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Abstract. The Broué conjecture, that a block with abelian de-
fect group is derived equivalent to its Brauer correspondent, has
been proven for blocks of cyclic defect group and verified for many
other blocks, mostly with defect group C3 × C3 or C5 × C5. In
this paper, we exhibit explicit tilting complexes from the Brauer
correspondent to the global block B for a number of Morita equiv-
alence classes of blocks of defect group C3 × C3. We also describe
a database with data sheets for over a thousand blocks of abelian
defect group in the ATLAS group and their subgroups.

1. Introduction

Let G be a finite group and let k be a field of characteristic p, where
p divides |G|. Let kG = ⊕Bi be a decomposition of the group algebra
into blocks, and let Di be the defect group of the block Bi, of order
pdi . By Brauer’s Main Theorems (see [A] for an accessible exposition)
there is a one-to-one correspondence between blocks of kG with defect
group Di and blocks of kNG(Di) with defect group Di. Let bi be the
block corresponding to Bi, called its Brauer correspondent.

Broué [B2] has conjectured that if Di is abelian and Bi is a prin-
cipal block, then Bi and bi are derived equivalent, i.e., the bounded
derived categories Db(Bi) and Db(bi) are equivalent. In fact, it is gen-
erally believed by researchers in the field that the hypothesis that Bi

be principal is unnecessary.
By a fundamental theorem of Rickard, if two algebras A and B are

derived equivalent, then there are “two-sided” tilting complexes, com-
plexes AX ′

B and BY ′
A of bimodules, projective as A- and B-modules,

such that AX ′
B⊗̂B BYA

∼→ AAA in Db(A), and BYA⊗̂A AYB
∼→ BBB

in Db(B). Each two-sided tilting complex induces a “one-sided” tilt-
ing complex AT by ignoring one of the algebra actions. The one-sided
complexes, after removing superfluous modules and maps, can be quite
simple to describe. In all the examples we will bring, the AT are com-
plexes of projective modules and, with one exception, each indecom-
posable projective occurs in a unique degree. A one-sided complex AT
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satisfies

EndA(AT )
∼→ B.

In Sections 2–3, we will give explicit tilting complexes of a number
for blocks. We are particularly interested in cases where one tilting
complex can be obtained from another by an automorphism, as in the
passage from the principal block of A6 to that of S6 and from the
principal block of A7 to that of S7.

In some cases, the proof of the Broué conjecture for the block is
due to Okuyama [O] and our contribution is to compute the tilting
complex from his algorithm by taking mapping cones. In other cases,
the experimental work to discover a conjectural tilting complex was
done by G. Chereshnya and the proof by M. Schaps.

The blocks given here were chosen from a database of blocks of
abelian defect group which will be described in Section 4. Using
the sorting into Morita equivalences in the database, the examples in
Sections 2–3 actually provide tilting complexes for numerous other
blocks. The basic approach guiding our research is that outlined in
[S1], in which the column operation induced on the decomposition ma-
trix by the tilting are taken as providing a first approximation to the
tilting complex, up to a choice of folding. Thus whenever the Brauer
character table and the decomposition matrix were available in GAP,
we included the decomposition matrix on the data sheet for the block
in the database. We also included the generalized decomposition ma-
trices where we could generate them. These were useful in determining
the permutations of the rows and columns of the decomposition matrix
which occur when the rows and columns are reordered by degrees after
tilting.

The verification of an explicit tilting complex permits machine calcu-
lation of the indecomposable projectives. We have written a program
in MAGMA, based on Holloway’s program “homotopy”, to make these
calculations for a few of the Brauer correspondents, as described in
[HS]. It is currently being tested and debugged.

2. Automizers C4 and D4

This section includes most of the blocks of the alternating and sym-
metric groups with defect group C3 × C3. We assume a first ordering
of the irreducibles of the character table of the group, as given in the
ATLAS or the GAP Character Table library. The B1 will always be
the principal block, B2 will contain the first irreducible which is not in
the principal block, and so forth.

For the automizer C4, the four projective modules Q1, . . . , Q4 are
of dimension 9, and each is diamond-shaped. We give the simples of
Q1, the structure of Q2, Q3 and Q4 being obtained from that of Q1 by
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cyclic permutation of {1,2,3,4}.

1

2 4

3 1 3

2 4

1

For the automizer D4, there is one projective module P1 of dimen-
sion 18 corresponding to the simple module of dimension 2, and there
are four projective modules P2, P3, P4, P5 of dimension 9. We give the
composition factors for P1 and P2. The exact maps are given by the
theorems in [HS].

P1 :

1

2⊕ 3 4⊕ 5

1 1 1

2⊕ 3 4⊕ 5

1

P2 :

2

1

2 3⊕ 4

1

2

The principal blocks B1 of A7 and S7.
The tilting complex for B1 of A7 was given by Okuyama [O] as

Q′
1 : Q3 ⊕ Q3 → Q1

Q′
2 : Q3 → Q2

Q′
3 : Q3

Q′
4 : Q3 → Q4

The tilting complex B1 for S7 was also used by Okuyama [O], but
not identified as belonging to S7. It is
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P ′
1 : P4 ⊕ P5 → P1

P ′
2 : P4 ⊕ P5 → P2

P ′
3 : P4 ⊕ P5 → P3

P ′
4 : P4

P ′
5 : P5

Note that P ′
2 and P ′

3 are obtained by splitting Q′
1, P ′

4 and P ′
5 are the

splittings of P ′
3, and Q′

2, Q′
4 each give P ′

1.
The principal blocks B1 of A6 and S6

The algorithm for the principal blocks in these groups was given
by Okuyama. In each case, one takes the elementary tilting complex
giving B1 of A7 or S7 and applies a further elementary tilting.
B1 of A6.

Q′′
1 = Q′

2 ⊕Q′
4 → Q′

1 : Q2 ⊕Q4 → Q1

Q′′
2 = Q′

2[1] : Q3 → Q2

Q′′
3 = Q′

2 ⊕Q′
4 → Q′

3 : Q3 → Q2 ⊕Q4

Q′′
4 = Q′

4[1] Q3 → Q4

B1 of S6.:

P ′′
1 = P ′

1[1] : P4⊕P5 →P1

P ′′
2 = P ′

1 → P ′
2 : P1 → P2

P ′′
3 = P ′

1 → P ′
3 : P1 → P3

P ′′
4 : P ′

1 → P ′
4 : P5 →P1

P ′′
5 : P ′

1 → P ′
4 : P4 →P1

If we analyze what has happened here, we see that Q′′
2 or Q′′

4 each
give P ′′

1 , that Q′
1 splits in P ′′

2 and P ′′
3 , while Q′′

3 splits into P ′′
4 and P ′′

5 .

B2 of 2.A6, with automizer C4:
This block is isomorphic to 2.SL(2, 7), and thus the Broué conjecture

was proven for it in [Hol]. The explicit tilting complex was given in
[S1]. The first step, with I = {3, 4}, produces the complex

Q′
1 : Q3 ⊕Q4 → Q1

Q′
2 : Q3 ⊕Q4 → Q2

Q′
3 : Q3

Q′
4 : Q4

The endomorphism ring of this complex in the derived category has
the same decomposition matrix as 2.A7. A difficulty with the stable
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equivalence has prevented us from demonstrating that they are Morita
equivalent, but we believe it to be true. Since, by [KS], the blocks 2.A7

and 2.S8 are Morita equivalent, this would also establish an explicit
tilting complex for 2.S8.

The second step is an elementary tilting with I = {1, 2}.
Q′

1 : Q3 ⊕ Q4 → Q1

Q′
2 : Q3 ⊕ Q4 → Q2

Q′
3 : Q4 → Q1

Q′
4 : Q3 → Q2

In this case the action of the automorphism giving 2.A6.2 does not
act on the tilting complex by permutation.

Note that in all three cases involving A6, the block is a result of two
elementary tiltings of which the first gives the corresponding block for
A7.

3. Automizer Q8

As with the automizer D4, we have four projective modules of di-
mension 9 and one of dimension 18. The projective indecomposables
look quite similar, but there is one major difference: all simples appear
in each projective indecomposable. Thus for P2, we have now

2

1

3 4⊕ 5

1

2

The composition factors for P1 are the same as in the case of D4 ,
though the maps are slightly different. The exact maps can be obtained
from the theorems in [HS].
The principal block B1 of M22.

The sequence of elementary tilting complexes was determined by
Okuyama [O]: I0 = {4, 5}. The tilting complexes are:

P
(1)
1 : P4 ⊕ P5 → P1

P
(1)
2 : P4 ⊕ P5 → P2

P
(1)
3 : P4 ⊕ P5 → P3

P
(1)
4 : P4

P
(1)
5 : P5

Then I1 = {1}. Here we can determine that the multiplicity of P
(1)
t into

the other P
(1)
j is always 1, because this gives the correct decomposition
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matrix when we apply column operations. Since the maps from P4⊕P5

into P2 and P3 factor through P1, we get

P
(2)
1 : P4 ⊕ P5 →P1

P
(2)
2 : P1 → P2

P
(2)
3 : P1 → P3

P
(2)
4 : P5 → P1

P
(2)
5 : P4 → P1

Another block with the same invariants is B5 of 2.L3(4).21, treated
in [HS]. It has the same tilting complex.
The principal block B1 of PSL(3, 4).

The algorithm follows Okuyama. The first two steps are as for the
principal block of M22 and give the above tilting complex. At this
point, the decomposition matrix is

D =




1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 1
1 0 0 1 0
0 1 1 1 1




In this case, the calculation of the elementary tilting complex was not
straightforward. The next stage is the elementary tilting complex de-
termined by the third column, I2 = 3, followed by an elementary tilting
complex given by the last two columns. There are two separate maps

of P
(2)
3 into P

(2)
2 , neither of which factors through the other. Using a

variant of Holloway’s MAGMA homotopy computation program devel-
oped at Bar-Ilan, we chose representatives; there are only zero maps

from P3 to P2 in P
(3)
2 , and both maps P1 ⊕ P1 → P1 map into the

radical squared. Thus when we take mapping cones, we get:

P
(3)
1 = P

(2)
3 → P

(2)
1 : P4 ⊕ P5 → P3

P
(3)
2 = P

(2)
3 ⊕ P

(2)
2 → P

(2)
1 : P1 ⊕ P1 → P1 ⊕ P3 ⊕ P3 → P2

P
(3)
3 = P

(2)
3 [1] : P1 → P3

P
(3)
4 = P

(2)
3 → P

(2)
4 : P5 → P3

P
(3)
5 = P

(2)
3 → P

(2)
5 : P4 → P3

The final stage in the algorithm is given by an elementary tilting
with I3 = {4, 5}. The resulting mapping cones give the correct decom-
position matrix and the final tilting complex
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P
(4)
1 = P

(3)
4 ⊕ P

(3)
5 → P

(3)
1 : P3

P
(4)
2 = P

(3)
4 ⊕ P

(3)
5 → P

(3)
3 : P4 ⊕ P5 →P1 ⊕ P1 → P1 → P2

P
(4)
3 = P

(3)
4 ⊕ P

(3)
5 → P

(3)
3 : P4 ⊕ P5 →P1 ⊕ P3

P
(4)
4 = P

(3)
4 [1] : P5 → P3

P
(4)
5 = P

(3)
5 [1] : P4 → P3

Note that in this example, unlike all the previous explicit tilting
complexes, we have a projective, P1, which appears in two different
degrees.
The faithful blocks of 4.M22. This extremely interesting example is treated
at length in [MS]. The action of Q8 on C3 × C3 is a Frobenius action,
and thus the results in [P2] imply the existence of a stable equivalence
given by restricting, tensoring with a 16-dimensional endopermutation
module, and cutting to the correct block. The indecomposables of max-
imal vertex C3 × C3 lead, using Okuyama’s theorems, to the following
explicit tilting complex.

P2 → P1

P1 → P3

P1

P4

P5

This is the first non-cyclic defect group example of a split elementary
tilting complex as defined in [S1].

4. A database of blocks of abelian defect group

For experimental mathematics one must generate data either bit by
bit as needed or en masse. For an investigation of blocks of abelian
defect group, we chose the second option, creating a database of blocks
of over a thousand blocks of abelian defect group for the 1129 groups in
the GAP 4.2 Character Table Library [G]. The database was intended
to help researchers working on the Broué conjecture. Since Rickard
proved the conjecture for blocks of cyclic defect [R2], the blocks of
cyclic defect were treated separately. Blocks with non-cyclic abelian
defect group existed only for primes 2, 3, 5, 7, 11, and 13. Since the
case of prime 2 was well understood, we included only the odd primes
in this range. For cyclic blocks of defect 1, the cases of primes 2 and 3
are trivial because there is only one Morita equivalence class of blocks,
so we included only primes between 5 and 31.
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The database also has some relevance for Donovan’s conjecture and
Puig’s conjecture that for a given defect group there are only a finite
number of equivalence classes under Morita or Puig equivalence [P1].

The organization of the data

The first division of the data was by the prime p which was the
characteristic of the field. For each prime p, the program IndexOf-
Blocks.gap, written in GAP 4.2, generated hypertext indices to a col-
lection of data sheets for individual blocks. The hypertext indices for
the various primes are as follows:

(1) Elementary abelian defect group, d ≥ 2, for p = 3, 5, 7, 11, 13,
BLOCKS/SortAt p.html.

(2) Non-elementary abelian defect group, d ≥ 2, for p = 3, 5, 7,
BLOCKS/CyclicSortAt p.html. Mostly defect group Cp2 .

(3) Cyclic defect group, d = 1, for p = 5, 7, 11, 13, 17, 19, 23, 29, 31,
CYCLIC/SortAt p.html.

(4) Nonabelian defect group, d ≥ 3, for p = 3, 5, 7,
BLOCKS/NonabSortAt p.html.

For each block of a group in the Character Table Library, the pro-
gram generated a text file data sheet containing various invariants of
the groups and the block, including the decomposition matrix where
known. Where the decomposition matrix was not known, the program
at least calculated its dimensions k(B) and `(B). The invariant k(B),
the number of ordinary characters of the block, was available. The
invariant `(B) was calculated by using a method taken from [LP] to
get an integral matrix, restricting the character table to the given rows
and the elements of order prime to p, and calculating the rank of the
matrix. The first sorting of the data was by (k(B), `(B)) pairs.

The next problem was to sort the data into Morita equivalence
classes. From the decomposition matrix one computes the diagonal
of the Cartan matrix by taking the scalar product of each column with
itself, a procedure for which the chosen ordering of the rows is irrele-
vant. If one sorts the Cartan diagonal in ascending order, the ordering
of the columns is also irrelevant. The list of blocks was sorted by these
sorted Cartan diagonals.

For blocks with noncyclic elementary abelian defect group, the sorted
Cartan diagonals generally classed together blocks with the same de-
composition matrix up to permutations of the rows and columns. A
notable exception was the case p = 3, k(B) = 6, and `(B) = 4, which
contained two sets of decomposition matrices, corresponding to the
principal and non-principal blocks the 2.A6, the double cover of the
alternating group on six numbers. Another interesting case was p = 3,
k(B) = 6, and `(B) = 2. There are three possible Brauer corre-
spondents, with differing shapes for their generalized decomposition
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matrices. For each sorted Cartan diagonal there is a unique decompo-
sition matrix, but there may be up to three different Morita equivalence
classes of blocks, which can be distinguished by the shapes of their gen-
eralized decomposition matrices.

For blocks with cyclic defect group, the Cartan diagonal is not very
helpful in distinguishing Morita equivalence classes. In the cyclic case
the Morita equivalence class are determined by the Brauer trees. For
the sporadic groups the Brauer trees of the cyclic blocks are calculated
in [HL]. For the other blocks in our database the trees were calculated
by Tal Kadaner [Ke] in her thesis, up to some uncertainty about the
cyclic ordering of branches in complicated cases.

Finally, for a given Cartan diagonal, the blocks were sorted by the
list of character degrees, after reduction by dividing out by the g.c.d
of the degrees. Ruth Leabovich undertook the study of blocks with
the same reduced character degrees in the database which were neither
Morita equivalent to the Brauer correspondent nor derived from blocks
of cyclic defect. She was able to show in almost all cases that there
was a Morita equivalence derived from Clifford theory.

Even for blocks for which the decomposition matrix was not available
in GAP 4.2, we listed the blocks under the Cartan diagonal of a block
with the same reduced degress and indicated by “*” that the Cartan
diagonal was only conjectural. For many of these blocks the Morita
equivalence to a block in that group was established by other means.

Based on her work, the hypertext index was generated again with
links to show the connections among the blocks leading back to a “root”
block, usually in a group of minimal size. This was largely a matter
of filtering out “noise”, in order to reduce the totality of blocks to a
nontrivial subset. The links were categorized into six possibilities:

(1) (IN) Inflation, where the block is linked to a block of a quotient
group from which it is derived by inflation;

(2) (MU) The group is a direct product, and a block in one factor
is “multiplied” by a defect zero block in the other factor, with
the link given to the corresponding block of the first factor;

(3) (CL) More complicated Clifford theory, e.g., two blocks conju-
gate under an automorphism producing a single block in the
extension by the automorphism;

(4) (MO) Application of Morita’s theorem for grouping blocks by
conjugacy classes of blocks of the maximal normal p′ subgroup
N , where the link is to the stabilzer of a representative, divided
by N .

(5) (ISO) Isomorphism between blocks;
(6) (SC) Scopes reduction or some extension thereof [Sc].

In many cases the links were obvious from the group names, but in
case (4) an analysis of the character table was required and (6) was
more advanced.
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We have not extended the system of links to nilpotent blocks, and
certain other classes of blocks which were particularly problematical.
Ruth Leabovich expects to make this extension as part of the work for
her Ph.D. thesis.

Some of the root blocks were cases for which the Broué conjecture has
been solved, and for these cases Mikhal Cohen supplied the references.
Other cases which we believe to be open and interesting are marked
with a “?”.

Normalizers and Centralizers

The basic conception of the database, as a tool for working on the
Broué conjecture, was to match up blocks with their Brauer correspon-
dent, calculating the decomposition matrices for each, and comparing
the centralizers of representatives of various conjugacy classes of non-
trivial elements of the defect group.

One difficulty with working in the GAP Character Table Library is
the lack of the group. This makes it difficult to calculate the Brauer
correspondent. The calculation was done in two stages:
(1) Via invariants.

The normalizer N = NG(D) of the defect group D of a block B is a
group with a normal subgroup. By a theorem of Külshammer, such a
block is of the form Mt(K

α[DoH ′]), where H ′ is a p′-group and α is a
cocycle in H2(H ′, K∗). Using a trick of Reynolds [Re], we note that this
is Morita equivalent to a block of a group DoH, where H is a central
extension with cyclic kernel Cm and quotient H ′ with D

∼→ Cp×Cp. For
defect 2, we can find the candidate blocks by considering p′-subgroups
of GL(2, p) and their central extensions by C2, a list of which are given
at [S2]. These groups produced (k(b), `(b)) pairs corresponding to all
the global blocks B. For defect d ≥ 3 the computation was more com-
plicated and generally required determining the normalizer by one of
the methods described below. Leabovitch [L] also showed that in many
cases there were linear characters extending the central characters, and
thus the various blocks of the normalizer were isomorphic.

The minimal group D oH having a block Morita equivalent to the
Brauer correspondent b was called the Reynolds group of B and tables
of the Reynolds groups for the blocks with p = 3, k(B) ≤ 24 and
p = 5, 7 are given in [HS].

Had there been a global blocks B for which we could not find a block
with the same invariants in some group with normal subgroup D, this
would have been a counter-example to the Broué conjecture, but in fact
no such block was found. The next step, then, was to verify that the
block of the Reynolds group was indeed Morita equivalent to a block
of the normalizer of B, and choose among Reynolds groups when there
was a choice.
(2) Explicit calculation of normalizers and centralizers.
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For the root blocks, those not readily available from smaller groups
by Clifford theory, many of the normalizers and centralizers were cal-
culated explicitly by Ayala Bar-Ilan [Ba] and and Tzviya Berrebi [Be].
This was done in one of four possible ways, depending on the group.

(a) Symmetric and alternating groups and their covers. In this case
the groups were known from the combinatorial considerations. Let
c = (1 . . . p) and d = (p+1 . . . 2p), and let D be the elementary abelian
group < c, d >.

(a.1) Assume n ≥ 2p. Then
(a) NS−n(D) = (Cp o Cp−1) o C2 × Sn−2p,
(b) CG(D) = D × Sn−2p,

(c) CG(c)
∼→ Cp × Sn−p, and

(d) CG(cd)
∼→ (D o C2)× Sn−2p.

(a.2) For the alternating group An, we get the intersection of the
above normalizers and centralizers with An. The cases n =
2p, 2p + 1 are special. Thereafter, every odd permutation in
the normalizer of D in S2p can be multiplied by a transposi-
tion in Sn−2p. The case of particular interest is the centralizer
CAn(cd) = (D×An−2p)oC2, where the action of the nontrivial
element of C2 in D is to interchange c and d, while its projec-
tion onto Sn−2p is a transposition. This is actually isomorphic
to C3 × (C3 × An−2p)o C2,

(a.3) The covering groups Ãn and S̃n. Here we get a central extension
with kernel C2 of the groups in (a.1) and (a.2). Let N denote the
normalizer of the defect group D in S2p and NA the normalizer

of D in A2p. Let Ñ and ÑA be the preimages in S̃2p and Ã2p,
each a central extension by C2 of the corresponding group N
or NA, using the rules given in [C]. Similarly, we can consider
C̃, the preimage of the centralizer of cd in S2p. If p ≡ 1 (mod

4), we get C̃
∼→ D o C2, and if p ≡ 3 (mod 4), then C̃

∼→ D o
C4. In [HH], Hoffman and Humphreys define an amalgamated
product of covering groups, which is a direct product modulo
the identified kernel, and which we will denote by “Ȳ ”. With
this notation,
(a) NS̃n

(D) = Ñ Ȳ S̃n−2p.

(b) CS̃n
(c) = Cp × S̃n−p.

(c) CS̃n
(cd) = C̃Ȳ S̃n−2p.

(d) NÃn
(D) = ÑAȲ Ãn−2p.

(e) CÃn
(c) = Cp o Ãn−p.

(f) CÃn
(cd) = (D × Ãn−p).C2.

(b) Special linear groups. One common source of blocks with elemen-
tary abelian defect group are the special linear groups SL(2, q), where
q = pd is a non-trivial power of the odd characteristic p. The defect
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group is given by the upper triangular unipotent matrices and the nor-
malizer is N = (Cp)

d o Cq−1. The library of groups contains various
quotients and extensions, for which the group itself is not available in
GAP. To determine the exact extension or quotient of N required an
analysis of the character table and a study of the possible groups of the
correct order with the proper invariants. Because the number of sim-
ples `(B) in a block of normal defect group is the number of characters
of the p′ complement, there were usually few candidates. For this work,
the advanced search capabilities in our database of groups of order up
to 2000 [MSV] were useful, because we could filter out by number of
characters and then compare the structure description of the groups
with that of N . This database, like all the others, was created in GAP
4.2 and should be used subject to the GAP copyright.

(c) Other groups for which suitable representations were known. The
first problem was to obtain the group; this was done whenever possible
by downloading permutation representations from the ATLAS of finite
group representations. (For calculating normalizers of small p-groups
inside large groups, the matrix representations generally were too slow.)

Normalizers and centralizers are standard functions in GAP, so if the
defect group was the p-Sylow subgroups it was straightforward to calcu-
late them. When the defect groups was not a p-Sylow group, Bar-Ilan
and Berrebi used a program of T. Breuer to calculate the defect classes,
i.e., the conjugacy classes of p′ order such that the p-Sylow subgroup of
the centralizer of a representative is isomorphic to D. Then by compar-
ing orders and centralizer sizes, the program located a corresponding
conjugacy class representative in the group, and calculated the p-Sylow
subgroup of its centralizer. The representations were downloaded by
hand, but the program calculated the desired results for all the groups
at once and stored them in a file to be read by the program which gen-
erated the data sheets. For these root blocks, the following subgroups
were described:

1) H = NG(D);
2) CG(D);
3) For each conjugacy class [u] of p-elements in D, CG(u) and

CH(u).

(d) Other groups. When the normalizer and the centralizer were
too large, they could at times be identified from the list of maximal
subgroups in the ATLAS and from the centralizer orders of elements.

Example 1. For the sporadic Held group (He) and prime p = 3, the
normalizer of D can be identified as ((C4 × C2) o C4) o (S3 × C2),
but the centralizer of an element u of order 3 is 7560, too large for
the Small Groups Library. However, the list of maximal subgroups
contains a group of order 15120, identified as the normalizer of an
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element of order 3, with structure C3.S7, from which we deduce that
the centralizer is C3.A7.

Example 2. Consider the principal 3-block of defect d = 4 in the
fifth maximal subgroup G of the O’Nan group, a non-solvable group
of order 25920. This is a block with invariants k(B) = 24, l(B) = 14.
The sixth maximal subgroup N of the O’Nan group is a solvable group
of the same order, which, according to the information in the ATLAS,
is the normalizer of the 3-Sylow subgroup D, the defect group of the
block. Thus NG(D) = G ∩ N . The structure of G as given in the
ATLAS is ((C3 : C4) × A6).C2, so the structure of NG(D) must be
(C3)

4 : (C4×C4).C2. In order to find the exact group, we downlowded a
permutation representation of the O’Nan group, calculated the Sylow-3
group and then its normalizer N . The Sylow-2 subgroup of N had order
64. It was necessary to find a subgroup of order 32 with the proper
structure, which, together with D, generated the desired normalizer,
and this we did. It was of order 2592, too large for the GAP library of
small groups.

For algebraic groups in non defining characteristic q, for which
p

∣∣ q − 1, it occasionally happened that the centralizer of an element
was of the form Cp × G′, where G′ was a related algebraic group of
smaller rank. For simple groups, centralizers of elements of low order
play a role in the classification . So for some primes and some groups,
we may be able to fill in the remaining gaps from the literature.

Generalized Decomposition Numbers

There is an extension of Broué’s conjecture by Rickard [R2], in which
the two-sided tilting complex X is splendid, i.e.,can be made up of
modules which are direct summands of p-permutation modules. Let us
suppose that X is a tilting complex from a symmetric algebra kGe to a
symmetric algebra kHf , both of which are group blocks with a common
abelian defect group D. Let Q be a non-trivial p-subgroup of D. The
point to this is to ensure that the various restrictions XQ of X as com-
plexes of CG(Q)e-CH(Q)f -modules will also be tilting complexes. This
means that the decomposition matrices of the corresponding blocks of
the centralizers would also be also obtained, one from the other, by
column operations, permutations and multiplication of rows by ±1.

To understand the significance of this claim, let us consider, for each
non-trivial u in D, the submatrix Mu of the character table consisting
of rows of the block and columns which are conjugacy classes with
representatives of the form uy for a p-regular element y, i.e., elements
y of p′ order. The part of the generalized decomposition matrix of
the block corresponding to u describes how the rows of this matrix
are generated by the Brauer characters of the corresponding blocks of
CG(Q) for Q =< u > ([Th],§43). The column operations taking the
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decomposition matrix of CG(Q)e to CH(Q)f determine a change of
basis on the Brauer characters. Thus we expect corresponding parts of
the generalized decomposition matrix to differ by column operations.
Were we to find a case in which this did not hold, it would be a potential
counterexample to the claim that there is a splendid tilting complex.
So far we have not found any such example.

We have other reasons for wishing to know the complete generalized
decomposition matrix. Our attempts to find column operations trans-
forming the regular decomposition matrix is often hampered by diffi-
culties in matching up the rows, which have undergone a permutation.
Since the generalized decomposition matrix of a block is nonsingular,
and often some of the sections of the generalized decomposition matrix
have a single column, the information from the generalized decompo-
sition matrix is often sufficient to determine the permutation.

Ayala Bar-Ilan wrote a program to construct the generalized decom-
position matrix, but it requires character tables for the centralizers
which are not currently available for each block. One of the most com-
plicated parts of the program was an algorithm for matching up the
conjugacy classes in the large group with the conjugacy classes in the
centralizer of u.

Since we did not have the character tables of the centralizers for most
of the groups in our database, this would have been quite complicated
to implement as part of the program which constructs the database.

The remaining problem was to find a basis for the set of Brauer char-
acters of CG(u). From the examples calculated by Ayala Bar-Ilan, it
became clear that these Brauer characters can almost always be found
among the rows of the section of u, up to a possible multiple by −1 to
make the value at u positive. (This is quite different from the decompo-
sition matrix, where the values of the p-regular elements rarely contain
a complete basis for a positive integral decomposition.) Taking such a
basic set of vectors for each section, we calculated the resulting decom-
position of the rows of the section according to this basis. Occasionally
there were failures involving arithmetic with algebraic integers. The
function available in GAP was intended originally for rows of charac-
ter tables. It attempts to convert the vector of algebraic integers into
an integral vector using an integral basis as in [LP]. Unfortunately,
when u is not conjugate to all of its powers, one does not have all the
necessary columns in Mu.

When the decomposition matrix was known, and the matrix ob-
tained by adjoining the columns of this matrix to the columns of the
decomposition matrix was square, we reproduced the total matrix at
the bottom of the data scheet.

Example 3. Let G be S10 and let B be the first of the two blocks of
defect 2. The centralizer of the element (123) is isomorphic to C3×S7.
The set of Brauer characters is the same as the set of Brauer characters
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for S7. The submatrix Mu of the character table of S10 consisting of
rows of the block and conjugacy classes with respresentatives of the
form uy for y a p-regular element commuting with u is given by the
rows of the following matrix:




6 2 0 1 −1 4 0 2 −1
15 −1 −1 0 1 −5 3 −1 0
6 2 0 1 −1 4 0 2 −1
21 1 −1 1 0 −1 3 1 −1
15 −1 −1 0 1 −5 3 −1 0
−21 −1 1 −1 0 1 −3 −1 1
−6 −2 0 −1 1 −4 0 −2 1
21 1 −1 1 0 −1 3 1 −1
−15 1 1 0 −1 5 −3 1 0




The first two rows form a basis for the row space, and an examina-
tion of the character table of S7 shows that they are also the Brauer
characters of the centralizer.

When the inertial quotient acts freely on the defect group, e.g., a
Frobenius action, the blocks of the centralizer are nilpotent and the
sections of the generalized decomposition matrix for nontrivial u have
dimension one [P2]. Since the generalized decomposition matrix of a
block is nonsingular [Th], one of the rows must be a multiple by 1
or −1 of the unique Brauer character. Where, as in these cases of
Frobenius action or other cases where we know the exact centralizers,
we have succeeded in establishing that our matrix is identical with the
generalized decomposition matrix, we label it as such. Mikhal Cohen
has been working on increasing the number of blocks for which the
generalized decomposition matrix is provided.

Applications

The database has so far been known only to our local research group.
The applications to date have been as follows.

Explicit tilting complexes. In [S1], we suggested an approach to
the blocks of defect Cp × Cp using decomposition matrices to build
up explicit tilting complexes using a sequence of elementary steps and
simplifying the resulting mapping cones to get explicit one-step tilting
complexes from the Brauer correspondent to the block B. The com-
plexes which have been verified are given in the first part of this paper.
The project has foundered on the difficulty with constructing stable
equivalences for non-principal blocks. However, as part of the project,
Genadi Chereshaya did find tilting complexes which, when applied to
the Brauer correspondent b, produce blocks with the same decomposi-
tion matrix as B. This was done for various non-principal blocks with
defect group C3×C3 and for blocks with defect group C5×C5 that have
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a maximal number of exceptional characters (i.e., characters producing
multiple rows in the decomposition matrix). These have not yet been
included in the database because they are still conjectural.

It is particularly easy to construct the conjectural tilting complexes
for blocks with a maximal number of exceptional characters, i.e., char-
acters whose multiplicity when restricted to the p′ elements is greater
than one. For example, when p = 5, all the blocks with k(B) = 14,
`(b) = 6 have four pairs of exceptional characters. In these cases there
is an actual algorithm to calculate the conjectural tilting complex [Che].
When this tilting complex is stable under an outer automorphism, then
it may also provide a conjectural tilting complex for a block of the group
extended by the automorphism.

Morita equivalent families. In addition to the Clifford theory-type
Morita equivalences, the categorization in the database has brought
to light other structurally determined Morita equivalences, including
a whole set of such equivalences between blocks of S̃n and blocks of
Ãn, where these are, respectively, the Schur covering groups of the
symmetric and alternating groups [KS].

The databases

The home page for the entire collection of databases, including a
database of character tables, the p′ subgroups of GL(2, p) and some
extensions, and the database of abelian non-cyclic blocks for 3, 5, 7,
11, and 13:
http://www.cs.biu.ac.il/ mschaps/math.html

In view of the results of Chuang-Rouquier on derived equivalent fam-
ilies of non-abelian defect group, there has been an extension for non-
abelian defect groups, but it is not well developed as of this writing.
Although the Broué conjecture has been solved for the cyclic blocks,
other questions have arisen about the tilting complexes, so we have
added a database of cyclic blocks [SZ],[RS].

We would appreciate it if any further results using these databases
would include a reference and that we be informed.
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abéliens, Geom. Dedicata 37 (1991), 9–43.

[Re] W.F. Reynolds, Blocks and normal subgroups of finite groups, Nogoya Math.
J. 22 (1963), 15–32.

[R1] J. Rickard, Morita theory for derived equivalence, J. London Math. Soc. 39
(1989), 436–456.

[R2] J. Rickard, Splendid equivalences: derived categories and permutation mod-
ules, Proc. London Math. Soc. 72 (3) (1996), 331–358.

[R3] J. Rickard, Equivalences of derived categories for symmetric algebras, J.
Algebra 257, no. 2 (2002), 460-481.



18 A. BAR-ILAN, T. BERREBI, ET AL.

[RS] J. Rickard and M. Schaps, Folded tilting complexes for Brauer tree algebras,
Advances in Math. 171 (2002), 167–182.

[Ro1] R. Rouquier From stable equivalences to Rickard equivalences for blocks with
cyclic defect, Groups ’93, Galway-Saint-Andrews Conference, vol. 2; London
Math. Soc. Series 212, Cambridge University Press, 1995, 512–523.

[Ro2] R. Rouquier Block theory via stable and Rickard equivalences, preprint,
Paris, 2000.

[S1] M. Schaps, Deformations, tiltings and decomposition matrices, Fields Insti-
tute Publications (2005).

[S2] M. Schaps, Databases for the Broué conjecture,
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