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Abstract. We give an algorithmic procedure for constructing the quivers and homo-
geneous relations of the Brauer correspondents of blocks of abelian noncyclic defect
group in the almost simple groups in the ATLAS. This is one step in a program
to compute the structure of the indecomposable projectives for these blocks. As an
illustration, we determine an explicit tilting complex for the non-principal 3-block of
the central extension of PSL(3,4) by C2.

§0. Introduction.

One of the important outstanding problems in the theory of modular group rep-

resentations is the determination of the structure of the projective indecomposables

of blocks B in simple or almost simple groups. Recent work on the Broué conjec-

ture (the conjecture that blocks of abelian defect group are derived equivalent to

the Brauer correspondent b, cf. [Br], [O],[H]) leads in many cases to explicit tilting

complexes P ∗, cf. [BB]. In these cases, the desired block is Morita equivalent to

the endomorphism ring of P ∗ in the homotopy category of complexes of projective

modules over the Brauer correspondent b of the block B. Both the verification that

the complex P ∗ is a tilting complex producing the desired block, and the calculation

of the endomorphism ring of the complex in the derived category can be done more

efficiently if the structure of b is well understood. This can be done in a particularly

compact fashion by giving the quiver and relations of the block b.
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There is, furthermore, a natural grading on b, compatible with the filtration by

the power of the radical in the group algebra of the defect group. It is induced by the

image V of a splitting of Rad(b)/ Rad2(b) into Rad b, a homogeneous basis for the

subspace of weight d being given by monomials of degree d in basis vectors of V. If we

could find a homogeneous basis for the endomorphism ring of the tilting complex,

then we could try to transfer the grading to the blocks B of the larger group, as was

done for the cyclic case in [SZ4]. This would also mean that the Donald-Flanigan

deformation guaranteed in [MS] could be made homogeneous, with parameter-ring

K[t].

In this paper we concentrate on the noncyclic case where the defect group Q of

b is Cq × Cq or Cq × Cq × Cq. This covers most of the noncyclic blocks of abelian

defect group in the ATLAS groups and their subgroups [C]. We first note a general

result about the construction of the quiver of b in §2, and then give an algorithm

for constructing the relations in §3, followed by some examples. In §4 we show that

the differentials on the tilting complex can be chosen to be homogeneous. Finally,

in §5 we give an explicit tilting complex for the non-principal 3-block of the central

extension of PSL(3,4) by C2.

§1. Quivers and relations for blocks with normal defect group.

Before discussing the case of abelian defect group in particular, we first review

what is known in general about the quivers and relations of blocks of normal defect

group. By a fundamental result of Külshammer [K], all such blocks are isomorphic

to Mn(Kγ [Q o G′]), where K is a sufficiently large field of characteristic q, Q is

the defect group, G′ is an q′ group acting faithfully on Q, and γ is a Hochschild

cohomology two-cycle for G′ into K∗. The matrix algebra does not affect the quivers

and relations, and we incorporate γ into the group theory by passing to a central

extension G of G′ with kernel N, as in [Re], where N is cyclic of order equal to the

order of γ in H2(G′,K∗). The original block is thus Morita equivalent to one of the
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blocks of QoG; these blocks all have the same K-dimension and are in one-to-one

correspondence with the irreducible characters of the abelian group N.

We recall the definition of the McKay graph, which we will use to obtain the

quiver of the desired block of QoG.

Definition. Let G be a finite group, let K be a sufficiently large field of char-

acteristic q not dividing |G|, and let X be any character of G (not necessarily

irreducible). The McKay graph D(G,X) is the directed graph with

(1) Vertices Xi labeled by elements of Irr(G), i = 1, . . . , r.

(2) For each pair of vertices Xi, Xj , a number nij = (Xi, X · Xj)G arrows

from Xj to Xi, where X · Xj is the class function formed by pointwise

multiplication, that is, (X ·Xj)(g) = X(g) ·Xj(g) and nij is the number of

constituents of Xi in X ·Xj , i.e., X ·Xj =
r∑

i=1

nijXi.

We recall that the quiver of a block B is a directed graph whose vertices corre-

spond to the isomorphism classes of projective indecomposables [eiB], where the

number of arrows from [ejB] to [eiB] is dimk ei((RadB)/ Rad(B)2)ej . This is some-

times called the Ext-quiver of the block.

The main result of [SSS] states that if χ is the character of the action of G

on J/J2, J = Rad(KQ) and charK - |G|, then the quiver of K[Q o G] is the

McKay graph D(G,χ). The connected components of D(G,χ) are in one-to-one

correspondence with the blocks of K[Q o G]. Let y1, . . . , ys be a complete set of

primitive idempotents for KG, and let y1, . . . , ym be a completion to a basis of KG

using matrix units. Then from [MS] we know that there exists a subvector space

V = 〈x1, . . . , xr〉 of K[Q] which is a G-module and is isomorphic as a G-module

to J/J2. If r1, . . . , rt is a set of relations for K[Q] as a quotient of the free tensor

algebra on V, then a complete set of relations for the algebra K[QoG] as a quotient

of the path algebra of the quiver is given by the relations yirjyk, where 1 ≤ i ≤ s,

and 1 ≤ k ≤ m for j = 1, . . . , t.
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In practice, when Q is not abelian, writing the relations of K[Q] in terms of

the basis of V is not trivial because the basis elements of V are not simple linear

compositions of group elements like h−e, but rather are obtained by some Maschke

averaging. Thus it is not easy to convert group relations to algebra relations.

However, when Q is abelian, the relations of K[Q] are of the simple form xpn

i = 0

and xixj − xjxi = 0. The algebra K[Q] has a homogeneous basis, given by the

monomials in the generators x1, . . . , xr. In the sequel, we will abbreviate K[Q] by

KQ.

§2. Lifting McKay graphs.

We consider the case of a McKay graph D(G,X) where X is an irreducible

character of G induced from an irreducible character W of a normal subgroup H,

where [G : H] = p. Letting a be an element of G −H, and letting Wi = W ai

, i =

0, . . . , p−1, we have X =
p−1∑
i=0

Wi. We note that the permutation α of the irreducibles

induced by conjugation by a induces graph isomorphism D(H, W ) ∼→ D(H, Wi),

i = 0, . . . , p − 1. The set of functions from the conjugacy classes of H which are

Z-linear combinations of irreducible characters will be denoted by Z Irr(H).

Lemma 2.1. Let X ∈ Irr(G) be a character induced from an irreducible character

W of H, i.e., X = WG. Then the McKay graph D(G,X) is completely determined

by the McKay graph D(H,W ) and the mapping of Irr(G) to Z Irr(H) induced by re-

striction. If R′, R′′ ∈ Irr(G), then the number of arrows from R′ to R′′ in D(G, X) is

the total number of arrows from summands of R′H to summands of R′′H in D(H,W ).

Proof. By a result of Frobenius X · R′ = (W · R′H)G. We now apply Frobenius

reciprocity:

(R′′, X ·R′)G = (R′′, (W ·R′H)G)G

= (R′′H , W ·R′H)H

¤
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In the sequel, in our situation of H E G and [G : H] = p a prime, we let

Irr(H) = SH ∪CH , where SH are the characters fixed under conjugation by G. Let

Irr(G) = SG ∪ CG be the corresponding partition into characters which have split

and characters which have collapsed.

Example 1. G = C5 o C8, H = C5 o C4, the generalized quaternion group.

G = 〈a, b
∣∣ a8 = b5 = e, a−1ba = b2〉, H = 〈c, b

∣∣ c4 = b5 = e, c−1bc = b−1〉,

X = X9 ∈ CG, W = X5 ∈ CH , deg X = 4, deg W = 2.

Here c = a2.

See Fig. 1 for the diagram of the McKay graphs.

Fig. 1
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§3. Lifting relations.

The second author set up a database [S2], using GAP [G], of blocks of noncyclic

abelian defect group with defect at least 2 in the ATLAS groups and their sub-

groups. There are none for primes q > 13, and only 10 for q = 11, 13. For q = 3, 5,

and 7, the blocks are further subdivided. The main database, SortAt−q, located at

[S2], consists of blocks with elementary abelian defect group. There are 874 blocks

in this database for q = 3, 360 for q = 5, and 81 for q = 7. There is a separate list,

CyclicSortAt−q, of blocks of abelian defect group containing Cq2 , most of which

have cyclic defect, with the remainder being products of cyclic blocks.

In the interesting case where the defect group Q is elementary abelian, it usually

has prime rank d(= 2, 3), and d = 2 is much more common than d = 3. Notable

exceptions are the O’Nan group, whose principal 3-block is elementary of rank 4,

and extensions of PSL(2, 81). Since |Q| = qd, the integer d is the defect of the block.

A study of the Brauer correspondents b of the blocks with elementary abelian

undertaken by R. Leabovich [L] and T. Berrebi [B] has determined that in almost

all cases either H is itself abelian, or the Brauer correspondent is isomorphic to

the principal block of the normalizer, and thus we are reduced to the abelian case,

or b
∼→ Mt(b′), where b′ ∼→ K[Q o G], with [G : H] = 2 and H abelian. For

example, the normalizer for blocks of the symmetric groups Sn are of the form

(Q o G) × Sn−2p. Then b
∼→ Mt(b′), where b′ is a block of K[Q o G] and t is the

degree of a block of Sn−2p of defect zero. In general, as was shown by Reynolds

[Re], if b is a block isomorphic to Mt(Kγ [QoG′]), we can find a central extension

G of G′ with cyclic kernel N such that b is Morita equivalent to a block of QoG.

The group Q o G, with N minimal, will be called the Reynolds group. These are

listed in Tables 1, 2 and 3. When q = 3 and d = 3, the Reynolds group is generally

a direct product. For nilpotent blocks, which are Morita equivalent to KQ, we take

the Reynolds group to be Q. Those blocks for which the decomposition matrix was
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not known and no other information was available are not included.

Let the Reynolds group of b be QoG, where G is a q′-group and the action of

G on Q = Cq×· · ·×Cq induces an action on Rad(KQ)/ Rad2(KQ) with character

χ. In Table 1-Table 3, we give Q oG, sorted as in the database by the invariants

k(B) and `(B) of the block B. If the block which is Morita equivalent to b is not

the principal block of K[QoG], then we indicate the block by writing bj . Note that

in all cases given here K[QoG] has at most three blocks.

Table 1

Reynolds groups for 3-blocks in the database

with elementary abelian defect group, k(B) ≤ 24

d k(B) `(B) # of blocks Reynolds group
2 6 2 15 (C3 × C3) : (C8 : C2), b2

2 6 2 8 (C4× (C3 × C3) : C2) : C2), b3

2 6 2 16 (C3 × C3) : C2

2 6 4 74 (C3 × C3) : C4

2 6 5 74 (C3 × C3) : Q
2 9 1 35 C3 × C3

2 9 2 48 C3 × S3

2 9 4 141 S3 × S3

2 9 5 182 (C3 × C3) : D4

2 9 7 89 (C3 × C3) : (C8 : C2)
2 9 8 4 (C3 × C3) : C8

3 15 2 2 (C3)3 : C2

3 15 5 1 (C3 × (C3 × C3) : C4) : C2

3 15 7 1 (C3 × (C3 × C3) : Q) : C2

3 18 4 4 C3 × (C3 × C3) : C4

3 18 8 4 S3 × (C3 × C3) : C4

3 18 10 3 S3 × (C3 × C3) : Q
4 18 14 2 (C3)4 : (C2.(C2)4) : D5

4 24 14 1 (((C3 × C3) : C4)× ((C3 × C3) : C4)).C2

4 24 16 1 ((C3)4 : ((C2.((C2)4) : D5).C2

4 24 20 1 (C3)4 : (C80 : C2), b2

4 24 22 1 (C3)4 : (C40 : C4)
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Table 2

Reynolds groups for 5-blocks

d k(B) `(B) # of blocks Reynolds group
2 10 6 1 (C5 × C5) : (C3 : (C8 : C2)), b2

2 11 5 5 (C5 × C5) : C2.(C4 × C4).C2, b2

2 13 10 8 (C5 × C5) : (C8 : C2)
2 13 12 1 (C5 × C5) : (C3 : C8)
2 14 12 6 (C5 × C5) : C12

2 16 10 8 (C5 × C5) : (D4Y C4)
2 16 12 9 (C5 × C5) : (S3 × C4)
2 16 14 1 (C5 × C5) : (QY C4)
2 20 14 19 (C5 × C5) : (C4 × C4) : C2

2 26 24 3 (C5 × C5) : C24

Table 3

Reynolds groups for 7-blocks

d k(B) `(B) # of blocks Reynolds group
2 16 12 1 (C7 × C7) : (C3 ×D16)
2 22 18 3 (C7 × C7) : (C3 × (C3 : C4))
2 22 21 1 (C7 × C7) : (C3 ×Q8)
2 25 18 3 (C7 × C7) : (S3 × C6)
2 25 21 2 (C7 × C7) : (C3 ×D8)
2 26 18 1 (C7 × C7) : (C3 × C6)
2 26 24 3 (C7 × C7) : C24

2 27 21 8 (C7 × C7) : (C3 × SL(2, 3))
2 27 24 1 (C7 × C7) : (C3 ×GL(2, 3))
2 35 27 7 (C7 × C7) : (C3 × (C3 : D4))
2 49 48 3 (C7 × C7) : C48

In this paper, we treat the common case when one of the following holds:

Case 1: The character χ is a sum of linear characters.

Case 2: The group G has an abelian normal subgroup H of index p such that

χH = φ1 + · · · + φp is a sum of linear characters permuted by G and KH has a

set of primitive idempotents permuted by a, where a ∈ G is an element of p power

order whose residue in G/H generates G/H. Let N = ker(χ).

In Case 1, the relations are all of the form eix
q
j or ei(xjxk − xkxj) for j, k =

1, . . . , p, i = 1, . . . , [G : N ], as described in [MS].
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Case 2 is the case treated in detail by this paper. Clearly,

N =
n⋂

i=1

ker(φi).

(Even if H had not not been assumed abelian, since the derived group H ′ of H

is in each ker(φi), we could have gotten H ′ ⊂ N , so that H/N would have been

abelian.) Since the φi are conjugate via a, φ1(ap) = φj(ap) for j = 2, . . . , p.

Let e1, . . . , er be the block idempotents for H. Since conjugation by a is an

automorphism, a permutes these idempotents of H. Any φj , for j = 1, . . . , p, induces

a permutation τj on the linear characters θi of H by setting τj(i) = k iff φj ·θi = θk.

As was proven in [MS], this precisely corresponds to the condition

eixj = xjek.

Since τj corresponds to multiplication by φj , the τj commute because character mul-

tiplication commutes. In particular, in the relation ei(xjxk−xkxj), both monomials

have the same idempotent e` acting on the left, where ` = τj ◦ τk(i) = τk ◦ τj(i).

The problem of finding quivers and relations for the case of H abelian and

G = H o Cp was first treated by §2 of [RR]. We consider the nonsplit case and

also construct the relations in a mechanical, algorithmic fashion which has been

machine implemented for the case of H abelian and p = 2. We recall that CH is the

set of characters of H on which a acts nontrivially and refer to the set CH of the

corresponding idempotents as “collapsing idempotents”. Similarly, SH is the set of

fixed characters, and the set SH containing the corresponding idempotents will be

called “splitting idempotents”.

To give the quiver and relations of K[QoG], we proceed as follows:

1) Choose one primitive idempotent eı̂ of each nontrivial conjugacy class [ei] of

idempotents of H under the action of a. For each idempotent ek in H, choose

a natural number `(k), 1 − p < `(k) ≤ p − 1 such that ek̂ = a−`(k)eka`(k),

and set Ekk̂ = a`(k), Ek̂k = a−`(k).
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2) Construct the quiver D(G, χ) from D(H,φ1) by collapsing and splitting as in

Lemma 2.1, labeling each collapsed vertex by the idempotent ek̂ representing

its conjugacy class of idempotents.

3) For each splitting idempotent ei, let ei1, ei2 . . . , eip be the idempotents into

which it splits. (If p = 2, we abbreviate ei1 by e+
i and ei2 by e−i .) Let θ

be a nontrivial lifting of 1H . By standard results in Clifford theory, if θ′i is

the character associated to ei1 then the character θ′ij associated to eij is a

multiple of θ′i by a power of θ, and we may choose the numbering so that

θij = θ′iθ
j−1 is associated to eij .

Lemma 3.2. Let Q be an elementary abelian q-group of prime rank p. Let G be a

q′-group acting irreducibly on Q and assume that G is a p-extension of an abelian

group H. Let R = {rj} be the set of all relations of KQ, i.e., xq
` = 0, ` = 1, . . . , p,

and xtxs − xsxt = 0 for 1 ≤ t < s ≤ p. Each relation rj determines a unique

permutation σj such that eirj = rjeσj(i). Set k = σj(i). Each relation eirjek of

K[QoH] determines the following relations of the quiver of K[QoG] :

(a) If ei does not split and is a representative of its conjugacy class and ek does

not split, then we get a relation eirjEkk̂ = eirja
`, where ` = `(k) is chosen

so that a−`eka` is the conjugacy class representative ek̂.

(b) If ei does not split and is a representative of its conjugacy class and ek does

split, we get a relation

eirjek,

which splits into p relations since ek is splitting.

(c) If ei splits and ek does not, then we get relations ei`rjeka`, where ` = `(k)

is chosen so that a−`eka` is the conjugacy class representative ek̂.

(d) If ei, ek are both splitting, we get the p2 relations eitrjekt′ .
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Proof. Let {rj} be the complete set of relations such that K[Q] ∼→ K〈x1, . . . , xp〉/{rj},
as given in the statement of the lemma. Since the quiver of K[Q] is just p loops, then

by the Lemma in Section 5 of [MS], substituting 0 for the deformation parameter,

we know that the relations of K[QoH] and K[QoG], respectively, are obtained

from {rj} by multiplying on the left by a primitive idempotent corresponding to a

vertex and, in the case of K[QoG], on the right by a matrix unit.

Fix a relation rj of K[Q]. If it is monomial in x1, . . . , xp, then we get σj as

a composition of τi. If it is of the form xsxt − xtxs, then σj = τtτs = τsτt. We

previously defined a partition Irr(H) = SH∪CH , according to whether the character

was fixed under conjugation by G and would thus split, or whether it had nontrivial

conjugates, and a similar partition of the idempotents {e1, . . . , er} = SH ∪ CH .

For any primitive idempotent ei for which i = ı̂, we have the following logical

possibilities:

(a) If ei, ek ∈ CH , k = σj(i), then there is a relation eirj of the quiver of K[Qo

H]. Let ` = `(k) be the integer such that ek̂ = a−`eka`. Then the corresponding

relation of K[QoG] will be

0 = ebirjEkbk = ebirja
`.

(b) If ei ∈ CH and ek ∈ SH , we multiply by the various idempotents which split

it. These relations are distinct since they end at different points.

(c) If ei ∈ SH and ek ∈ CH , then we proceed as in (a) to show that the matrix

unit given in the lemma of [MS] is a power of a.

(d) If ei, ek ∈ SH , then there are p2 possible relations.

Corollary 3.3. If a splitting idempotent es ∈ SH can be inserted in eirj, then the

a` at the end in cases (a) and (c) can be conjugated forward until it reaches es when

it can be converted into a coefficient. Since H is abelian, case (d) occurs only when

p = 2, and there are only p non-zero relations in (d).
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Proof. Conjugation by a introduces coefficients in two ways. First of all, axpa
−1 =

φ1(ap) ·x1. Secondly, when the power of a reaches an element of SH , it is converted

into a coefficient by the formula a · est = est · a = θ′st(a)est.

We must show that when H is abelian, case (d) occurs only for p = 2, and that

then there are only p nonzero relations.

If rj is a relation for which case (d) occurs, and m(x1, . . . , xp) is a monomial

occurring in rj , then we have σj(i) = m(τ1, . . . , τp)(i) = k, which on characters

becomes m(φ1, . . . , φp) · θi = θk. Since θi, θk ∈ SH , we get that m(φ1, . . . , φp) =

θ−1
i θk ∈ SH , showing that m(φ1 . . . , φp) is invariant under the action of G.

This cannot occur for the monomial relation xq
t = 0 because the cycles in the

McKay graph D(H,φ1) are of length r dividing |H|, so φr
t = φr

t′ for all t, t′. If we

had φq
t invariant under the action of G so that φq

t = φq
t′ , then since |H| is a q′

integer, we would have φt = φt′ for all t′, a contradiction since the irreducibility of

the action of G on Q implies that the restriction of this action to H is a sum of

distinct conjugates.

If rj is the relation xtxs − xsxt, then φtφs is invariant. Then, acting by as−t,

we get φtφs = φsφ2s−t, so, multiplying by φ−1
s , t ≡ 2s − t (mod p). Since p is a

prime, t 6= s, and 1 ≤ s, t ≤ p, we have 2t ≡ 2s (mod p) only when p = 2.

The monomial x1x2 is an eigenvector for G, since x1 and x2 are eigenvectors for

H, with characters φ1 and φ2, while a−1x1x2a = x2(φ1(a2)x1) = φ1(a2)x1x2. Thus

if η is the linear character of G with η
∣∣
H

= φ1φ2 and η(a) = φ1(a2), then for any

idempotent eis with character φis, we have eisrj = rjeks′ , where s′ is so chosen that

η · θis = θks′ . Thus there is only one value s′′ of s′ for which the relation eisrjeks′′

is nonzero.

Example 2. Consider the Brauer correspondent of the principal block of the Janko

group J2 for q = 5. It is a semidirect product of C5×C5 by D6, the dihedral group of

order 12, and the action of D6 on J/J2 is determined by the unique two-dimensional
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representation without a kernel. The McKay graph is

Fig. 2

Let α±01, α12, α±23 be the arrows with increasing exponent and β±10, β21, β±32 the

arrows in the opposite direction. The relations are derived as follows from the

following cycles in H, eix1 = x1ei+1 and eix2 = x2ei−1.

e1x
5
1, e1x

5
2 = 0 : α+

01α12(a+
23β

+
32 − α−23β

−
32)β21 = 0

e2x
5
1, e2x

5
2 = 0 : β±32β21(β+

10α
+
01 − β−10α

−
01)α12 = 0

e1x
5
1 = 0 : α12(α+

23β
+
32 − α−23β

−
32)β21β

±
10 = 0

e2x
5
2x

5
2 = 0 : β21(β+

10α
+
01 − β−10α

−
01)α12α

±
23 = 0

e2x
5
1 = 0 : (α+

23β
+
32 − α−23β

−
32)β21(β+

10α
+
01 − β−10α

−
01) = 0

e1x
5
2 = 0 : (β+

10α
+
01 − β−10α

−
01)α12(α+

23β
+
32 − α−23β

−
32) = 0

e±0 (x1x2 − x2x1) = 0 : α+
01β

−
10 = 0, α−01β

+
10 = 0

e±3 (x1x2 − x2x1) = 0 : β+
32α

−
23 = 0, β−32α

+
23 = 0

e1(x1x2 − x2x1) = 0 : α12β21 = β+
10α

+
01 + β−10α

−
01

e2(x1x2 − x2x1) = 0 : β21α12 = α+
23β

+
32 + α−23β

−
32.

The projective modules needed to build the tilting complexes and the resolution

of the Green correspondents in Okuyama’s method are then constructed by laying

out the xi
1, x

j
2 in a grid. We give only P0+ and P1, the other projective modules
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being similar. The Cartan matrix, whose columns give the number of copies of

every simple in each projective, is

C =




5 0 2 2 4 4
0 5 2 2 4 4
2 2 5 0 4 4
2 2 0 5 4 4
4 4 4 4 9 8
4 4 4 4 8 9




Fig. 3

Note that our algorithm makes it quite natural to write the projectives in the

rectangular form which was used with such good effect by Holloway [Hol] in his

study of SL(2, qn).

§4. Homogeneous maps in tilting complexes.

Let us now consider the indecomposable projectives in the case where p = 2 and

the normalizer of the defect group Q = Cq × Cq is of the form Q o G, where G
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has a normal abelian subgroup H of index 2. (A sample case with p = 3 was given

in [SSS].) An examination of the Reynolds groups for blocks in our database [S2]

given in the tables in §3 shows that either G is abelian or this condition is fulfilled

with p = 2 for all but three blocks of defect 4 with q = 3, two blocks with q = 5

and two blocks for q = 7. If Rad(KQ) = J, the action of G on J/J2 is given by

χ = φ1 +φ2. We assume that a is an element of order 2c of G not lying in H, which

permutes φ1 and φ2. We let x1 and x2 be eigenvectors for the actions of φ1 and φ2

on J/J2. Set ζ = φ1(a2) = φ2(a2), where ζ is a primitive 2c′ root of unity for some

integer 0 ≤ c′ ≤ c. We may choose the xi so that ax1 = ζx2a, x1a = ax2.

Whereas in calculating the relations in §3 we found it convenient to conjugate a

to a splitting idempotent and convert it into a coefficient, in giving a homogeneous

basis of the indecomposable projectives it will be more efficient to conjugate the

element a to a collapsing idempotent.

Let A = K[QoH], Ã = K[QoG]. If, as before, we let e1, . . . , er be the block

idempotents of H, which are primitive because H is abelian, then the indecompos-

able projective eiA has a homogeneous basis {eix
j
1x

k
2}p−1

j,k=0.

Lemma 4.1. If mjk = xj
1x

k
2 , then amjka−1 = ζjmkj .

Proof.

axj
1x

k
2a−1 = (ax1a

−1)j(ax2a
−1)k

= (ζx2)jxk
1

= ζjxk
1xj

2

Definition. Let ρjk = τ j
1 τk

2 , so that eimjk = mjkeρjk(i).

Lemma 4.2. Let e±i be an idempotent corresponding to a splitting character θi.

Then a homogeneous basis of the indecomposable projective e±i Ã is a union of the
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following sets:

BC
i =

{
1
2
e±i

(
mjk ± ζjmkja

) ∣∣ eρjk(i) ∈ CH

}

BS
i =

{
e±i mjke±`

∣∣ ρjk(i) = `, e` ∈ SH

} ∪ {e±i mjj}.

Each element in these bases lies in a Peirce component of Ã w.r.t. the primitive

idempotents.

Proof. For any idempotent ei which splits into e+
i and e−i , we have

e+
i =

1
2
(e + a)ei =

1
2
ei(e + a)

and

e−i =
1
2
(e− a)ei =

1
2
ei(e− a).

Thus

e±i mjk =
1
2
ei(e± a)mjk

=
1
2
ei(mjk ± amjk)

=
1
2
ei

(
mjk ± ζjmkja

)
.

Case 1: ` = ρjk(i) is the index of a collapsing idempotent: Let `′ be the index of

the conjugate idempotent so that e`′ = ae`a
−1, then

aeimjke`a
−1 = ζjeimkj · (ae`a

−1)

= ζjeimkje`′ ,

so we see that ρkj(i) = `′. Thus

1
2
e±i (mjk ± ζjmkja) =

1
2
(mjk ± ζjmkja)e`.

Case 2: ` = ρjk(i) is the index of a splitting idempotent: If j = k, with ` = ρjk(i),

then

0 6= aeimjje`a
−1 = ζjeimjj(ae`a

−1),
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so we conclude that e` ∈ SH , since otherwise we would have eimjje`(ae`a
−1) = 0.

Finally, if j 6= k, and ` = ρjk(i), then

e±i mjke±` =
1
4
e±i mjk(e± a)e`

=
1
4
e±i (mjk ± ζjamkj)e`.

The two different ± signs are independent, so these represent four different maps.

Lemma 4.3. Let ei be an idempotent corresponding to a collapsing character θi

with i = ı̂. A homogeneous basis of the projective indecomposable eiÃ is a union of

the following sets:

BS
i =

{
1
2
(eimjk ±mkja)e±`

∣∣ ρjk(i) = `, e` ∈ SH

}

and

BC
i =

{
eimjk

∣∣ ρjk(i) = ` = ˆ̀, e` ∈ CH

}
∪ {eimjka

∣∣ ρjk(i) = ` 6= ˆ̀, e` ∈ CH}.

Proof. The proof for BS
i is similar to the previous lemma. As for BC

i , if ρjk(i) = ` =

ˆ̀, the chosen representative of its conjugacy class, then eimjk = eı̂mjk ends with

the idempotent e`, whereas if ρjk(i) = ` 6= ˆ̀, then we must multiply by a matrix

unit, which is equivalent to a times a constant since ζ = φ1(a2) is a constant. ¤

Now suppose that we have a tilting complex in which all the differentials are

homogeneous and the irreducible components have length 2, as in the cyclic de-

fect case or the elementary tilting complexes used by Okuyama [O]. Then we can

choose representatives of the endomorphisms which are homogeneous in each de-

gree. Furthermore, the set of homotopies also has a basis homogeneous in each

degree.
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§5. The Broué conjecture for the faithful 3-block of the covering group

of PSL(3, 4).

We now give, as an application, a verification of the Broué conjecture for a

block with defect group C3 × C3. To the best of our knowledge, guided by the list

of proven cases maintained at Bristol, this particular block has not been treated

as of the time of this writing. Let L be the central extension with kernel C2 of

PSL(3, 4). Then Q is a 3-Sylow subgroup, isomorphic to C3 ×C3. The centralizer

of Q is Q × C2. The centralizer has two blocks, each stable under the action of

the normalizer. These correspond to the two blocks of the normalizer. In this case,

since the defect group is abelian and thus contained in the centralizer, we consider

NL(Q)/CL(Q), and calculation shows that it is isomorphic to Q8, the quaternion

group of order 8. Both blocks of the normalizer are isomorphic as algebras, and

thus both are isomorphic to the group algebra of the unique semidirect product

(C3 × C3)oQ8 in which the center of Q8 acts non-trivially.

We are considering the non-principal block of the normalizer. This is the Brauer

correspondent of the faithful 3-block B of L, i.e., the block consisting of ordinary

characters which are nontrivial on the center Z(L) of order 2. A calculation of the

decomposition matrix of this block at L shows that it is identical, up to permu-

tation of rows and columns, with the decomposition matrix of the principal block

of the Mathieu group M22. The centralizers of the cyclic subgroups of the defect

group Q are identical to the centralizer of Q itself, so the restriction map induces

a stable equivalence. Calculating the Green correspondent of the simples of the

block B with the C-MeatAxe developed by M. Ringe produced modules for the

Brauer correspondent b of dimensions 1,1,4,4,6, with the same structure as the

Green correspondents of M22. Thus the same sequence of two elementary tilting

complexes used by Okuyama [O] to settle the Broué conjecture for M22 will work

for our block B.
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We want now to give the tilting complex explicitly, as a complex of b modules

with homogeneous differentials. In the notation of section 3, we have G = C4oC4 =

C2.Q8, H = C4 × C2, and the character χ is an irreducible character of G whose

restriction to H is the sum of two linear characters φ1 and φ2 with common kernel

N = Z(G) ∼→ C2. The McKay graph D(H, φ1) is the disjoint union of two cycles

of length four. The element a has order 8, and it acts on each of the two cycles

by leaving two antipodal points fixed and exchanging the other two points. The

element a2 is in H, and we have

φ1(a2) = φ2(a2) = −1.

Suppose 1 and 3 are the indices of the idempotents of the non-principal block of

H left fixed by a, and let 2 and 4 be the indices of the idempotents interchanged

by a. Choose 2 to be the representative of its orbit under the action of a, so

that 2̂ = 4̂ = 2. Then the idempotents of G will be e±1 , e±3 , and e2. These

primitive idempotents then determine four indecomposable projective modules of

dimension 9, which we will denote by P±1 and P±3 , and a single indecomposable

projective module of dimension 18, which we will designate by P2. The two Green

correspondents G+
1 and G−1 of dimension 1 are a pair of split simples, which we will

identify with e±1 . The two Green correspondents of dimension 4, G+
3 and G−3 , have

as tops a matched pair of split simples, which we will identify with e±3 .

Using the rectangular representation of the projectives as in §3, we see that

in fact G+
3 , which has composition factors 3+, 2, 3−, is the quotient of P+

3 by a

submodule whose projective cover is P+
1 ⊕ P−1 , and similarly G−3 is a quotient of

P−3 . The Green correspondent G2, with composition factors 2, 1+, 1−, 2, is the

quotient of P2 by a submodule with projective cover P+
3 ⊕ P−3 . We can represent
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these as

3+ 3− 2

G+
3 = 2 G−3 = 2 G2 = 1+ ⊕ 1−

3− 3+ 2

We now apply Okuyama’s method of elementary tilting complexes from [O]. For

those who have difficulty obtaining this extremely important paper, the method

is outlined, with an extension, in [S1]. We choose the index set I0 = {3+, 3−}.
Denote the right regular representation of b by M. Letting g be the endomorphism

corresponding to left multiplication by x1, letting h be the endomorphism of M

corresponding to left multiplication by x2, and letting α be the automorphism of

modules given by left multiplication by a, we get a tilting complex T1 = (P+
1 )(1) ⊕

(P−1 )(1) ⊕ P
(1)
2 ⊕ (P+

3 )(1) ⊕ P
(1)
3 .

(P+
1 )(1) : P+

3 ⊕ P−3

"
g2 + h2

g2 − h2

#

−→ P+
1

(P−1 )(1) : P+
3 ⊕ P−3

"
g2 − h2

g2 + h2

#

−→ P−1

(P2)(1) : P+
3 ⊕ P−3

"
h− αg
h + αg

#

−→ P2

(P+
3 )(1) : P+

3

(P−3 )(1) : P−3

The indecomposable projectives with indices in I0 occur in degree (−1) and the

indecomposable projectives with indices in {1+, 1−, 2} occur in degree 0.

Each elementary tilting complex determines a linear combination of columns of

the decomposition matrix Db of b, with those in odd degrees multiplied by (−1).

Multiplying negative rows by (−1) then produces the decomposition matrix of
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B1 = EndDb(b)(T ), from which the Cartan matrix can be calculated.

Db =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 2



→




1 0 0 0 0
0 1 0 0 0
−1 −1 −1 0 −1
−1 −1 0 −1 −1
0 0 0 0 1
−1 −1 −1 −1 0



→




1 0 0 0 0
0 1 0 0 0
1 1 1 0 1
1 1 0 1 1
0 0 0 0 1
1 1 1 1 0




= DB1 .

By Lemma 1.3(i) [O], the images G
+(1)
1 and G

−(1)
1 of G+

1 and G−1 remain simple

in B1. Furthermore, by Lemma 1.3(ii) [O], G
+(1)
3 and G

−(1)
3 are now simple. This

leaves only to calculate the Green correspondent G
(1)
2 , using the resolution method

in §4 of [R]. A projective resolution over b of G2 begins with the map in P
(1)
2 , and

thus a projective cover of this resolution in B1 has P
(1)
2 as its top. The projective

cover of the Heller translate over B1 has (P+
3 )(1)⊕(P−3 )(1) as its top. Calculating the

Cartan matrix from DB1 and noting that there are unique maps in each direction

between (P±3 )(1) and P2, we discover that G
(1)
2 has, as before, composition factors

2(1), 1+(1), 1−(1), 2−(1). The Heller translate of G
(1)
2 has socle 2(1) and all the other

simples as composition factors (with multiplicity 1), so it satisfies the conditions of

Lemma 1.3(ii) [O]. Therefore, a second elementary tilting complex with index set

I1 = {2} will complete the solution. Taking mapping cones, we can represent the

new tilting complex as a complex of projectives from b, with homogeneous maps:

P2
h+gα−→ P+

1

P2
h−gα−→ P−1

P+
3 ⊕ P−3

"
h− αg
h + αg

#

−→ P2

P−3
h+αg−→ P2

P+
3

h−αg−→ P2
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Conclusion.

We have concentrated here on an algorithmic construction of the indecomposable

projectives of the Brauer correspondent. We hope that by using the decomposition

matrix to find combinatorial tilting complexes, we will get a method for obtaining

quivers and relations for the group blocks themselves in the abelian defect case. The

method we are pursuing is outlined in [S1]. However, it requires a solid knowledge

of the projective modules of the correspondent to which this paper is intended to

contribute. It also involves questions of “folding” tilting complexes, as described

in [SZ1], [SZ2], [SZ3], [RS1], [SZ4]. We hope that, as in the cyclic case [RS2], the

Green correspondent will aid in choosing the proper “folding”.
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