n;; is the number of
constituents of X; in X - X, ie., X - X; = inini.

We recall that the quiver of a block B is a directed graph whose vertices corre-
spond to the isomorphism classes of projective indecomposables [e; B], where the
number of arrows from [e; B] to [e; B] is dimy, e;((Rad B)/ Rad(B)?)e;. This is some-
times called the Ext-quiver of the block.

The main result of [SSS] states that if x is the character of the action of G
on J/J? J = Rad(KQ) and char K { |G|, then the quiver of K[Q x G] is the
McKay graph D(G,x). The connected components of D(G, x) are in one-to-one
correspondence with the blocks of K[Q x G]. Let y1,...,ys be a complete set of
primitive idempotents for KG, and let y1, ...,y be a completion to a basis of KG
using matrix units. Then from [MS] we know that there exists a subvector space
V = (z1,...,2,) of K[Q] which is a G-module and is isomorphic as a G-module
to J/J2 If ri,...,7 is a set of relations for K[Q] as a quotient of the free tensor
algebra on V, then a complete set of relations for the algebra K[Q x G| as a quotient
of the path algebra of the quiver is given by the relations y;r;yx, where 1 <14 < s,

and 1<k<mforj=1,.... ¢t
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In practice, when @ is not abelian, writing the relations of K[Q] in terms of
the basis of V' is not trivial because the basis elements of V' are not simple linear
compositions of group elements like h — e, but rather are obtained by some Maschke
averaging. Thus it is not easy to convert group relations to algebra relations.
However, when @ is abelian, the relations of K[Q] are of the simple form z? "=0
and x;x; — z;z; = 0. The algebra K[Q] has a homogeneous basis, given by the

monomials in the generators x1,...,x,. In the sequel, we will abbreviate K[Q] by

KQ.

§2. Lifting McKay graphs.

We consider the case of a McKay graph D(G, X) where X is an irreducible
character of G induced from an irreducible character W of a normal subgroup H,
where [G : H] = p. Letting a be an element of G — H, and letting W; = W', i =
0,...,p—1, we have X = ézl W;. We note that the permutation « of the irreducibles
induced by conjugation é;oa induces graph isomorphism D(H, W) = D(H,W;),
1 =0,...,p— 1. The set of functions from the conjugacy classes of H which are

Z-linear combinations of irreducible characters will be denoted by Z Irr(H).

Lemma 2.1. Let X € Irr(G) be a character induced from an irreducible character
W of H, i.e., X = WY. Then the McKay graph D(G,X) is completely determined
by the McKay graph D(H, W) and the mapping of Irr(G) to ZIrr(H) induced by re-
striction. If R', R" € Irr(QG), then the number of arrows from R’ to R" in D(G, X) is

the total number of arrows from summands of Ry to summands of RY, in D(H,W).

Proof. By a result of Frobenius X - R’ = (W - R};)¢. We now apply Frobenius
reciprocity:
(R",X - R)g = (R",(W-Ry))c
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In the sequel, in our situation of H < G and [G : H| = p a prime, we let
Irr(H) = Sy UCy, where Sy are the characters fixed under conjugation by G. Let
Irr(G) = Sg U Cg be the corresponding partition into characters which have split

and characters which have collapsed.

Example 1. G = (5 x (g, H = C5 x C4, the generalized quaternion group.
G = {(a,b ‘ a® =0 =e,aba =b*), H=cb ‘ A =v=eclbe=0"1),

X=Xge(lg, W=X5€(Cqg, degX =4, degW = 2.
2

Here ¢ = a”°.

See Fig. 1 for the diagram of the McKay graphs.

Fig. 1
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63. Lifting relations.

The second author set up a database [S2], using GAP [G], of blocks of noncyclic
abelian defect group with defect at least 2 in the ATLAS groups and their sub-
groups. There are none for primes ¢ > 13, and only 10 for ¢ = 11,13. For ¢ = 3,5,
and 7, the blocks are further subdivided. The main database, SortAt_q, located at
[S2], consists of blocks with elementary abelian defect group. There are 874 blocks
in this database for ¢ = 3, 360 for ¢ = 5, and 81 for ¢ = 7. There is a separate list,
CyclicSortAt_q, of blocks of abelian defect group containing Cj2, most of which

have cyclic defect, with the remainder being products of cyclic blocks.

In the interesting case where the defect group @ is elementary abelian, it usually
has prime rank d(= 2,3), and d = 2 is much more common than d = 3. Notable
exceptions are the O’Nan group, whose principal 3-block is elementary of rank 4,

and extensions of PSL(2, 81). Since |Q| = ¢%, the integer d is the defect of the block.

A study of the Brauer correspondents b of the blocks with elementary abelian
undertaken by R. Leabovich [L] and T. Berrebi [B] has determined that in almost
all cases either H is itself abelian, or the Brauer correspondent is isomorphic to
the principal block of the normalizer, and thus we are reduced to the abelian case,
or b = My(b'), where b = K[Q x G], with [G : H] = 2 and H abelian. For
example, the normalizer for blocks of the symmetric groups S, are of the form
(Q x G) x Sp_2p. Then b = M;(V'), where ¥ is a block of K[Q x G] and t is the
degree of a block of S,,_2, of defect zero. In general, as was shown by Reynolds
[Re], if b is a block isomorphic to M (K" [Q x G']), we can find a central extension
G of G’ with cyclic kernel N such that b is Morita equivalent to a block of Q x G.
The group @ x G, with N minimal, will be called the Reynolds group. These are
listed in Tables 1, 2 and 3. When ¢ = 3 and d = 3, the Reynolds group is generally
a direct product. For nilpotent blocks, which are Morita equivalent to K@, we take

the Reynolds group to be (). Those blocks for which the decomposition matrix was
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not known and no other information was available are not included.

Let the Reynolds group of b be Q x G, where G is a ¢’-group and the action of
G on Q = C, x---x C, induces an action on Rad(KQ)/Rad®(KQ) with character
x. In Table 1-Table 3, we give () x G, sorted as in the database by the invariants
k(B) and ¢(B) of the block B. If the block which is Morita equivalent to b is not
the principal block of K[Q x G], then we indicate the block by writing b;. Note that
in all cases given here K[(Q) x G] has at most three blocks.

Table 1
Reynolds groups for 3-blocks in the database

with elementary abelian defect group, k(B) < 24

d k(B) ¢(B) # of blocks Reynolds group

2 6 2 15 (Cg X Cg) (Cg CQ),bQ

2 6 2 8 (04 X (Cg X 03) : 02) : 02),b3
2 6 2 16 (Cg X 03) : CQ

2 6 4 74 (Cg X Cg) : 04

2 6 5} 74 (03 X Cg) : Q

2 9 1 35 03 X 03

2 9 2 48 03 X 53

2 9 4 141 S3 X S5

2 9 5 182 (C3 x C3): D

2 9 7 89 (03 X 03) (Cg CQ)

2 9 8 4 (Cg X Cg) : Cg

3 15 2 2 (C3)3: Cy

3 15 5} 1 (03 X (Cg X 03) : C4) : CQ
3 15 7 1 (03 X (Cg X 03) : Q) : CQ

3 18 4 4 03 X (03 X 03) : 04

3 18 8 4 53 X (03 X 03) 04

3 18 10 3 83 % (C3 % C3) - Q

4 18 14 2 (C5)4 & (Co.(C2)*) : Dy

4 24 14 1 (((03 X 03) 4) ((Cg X 03) 04))02
4 24 16 1 ((C3)*: (( 2.((C2)") : D5).Co
4 24 20 1 (C3)* : (Cs 0) by

4 24 22 1 (Cy)* - ( Cy)




8 MOHAMMED HASAN ALI AND MARY SCHAPS
Table 2
Reynolds groups for 5-blocks
d k(B) ¢(B) # of blocks Reynolds group
2 10 6 1 <C5 X C5) : <C3 : (Cg : CQ)),bQ
2 11 5 5 (05 X 05) : CQ.(C4 X C4).Cg,b2
2 13 10 8 (05 X 05) (Cg 02)
2 13 12 1 (C5 x Cs) : (Cs : Cs)
2 14 12 6 (C5 X C5) 012
2 16 10 8 (C5 X 05) (D4YC4)
2 16 12 9 (Cs x Cs) : (83 x Cy)
2 20 14 19 (05 X 05) : (04 X 04) 02
2 26 24 3 (05 X 05) . 024
Table 3
Reynolds groups for 7-blocks
d k(B) ¢(B) # of blocks Reynolds group
2 16 12 1 (C7 x C7) : (C3 x Dig)
2 22 18 3 (C7 X 07) (Cg X (Cg 04))
2 22 21 1 (Cr x C7) = (Cs % Qs)
2 25 18 3 (07 X 07) (83 X 06)
2 25 21 2 (07 X 07) : (Cg X Dg)
2 2% 18 1 (C7 x Cq) : (C3 x Cg)
2 26 24 3 (07 X 07) : 024
2 27 21 8 (07 X C7) : (Cg X SL(2,3))
2 27 24 1 (07 X 07) : (03 X GL(2,3))
2 35 27 7 (07 X 07) : (C3 X (03 : D4)>
2 49 48 3 (C7 X C7) : C48

In this paper, we treat the common case when one of the following holds:

Case 1: The character x is a sum of linear characters.

Case 2: The group G has an abelian normal subgroup H of index p such that

Xi = b1+

set of primitive idempotents permuted by a, where a € G is an element of p power

+ ¢, is a sum of linear characters permuted by G and KH has a

order whose residue in G/H generates G/H. Let N = ker(x).

In Case 1, the relations are all of the form eix? or e;(z;zy

L...,pi=1,...,

[G : NJ, as described in [MS].

— zpx;) for j,k =
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Case 2 is the case treated in detail by this paper. Clearly,
n
N = m ker(¢;).
i=1
(Even if H had not not been assumed abelian, since the derived group H' of H
is in each ker(¢;), we could have gotten H' C N, so that H/N would have been
abelian.) Since the ¢; are conjugate via a, ¢1(a?) = ¢;(a?) for j =2,...,p.
Let eq1,...,e, be the block idempotents for H. Since conjugation by a is an
automorphism, a permutes these idempotents of H. Any ¢;, for j = 1,...,p, induces
a permutation 7; on the linear characters 6; of H by setting 7;(i) = k iff ¢;-6; = 0.

As was proven in [MS], this precisely corresponds to the condition
€il; = XTjCk.

Since 7; corresponds to multiplication by ¢;, the 7; commute because character mul-
tiplication commutes. In particular, in the relation e;(zjz;—zx;), both monomials
have the same idempotent e; acting on the left, where ¢ = 7; o 7,(7) = 73, o 75 ().

The problem of finding quivers and relations for the case of H abelian and
G = H x C, was first treated by §2 of [RR]. We consider the nonsplit case and
also construct the relations in a mechanical, algorithmic fashion which has been
machine implemented for the case of H abelian and p = 2. We recall that C'y is the
set of characters of H on which a acts nontrivially and refer to the set C'g of the
corresponding idempotents as “collapsing idempotents”. Similarly, Sy is the set of
fixed characters, and the set Sy containing the corresponding idempotents will be
called “splitting idempotents”.

To give the quiver and relations of K|[Q x G|, we proceed as follows:

1) Choose one primitive idempotent e; of each nontrivial conjugacy class [e;] of
idempotents of H under the action of a. For each idempotent ex in H, choose
a natural number £(k), 1 —p < £(k) < p — 1 such that e; = a=*P®epa®®),

and set Ekic = ag(k’)7 El;:k: — a*é(k).
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2) Construct the quiver D(G, x) from D(H, ¢1) by collapsing and splitting as in
Lemma 2.1, labeling each collapsed vertex by the idempotent e; representing
its conjugacy class of idempotents.

3) For each splitting idempotent e;, let e;1, €2 .. ., €;, be the idempotents into
which it splits. (If p = 2, we abbreviate e;; by e; and e;5 by e;.) Let 0
be a nontrivial lifting of 1. By standard results in Clifford theory, if ¢/ is
the character associated to e;; then the character 9§j associated to e;; is a
multiple of 8, by a power of 6, and we may choose the numbering so that

0;; = 0,67~ is associated to e;;.

Lemma 3.2. Let QQ be an elementary abelian q-group of prime rank p. Let G be a
q'-group acting irreducibly on Q and assume that G is a p-extension of an abelian
group H. Let R = {r;} be the set of all relations of KQ, i.e., x} =0, =1,...,p,
and xyxs — xsxy = 0 for 1 <t < s < p. FEach relation r; determines a unique
permutation o; such that e;rj = rje, ;. Set k = 0j(i). Each relation e;rjey of
K|[Q x H| determines the following relations of the quiver of K[Q X G] :

(a) If e; does not split and is a representative of its conjugacy class and ey, does
not split, then we get a relation e;rjE,; = eirjae, where £ = L(k) is chosen
so that a=‘era’ is the conjugacy class representative ej,-

(b) If e; does not split and is a representative of its conjugacy class and ey, does
split, we get a relation

€;TiCk,

which splits into p relations since e is splitting.
(c) If e; splits and ey, does not, then we get relations e;rjera’, where £ = £(k)
is chosen so that a‘eyat is the conjugacy class representative €;,-

(d) If e;,ex are both splitting, we get the p* relations e;rjeg .
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Proof. Let {r;} be the complete set of relations such that K[Q] = K(z1,...,z,)/{r;},
as given in the statement of the lemma. Since the quiver of K[Q] is just p loops, then
by the Lemma in Section 5 of [MS], substituting 0 for the deformation parameter,
we know that the relations of K[Q x H| and K|[Q x G], respectively, are obtained
from {r;} by multiplying on the left by a primitive idempotent corresponding to a
vertex and, in the case of K[Q x G], on the right by a matrix unit.

Fix a relation r; of K[Q]. If it is monomial in x1,...,zp, then we get o; as
a composition of 7;. If it is of the form x,x; — x4x,, then 0; = 77 = 757, We
previously defined a partition Irr(H) = SyUCH, according to whether the character
was fixed under conjugation by G and would thus split, or whether it had nontrivial
conjugates, and a similar partition of the idempotents {e1,...,e,} = Sy U Cq.
For any primitive idempotent e; for which ¢ = 7, we have the following logical
possibilities:

(a) If e;, ex. € C, k = (i), then there is a relation e;r; of the quiver of K[Q x
H]. Let ¢ = (k) be the integer such that e; = a ‘exa’. Then the corresponding
relation of K[Q x G] will be

o B — et
O—eir]Ekk—eir]a.

(b) If e; € C and ey, € Sp, we multiply by the various idempotents which split
it. These relations are distinct since they end at different points.

(c) If e; € Sy and e € Cy, then we proceed as in (a) to show that the matrix
unit given in the lemma of [MS] is a power of a.

(d) If e;,ex € Sy, then there are p? possible relations.

Corollary 3.3. If a splitting idempotent e, € Sg can be inserted in e;r;, then the
a’ at the end in cases (a) and (c) can be conjugated forward until it reaches es when
it can be converted into a coefficient. Since H is abelian, case (d) occurs only when

p = 2, and there are only p non-zero relations in (d).
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Proof. Conjugation by a introduces coefficients in two ways. First of all, ax,a™t =

#1(aP) - z1. Secondly, when the power of a reaches an element of Sy, it is converted
into a coefficient by the formula a - es; = e - a = 0, (a)est.

We must show that when H is abelian, case (d) occurs only for p = 2, and that
then there are only p nonzero relations.

If r; is a relation for which case (d) occurs, and m(zy,...,2,) is a monomial
occurring in r;, then we have o;(i) = m(r,...,7,)(i) = k, which on characters
becomes m(¢1,...,¢p) - 0; = 0. Since 0;,60, € Sy, we get that m(¢1,...,¢,) =
0;10k € S, showing that m(¢; ..., ¢,) is invariant under the action of G.

This cannot occur for the monomial relation 27 = 0 because the cycles in the
McKay graph D(H, ¢1) are of length r dividing |H|, so ¢j = ¢}, for all ¢,¢'. If we
had ¢{ invariant under the action of G so that ¢f = ¢, then since |H| is a ¢’
integer, we would have ¢, = ¢ for all ¢', a contradiction since the irreducibility of
the action of G on ) implies that the restriction of this action to H is a sum of
distinct conjugates.

If r; is the relation z;xs — zsx¢, then ¢;¢, is invariant. Then, acting by a*~t,
we get ¢y = Pspas_t, so, multiplying by ¢; 1, ¢t = 2s —t (mod p). Since p is a
prime, t # s, and 1 < s,t < p, we have 2t = 2s (mod p) only when p = 2.

The monomial ;x5 is an eigenvector for G, since z; and x5 are eigenvectors for
H, with characters ¢; and ¢o, while a ™ 1z129a = 22(¢1(a?)21) = ¢1(a?)z122. Thus
if 7 is the linear character of G with n ‘H: 102 and n(a) = ¢1(a?), then for any
idempotent e;; with character ¢;5, we have e;sr; = r;eis, where s’ is so chosen that
n - 0;s = s . Thus there is only one value s of s’ for which the relation e;sr;exs

1S nonzero.

Example 2. Consider the Brauer correspondent of the principal block of the Janko
group Jo for ¢ = 5. It is a semidirect product of Cs x C5 by Dg, the dihedral group of

order 12, and the action of Dg on J/.J? is determined by the unique two-dimensional
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representation without a kernel. The McKay graph is

Fig. 2
+ + . : : + +
Let gy, a12, as; be the arrows with increasing exponent and i, 521, (B35 the
arrows in the opposite direction. The relations are derived as follows from the

following cycles in H, e;x1 = z1e;41 and e;xo = x26€;_1.

613751)a 615‘7; =0: a&@w(a%% — Qiy3335) 21 = 0
ear}, €15 =0 : B2 821 (Bioag — Broor) s = 0
e =0: a0 B3y — az3033) 82181 = 0
62x3x3 =0: 521(@5“:{1 - 51_00451)0‘1204;3 =0
exw] =0 : (03384, — agafBa3)Ba1 (Bloady — Broeny) =0
elxg =0: (@*oozci - 51_06“51)0‘12(0433555 — Qy3f335) = 0

ey (T122 —22m1) =0 a8 =0, ag By =0

6§t(901902 —x271) =0 534,_2042_3 =0, 53_204;3 =0
el(:zrlzl;g — x2:1:1) =0: 0612521 = ﬁﬁ)a:{l + 51_0040_1
62(I1$2 — 11?21131) = 0 . ﬁglalg = 04;—352—2 + Oég_gﬁgTQ.
The projective modules needed to build the tilting complexes and the resolution

of the Green correspondents in Okuyama’s method are then constructed by laying

out the x’l,x% in a grid. We give only Fy+ and P, the other projective modules
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being similar. The Cartan matrix, whose columns give the number of copies of

every simple in each projective, is

r 5 0 2 2 4 47

0 5 2 2 4 4

2 2 5 0 4 4

¢= 2 2 0 5 4 4

4 4 4 4 9 8

L 4 4 4 4 8 9.
Fig. 3

Note that our algorithm makes it quite natural to write the projectives in the

rectangular form which was used with such good effect by Holloway [Hol] in his

study of SL(2,¢").

4. Homogeneous maps in tilting complexes.
Let us now consider the indecomposable projectives in the case where p = 2 and

the normalizer of the defect group @ = C; x C, is of the form @ x G, where G



LIFTING MCKAY GRAPHS AND RELATIONS TO PRIME EXTENSIONS 15

has a normal abelian subgroup H of index 2. (A sample case with p = 3 was given
in [SSS].) An examination of the Reynolds groups for blocks in our database [S2]
given in the tables in §3 shows that either G is abelian or this condition is fulfilled
with p = 2 for all but three blocks of defect 4 with ¢ = 3, two blocks with ¢ = 5
and two blocks for ¢ = 7. If Rad(KQ) = J, the action of G on J/J? is given by
X = @1+ ¢2. We assume that a is an element of order 2¢ of G not lying in H, which
permutes ¢; and ¢o. We let 21 and x5 be eigenvectors for the actions of ¢ and ¢-
on J/J?. Set ¢ = ¢1(a?) = p2(a?), where C is a primitive 2 root of unity for some
integer 0 < ¢’ < ¢. We may choose the x; so that ax; = (x2a, T1a = axs.

Whereas in calculating the relations in §3 we found it convenient to conjugate a
to a splitting idempotent and convert it into a coefficient, in giving a homogeneous
basis of the indecomposable projectives it will be more efficient to conjugate the
element a to a collapsing idempotent.

Let A = K[Q x H]|, A= K|[Q x G]. If, as before, we let ey, ..., e, be the block
idempotents of H, which are primitive because H is abelian, then the indecompos-

C : J pk1p—1
able projective e; A has a homogeneous basis {e;x125} ; _.

Lemma 4.1. If mj, = xi2%, then am;ra™" = (Imy;.

Proof.
arlzba™ = (ax1a7Y) (azoa™)*
= (Cwa) )
= ij]ij

Definition. Let p;, = TfTQk, so that e;m ;i = Mjk€p,.(i)-

Lemma 4.2. Let eii be an idempotent corresponding to a splitting character 6;.

Then a homogeneous basis of the indecomposable projective eiifl is a union of the
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following sets:
C s J C
BE = 36 (mjx &= Imia) | ep0) € Cu
BY = {eimjrey | pjr(i) = L,ec € Su} U {ejmy;}.

FEach element in these bases lies in a Peirce component of A w.r.t. the primitive

tdempotents.

Proof. For any idempotent e; which splits into ej’ and e; , we have

1 1
e = 5(6—1— a)e; = §ei(e—|— a)

(2

and

1
e, = 5(6 —a)e; = §ei(e —a).

Thus
eiimjk = 1ez-(e + a)m,
= §ei(mjk + amj)
= %ei (mjk + (jmkja) .

Case 1: { = p;i(4) is the index of a collapsing idempotent: Let ¢’ be the index of

the conjugate idempotent so that ey = aega™?, then

—1 j —1
ae;mjreea = (Teymy; - (aea” )

= Je;myjen,
so we see that py;(i) = ¢/. Thus
L+ + (7 _ 1 + I
561' (mjk ¢ mkja) = §(m3k ¢ mkja)eg.

Case 2: ¢ = pji(i) is the index of a splitting idempotent: If j = k, with £ = p;(7),

then

0 # aeimjjega_l = <jeimjj(a€€a_l)7
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so we conclude that e, € Sy, since otherwise we would have eimjjeg(aega_l) =0.

Finally, if j # k, and ¢ = p;x(7), then

1
eiimjkezt = Zeiimjk(e +a)ey
1 .
= Zeii(mjk + ¢Tamy;)eq.

The two different + signs are independent, so these represent four different maps.

Lemma 4.3. Let e; be an idempotent corresponding to a collapsing character 0;
with i = i. A homogeneous basis of the projective indecomposable e; A is a union of

the following sets:
S 1 + ' S
Bi = E(ezmjk + mkja)eg ’ ,Ojk(l) = ga ep € SH
and

Bic = {eimjk ‘ pir(i) == é, er € C’H} U{eim; ra | pik(i) =€ # @, er € Cy}.

Proof. The proof for B is similar to the previous lemma. As for B, if pjx(i) = ¢ =
@, the chosen representative of its conjugacy class, then e;m;; = e;m;j;, ends with
the idempotent e;, whereas if pji (i) = £ # /, then we must multiply by a matrix

unit, which is equivalent to a times a constant since ¢ = ¢1(a?) is a constant. [

Now suppose that we have a tilting complex in which all the differentials are
homogeneous and the irreducible components have length 2, as in the cyclic de-
fect case or the elementary tilting complexes used by Okuyama [O]. Then we can
choose representatives of the endomorphisms which are homogeneous in each de-
gree. Furthermore, the set of homotopies also has a basis homogeneous in each

degree.



18 MOHAMMED HASAN ALI AND MARY SCHAPS

§5. The Broué conjecture for the faithful 3-block of the covering group
of PSL(3,4).

We now give, as an application, a verification of the Broué conjecture for a
block with defect group C3 x C3. To the best of our knowledge, guided by the list
of proven cases maintained at Bristol, this particular block has not been treated
as of the time of this writing. Let L be the central extension with kernel C5 of
PSL(3,4). Then @ is a 3-Sylow subgroup, isomorphic to C3 x C'5. The centralizer
of Q) is Q x (5. The centralizer has two blocks, each stable under the action of
the normalizer. These correspond to the two blocks of the normalizer. In this case,
since the defect group is abelian and thus contained in the centralizer, we consider
NL(Q)/CL(Q), and calculation shows that it is isomorphic to Qg, the quaternion
group of order 8. Both blocks of the normalizer are isomorphic as algebras, and
thus both are isomorphic to the group algebra of the unique semidirect product

(C5 x C3) x Qg in which the center of Qg acts non-trivially.

We are considering the non-principal block of the normalizer. This is the Brauer
correspondent of the faithful 3-block B of L, i.e., the block consisting of ordinary
characters which are nontrivial on the center Z(L) of order 2. A calculation of the
decomposition matrix of this block at L shows that it is identical, up to permu-
tation of rows and columns, with the decomposition matrix of the principal block
of the Mathieu group Mss. The centralizers of the cyclic subgroups of the defect
group () are identical to the centralizer of () itself, so the restriction map induces
a stable equivalence. Calculating the Green correspondent of the simples of the
block B with the C-MeatAxe developed by M. Ringe produced modules for the
Brauer correspondent b of dimensions 1,1,4,4,6, with the same structure as the
Green correspondents of Ms,. Thus the same sequence of two elementary tilting
complexes used by Okuyama [O] to settle the Broué conjecture for My will work

for our block B.
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We want now to give the tilting complex explicitly, as a complex of b modules
with homogeneous differentials. In the notation of section 3, we have G = Cy xCy =
C5.Qs, H = C4 x C5, and the character y is an irreducible character of G whose
restriction to H is the sum of two linear characters ¢; and ¢, with common kernel
N = Z(G) = Cy. The McKay graph D(H, ¢1) is the disjoint union of two cycles
of length four. The element a has order 8, and it acts on each of the two cycles
by leaving two antipodal points fixed and exchanging the other two points. The

element a? is in H, and we have

$1(a®) = ¢2(a®) = —1.

Suppose 1 and 3 are the indices of the idempotents of the non-principal block of
H left fixed by a, and let 2 and 4 be the indices of the idempotents interchanged
by a. Choose 2 to be the representative of its orbit under the action of a, so
that 2 = 4 = 2. Then the idempotents of G will be eli, egt, and ey. These
primitive idempotents then determine four indecomposable projective modules of
dimension 9, which we will denote by PllL and P:,,i, and a single indecomposable
projective module of dimension 18, which we will designate by P». The two Green
correspondents G and G of dimension 1 are a pair of split simples, which we will
identify with eli. The two Green correspondents of dimension 4, G5 and G, have

as tops a matched pair of split simples, which we will identify with e?jf.

Using the rectangular representation of the projectives as in §3, we see that
in fact Ggr, which has composition factors 37, 2, 37, is the quotient of P;“ by a
submodule whose projective cover is Pf’ @ P, and similarly G5 is a quotient of
P; . The Green correspondent Go, with composition factors 2, 11, 17, 2, is the

quotient of P, by a submodule with projective cover P;~ @ P; . We can represent
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these as

Gi = 2 G; = 2 Gy = 1Tl

3~ 3t 2

We now apply Okuyama’s method of elementary tilting complexes from [O]. For
those who have difficulty obtaining this extremely important paper, the method
is outlined, with an extension, in [S1]. We choose the index set Iy = {3*,37}.
Denote the right regular representation of b by M. Letting g be the endomorphism
corresponding to left multiplication by xq, letting A be the endomorphism of M
corresponding to left multiplication by x5, and letting @ be the automorphism of
modules given by left multiplication by a, we get a tilting complex T} = (P;H)™M) @
(Pr)W & PV & (P & PV,

2 2
g°+h
(1) . pt I e ol
(Pl) : P oPp - P
2 2
g°—h
2 hZ}
PV Pfopry S, Pr
h—ag]
h
() Prep; 09 p,
(P Py
(Pa_)(l) : Py

The indecomposable projectives with indices in Iy occur in degree (—1) and the
indecomposable projectives with indices in {17,17,2} occur in degree 0.

Each elementary tilting complex determines a linear combination of columns of
the decomposition matrix Dj of b, with those in odd degrees multiplied by (—1).

Multiplying negative rows by (—1) then produces the decomposition matrix of



LIFTING MCKAY GRAPHS AND RELATIONS TO PRIME EXTENSIONS 21
By = Endpe ) (T), from which the Cartan matrix can be calculated.
1 0 0 0 07 ! 0 0 0 0 7 1 0 0 0 07
01 0 0 O 0 1 0 0 0 01 0 0 O
0 01 0O -1 -1 -1 0 -1 1 11 0 1
Dr=lo 0010l 7|1 -1 0 -1 -1 1101 1| P
0 00 0 1 0 0 0 0 1 0 0 0 0 1
L1 1 1 1 2] -1 -1 -1 -1 O . 1 1 1 1 0J

By Lemma 1.3(i) [O], the images Gf(l) and Gl_(l) of G and G| remain simple
in B;. Furthermore, by Lemma 1.3(ii) [O], G;(l) and G;(l) are now simple. This
leaves only to calculate the Green correspondent Ggl), using the resolution method
in §4 of [R]. A projective resolution over b of G5 begins with the map in P2(1), and

thus a projective cover of this resolution in B; has P2(1)

as its top. The projective
cover of the Heller translate over By has (P; )@ (P; )M as its top. Calculating the
Cartan matrix from Dp, and noting that there are unique maps in each direction
between (Pgt)(l) and P,, we discover that Ggl) has, as before, composition factors
21 1+ 1= 9= The Heller translate of Ggl) has socle 2(Y) and all the other
simples as composition factors (with multiplicity 1), so it satisfies the conditions of
Lemma 1.3(ii) [O]. Therefore, a second elementary tilting complex with index set

I, = {2} will complete the solution. Taking mapping cones, we can represent the

new tilting complex as a complex of projectives from b, with homogeneous maps:

h+ga

P, 5 P

h—ga _

[h—ag}
h + ag
% 2

P o Py

_ h+ag

h—a
P P,
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Conclusion.

We have concentrated here on an algorithmic construction of the indecomposable
projectives of the Brauer correspondent. We hope that by using the decomposition
matrix to find combinatorial tilting complexes, we will get a method for obtaining
quivers and relations for the group blocks themselves in the abelian defect case. The
method we are pursuing is outlined in [S1]. However, it requires a solid knowledge
of the projective modules of the correspondent to which this paper is intended to
contribute. It also involves questions of “folding” tilting complexes, as described
in [SZ1], [SZ2], [SZ3], [RS1], [SZ4]. We hope that, as in the cyclic case [RS2], the

Green correspondent will aid in choosing the proper “folding”.
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