
LECTURE II: THE ORDINARY REPRESENTATIONS
OF THE SYMMETRIC GROUPS AND THE
DEFINITION OF THE HECKE ALGEBRA

MALKA SCHAPS

1. Ordinary representations of the symmetric groups

We denote by Sn the symmetric group on n objects. Let F be a field
of characteristic 0 or of characteristic p with p > n. In addition, we
assume that F is sufficiently large in the sense that we defined in the
last lecture. For the symmetric groups Sn, the conjugacy classes consist
of all elements with the same cycle structure. Each cycle structure can
be represented by a partition of n, and thus there is a natural one-
to-one correspondence between conjugacy classes and partitions. The
conjugacy class representative with the integers {1, . . . , n} inserted in
cycles of lengths λ1, . . . , λk will be denoted by gλ.

It is considerably more difficult, though standard, to show that the
irreducible representations are also in one-to-one correspondence with
the partitions of n. There are various classical proofs of this fact. We
now leave the standard material which has been known in essence since
the time of Frobenius 150 years ago, and describe a new approach to the
representations of the symmetric group which goes back about 15 years.
We will give a sketch of a more modern proof, based on what is called
the “multiplicity-one” theorem. For the purposes of these lectures,we
wish to focus on a particular set of generators and relations for the
symmetric group,the so-called Serre relations. We take as generators
the transpositions si = (i i + 1) These generate the symmetric group
and, addition to satisfying s2

i = e, they satisfy the braid relations

sisi+1si = si+1sisi+1sisj = sjsi, |i− j| > 0.

For any k < n, we consider Sk as the subgroup of Sn consisting of all
permutations fixing all but the first k numbers. For each k < n, define
Lk ∈ FSk by

Lk =
∑

m<k

(m k)

Note that Lk ∈ CFSk
(Sk−1), because conjugation by an element of

Sk−1 leave the k fixed in each transposition and permutes the transpo-
sitions in the sum. This implies that the Lk commute with each other.
We also have the following properties:
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(1) L1 = 0, L2 = s1,
(2) Li+1 = siLisi + si

The commutative algebra An generated by {L1, . . . , Ln} is called the
Gelfand-Zeitlin algebra

Since F is of generic characteristic, we have Maschke’s theorem,
which tells us that FSn is semisimple as a module over itself. All
our modules will be left modules.

Theorem 1.1. If V ∈ Irr(FSn), then the restriction of V to FSn−1

is multiplicity-free, i.e.

resn
n−1V =

⊕
Wj,Wj ∈ IrrSn−1, i 6= j ⇒ Wi � Wj

Sketch of proof:

(1) Let C = CFSn(FSn−1). Then C is generated by Z(FSn−1) and
Ln. Therefore C is a commutative subalgebra of FSn.

(2) Let us consider a particular component W of the restriction and
let k be its multiplicity.

resn
n−1V = W⊕k

⊕
X

It is possible to demonstrate that C k EndFSn(W⊕k). Since C
is a commutative and the endomorphism algebra is only com-
mutative if k = 1, we find that W has multiplicity 1, as we
wished to show.

Since Ln commutes with FSn−1, Ln acts as a scalar with eigenvalue
ij on Wj. It will turn out that ij ∈ Z and that if j 6= k, then ij 6= ik. If
we continue decomposing the Wj, each one breaks up into irreducible
FSn−2 modules, each determined uniquely by a pair of eigenvalues, one
for Ln and one for Ln−1. Continuing in this fashion, we get down to
S1, for which all irreducible modules are one-dimensional. Thus we
get a basis of V , called the Gelfand-Zeitlin basis, such that each basis
element v is a simultaneous eigenvector for the Gelfand-Zeitlin algebra
defined above, and each simultaneous eigenvector i = (i1, . . . , in)is dif-
ferent. We also get a graph B called the branching graphor crystal, an
infinite graph in which the vertices correspond to irreducible modules
for the various symmetric groups and an irreducible module V for Sn

is connected to an irreducible module W for Sn−1 if W is a component
of the restriction of V .

We define the content of a sequence i to be the two sided sequence
γ(i) = (. . . , γ−1, γ0, γ1, . . . ) in with γk is the number of time that k
occurs as an eigenvalue in the sequence i. Thus is γ(i) is a sequence
of positive integers with only a finite number of nonzero terms. Not
every sequence of integers can occur as a path i. It must satisfy the
following conditions:

(1) i1 = 0
(2) {ij − 1, ij + 1} ∩ {i1, . . . , ii − 1} 6= ∅ for all j, 1 ≤ j ≤ n
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(3) if ij = ik = a for some j < k then

{a− 1, a + 1} ⊆ {ij+1, . . . , ij−1}
With considerable hard work, it can be shown that two different

paths i and i′ correspond to basis elements in the same irreducible V
if and only if they have the same content. Furthermore, with yet more
hard work, one can demonstrate that the conditions on i given above
are precisely what are needed to show that the path i defines a partition
λ = (λ1, . . . , λr) of n.

Example 1.1. Let n = 7, and suppose the i = (0, 1,−1, 2, 3,−2, 0).
It starts with 0 and never moves by steps of more than 1 from the
previous numbers, so the first two conditions are fulfilled. The only
two numbers with repeat are the 0, and there we have −1 and 1 in
between the two copies of 0. So the third condition also holds.

We build a partition by considering a grid of boxes in which the
numbers are the same on the diagonals and increase as one goes upward
to the right. We then fill in the numbers from 1 to n as we go through
the sequence.

1 2 4 5
3 7
6

We give the residues for the partition (4, 2, 1). For compactness we
use a, b, . . . to designate −1,−2, . . . .

0 1 2 3
a 0
b

The diagram
1 2 3 4
5 6
7

corresponds to a sequence i = (0, 1, 2, 3,−1, 0,−2).
The diagram

1 4 6 7
2 5
3

corresponds to a sequence i = (0,−1,−2, 1, 0, 2, 3).

This diagram, called a Young diagram, represents a partition. For
ordinary representations, each Young diagram is uniquely described by
the lengths of its diagonals, which are given by its content, the list
of the number of nodes of each residue. The partition is regarded as
having been built up one node at a time from the empty partition, in
such a way that each intermediate diagram is a partition. Each such
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path is recorded by placing the integers from 1 to n in the nodes of the
diagram, creating a standard tableau in which the integer are increasing
on every row and column. The degree rλ of the representation ρλ is
the number of such paths and the set of standard tableaux may be
taken as a basis. The defining property of this representation, in the
classical theory, is that it is simultaneously induced from the trivial
representation of the subgroup of Sn stabilizing the rows and from
the alternating representation of the subgroup of Sd stabilizing the
columns.

The character corresponding to a partition λ will the denoted by χλ.
The representation corresponding to the partition with one part, (n),
is the trivial representation of degree 1, sending every group element to
1, and the representation corresponding to the partition with d parts,
(1, 1, . . . , 1) is the alternating representation, also of degree 1, which
sends each group element to 1 if the permutation is even and to −1 if
the permutation is odd.

2. Coxeter groups and Hecke algebras

The symmetric group is an example of a Coxeter group. A Coxeter
groups is defined by a tree whose edges are labeled by integers greater
than or equal to 3. In fact, we will suppress the label 3 and only label
adges when the label is greater than or equal to 4. The generators
are assumed to be elements of order 2, called reflections, in one-to-one
correspondence to the vertices of the tree. If two generators are not
connected by an edge,they are assumed to commute and we add the
corresponding commutation relation to the list of relations. If si and
sj are connected by an edge of label m, then we add a relation

(sisj)
m = e

When m = 3, this relation is usually rewritten in the braid form:

sisjsi = sjsisj

Example 2.1. The dihedral group Dm is a Coxeter group defined by
a tree with two vertices and one edge labeled by m. If a and b are the
usual generators of the dihedral group, of order 2 and m respectively,
then we take the two Coxeter generators to be a and ab.

The symmetric group on n objects is the Coxeter group determined
by a linear tree with n− 1 vertices and only labels 3.

We will be concerned in these lectures with Coxeter groups deter-
mined by two families of graphs and three exceptional graphs. (Draw:
An, Dn, E6, E7, andE8). These graphs are important as being graphs
corresponding to finite Lie algebras. There are other graphs corre-
sponding to finite Lie algebras (Types B, C, F, G). However, they do
not fit in well with the Coxeter scheme and will not be included in our
lectures.
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To each of the Coxeter groups corresponding to one of these graphs,
we can associate a group algebra, FG. This algebra has a deformation.
These means that there is a flat family of algebras (flat basically saying
that the vector space dimension does not jump in any fiber). The
deformed algebra has the same number of generators but deformed
relations. In our case, the relations that we will deform will be the
relations declaring the generators to be transpositions, while the braid
relations will remain fixed. We have a deformation parameter q, but,
unlike most deformation, the default value is 1 rather than 0.

Thus we replace each si by a generator Ti, and use the new relation
(Ti + 1)(Ti − q) = 0.

It is easy to see that each of the Ti is still invertible, the inverse being
given by T−1

i = 1
q
(Ti + (1− q)).


