LECTURE I: THE ORDINARY REPRESENTATIONS
OF GROUPS

MALKA SCHAPS

The symmetric group S, the group of all permutations of a finite set
with n elements, is one of the most pervasive objects in in mathemat-
ics, and, for that matter, in physics. Every finite group, for example,
is a subgroup of a symmetric group. When we are considering the
representation theory of the symmetric group, then we are concerned
with the algebra generated by group, whose representation theory has
many important combinatorial properties. The group algebra has a
deformation known as the Hecke algebra, which we intend to discuss
together with the symmetric group itself. In addition, the symmetric
group is simplest example of the important class of groups appearing
in the theory of Lie algebras under the name of ”Weyl groups”. Some
of these other Weyl groups also have a Hecke algebra theory, and we
hope to explain this in the course of these lectures.

1. ORDINARY REPRESENTATIONS OF GROUPS

For any finite groups G = {g1,...,gs} and field F, a representation
of G over F'is a group homomorphism

p:G— GL.(F),

and r is called its degree. When we wish to describe the representation
in a basis-free fashion, then we will give it as a homomorphism into
GL(V), where V is an F-vector space.

Let F'G be the corresponding group algebra, with F-vector space
basis (g1, . . ., g-) and algebra multiplication induced by the group mul-
tiplication law and linearity. Then the representation p induces an
algebra homomorphism

p: FG— GL.(F),
where Y a;g; € F'G is mapped to > a;p(g;). The representation p can
be recovered from p by restricting to G, and we will consider them
interchangeable. The most compact description of p or p is given by

specifying the images of a set of generators of G, as matrices satisfying
the defining relations of the group. Each representation

5 FG — GL(V)

determines a F'G-module structure on V| given by

Date: Nov. 16, '10.



2 MALKA SCHAPS

g-v= ﬁ(g)(?])7
and every module gives a representation, so that we use the two terms
almost interchangeably, depending on which viewpoint is more conve-
nient for the purpose at hand. A subrepresentation, for example, is
most easily defined as a submodule W of V. Since the action of the
generators of the group maps W into itself, then in fact, the homomor-
phism p determines a representation 7 : FG — GL(W).

Two representations p and 7 are considered equivalent if they differ
only by a change of basis in the underlying vector space F" on which
the matrices act. More formally, p ~ 7 if there exists an invertible r x r
matrix P such that for each G € G, 7(g) = P~'p(g)P. The “atomic
particles” of representation theory are the irreducible representations,
which have no subrepresentations at all. The “molecules” of represen-
tation theory are the indecomposable representations, those which are
not equivalent to a nontrivial direct sum of representations.

We assume, for the remainder of this section, that F' satisfies the
following two conditions, in which case we say that we are studying
the ordinary representations of the finite group G.

e (generic characteristic): F is a field of characteristic 0, or of
positive characteristic p such that p 1 |G].

e (F sufficiently large): F' contains a primitive root of unity ( for
|G| = s.

If these two conditions hold, then the indecomposable representa-
tions are, in fact, irreducible, having no subrepresentations, and then
by Maschke’s theorem, we can write F'G as a direct sum of simple
algebras and decompose F'G in the form

t
FG =P M,,(F).
=1

Each component determines a unique irreducible representation p; and
these give a complete set of representatives of irreducible representa-
tions. The size n; of the matrix block is the degree of the corresponding
irreducible representation. The inverse images e; of the identity matri-
ces I, of the ¢t components form a basis for the center Z(F'G) of the
group algebra F'G.

A representation p is completely determined by its character x,, a
map from G into F' given by

Xo(g) = tr(p(g)).

Since the trace is invariant on conjugacy classes of matrices, x, is a class
function on G, that is, fixed on conjugacy classes. The character of the
irreducible representation p; will be denoted by y; for brevity. The
addition of characters corresponds to direct sums of representations,
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and the componentwise product of characters corresponds to tensor
products of representations.

The conjugacy class sums form an alternative basis for the center
Z(FQ), and thus there are exactly ¢ conjugacy classes. We will order
the elements of G so that g, is the identity element e of the group and
gj, for 7 =1,...,¢ are representatives of the distinct conjugacy classes.
The conjugacy class [g;] will be denoted by C; and its class sum )

will be denoted by @.

We recall that we have assumed that F' is of generic characteristic
and is sufficiently large. The character table X is the ¢ x t square
matrix [x;(g;)]. For any i, j the character value x;(g;) is the sum of the
eigenvalues of p;(g;), and since g; is of finite order dividing the order
s of GG, the entries in the character table can be expressed as powers
of ¢, making them more or less independent of the actual choice of the
field F', as long as it satisfies our assumptions. If N is the diagonal
matrix with the degrees along the diagonal, and M is the diagonal
matrix with conjugacy class sizes m; = |C}| along the diagonal, then
W = N-'XM, the matrix of central characters, gives a base change
matrix between the two bases of Z(F'G), in the sense that

Cj: E wijei.

Since W, N and M are all invertible, so is X.

ggjg

Example 1.1. Consider the symmetric group Ss;. There are three
conjugacy classes: The class of the identity is centralized by the entire
group,the class of acycle of length 3 ia centralized by the unique normal
subgroup that it generates, and the class containing all three transpo-
sitions,each of which is centralized by the subgroup that it generates.
There are two linear irreducible representations, the trivial repre-
sentations which sends every group element to 1, and the alternating
representation, which sends the even permutations to 1 and the odd
permutations to —1. There there is a representation of degree 2.

1 1 1 1 00 1 00
X=1 1 —-1,N=01 0,M=0 3 0
2 -1 0 00 2 00 2
We then get
1 2 3
W=1 2 =3
1 -1 0
If we calculate
1 1 4
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we can find the central idempotent corresponding to each irreducible
representation.



