
LECTURE III: THE ORDINARY AND MODULAR
REPRESENTATIONS OF THE SYMMETRIC GROUPS

MALKA SCHAPS

1. Ordinary representations of the symmetric groups

The action of Ln on Wj is scalar, with eigenvalue ij on Wj. It will
turn out that ij ∈ Z and that if j 6= k, then ij 6= ik. If we continue
decomposing the Wj, each one breaks up into irreducible FSn−2 mod-
ules, each determined uniquely by a pair of eigenvalues, one for Ln and
one for Ln−1. Continuing in this fashion, we get down to S1, for which
all irreducible modules are one-dimensional. Thus we get a basis of
V , called the Gelfand-Zeitlin basis, such that each basis element v is a
simultaneous eigenvector for the Gelfand-Zeitlin algebra defined above,
and each simultaneous eigenvector i = (i1, . . . , in)is different. We also
get a graph B called the branching graphor crystal, an infinite graph
in which the vertices correspond to irreducible modules for the various
symmetric groups and an irreducible module V for Sn is connected to
an irreducible module W for Sn−1 if W is a component of the restriction
of V .

We define the content of a sequence i to be the two-sided sequence
γ(i) = (. . . , γ−1, γ0, γ1, . . . ) in with γk is the number of time that k
occurs as an eigenvalue in the sequence i. Thus is γ(i) is a sequence
of positive integers with only a finite number of nonzero terms. Not
every sequence of integers can occur as a path i. It must satisfy the
following conditions:

(1) i1 = 0
(2) {ij − 1, ij + 1} ∩ {i1, . . . , ii − 1} 6= ∅ for all j, 1 ≤ j ≤ n
(3) if ij = ik = a for some j < k then

{a− 1, a + 1} ⊆ {ij+1, . . . , ij−1}
With considerable hard work, it can be shown that two different

paths i and i′ correspond to basis elements in the same irreducible V
if and only if they have the same content. Furthermore, with yet more
hard work, one can demonstrate that the conditions on i given above
are precisely what are needed to show that the path i defines a partition
λ = (λ1, . . . , λr) of n.

Example 1.1. Let n = 7, and suppose the i = (0, 1,−1, 2, 3,−2, 0).
It starts with 0 and never moves by steps of more than 1 from the
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previous numbers, so the first two conditions are fulfilled. The only
two numbers with repeat are the 0, and there we have −1 and 1 in
between the two copies of 0. So the third condition also holds.

We build a partition by considering a grid of boxes in which the
numbers are the same on the diagonals and increase as one goes upward
to the right. The underlying grid of residues, where we use a, b, c, . . .
for negative numbers, is

0 1 2 3 4 5
a 0 1 2 3 4
b a 0 1 2 3
c b a 0 1 2

We then fill in the numbers from 1 to n as we go through the se-
quence.

1 2 4 5
3 7
6

We give the residues for the partition (4, 2, 1). For compactness we
use a, b, . . . to designate −1,−2, . . . .

0 1 2 3
a 0
b

The diagram
1 2 3 4
5 6
7

corresponds to a sequence i = (0, 1, 2, 3,−1, 0,−2).
The diagram

1 4 6 7
2 5
3

corresponds to a sequence i = (0,−1,−2, 1, 0, 2, 3).

This diagram, called a Young diagram, represents a partition. For
ordinary representations, each Young diagram is uniquely described by
the lengths of its diagonals, which are given by its content, the list
of the number of nodes of each residue. The partition is regarded as
having been built up one node at a time from the empty partition, in
such a way that each intermediate diagram is a partition. Each such
path is recorded by placing the integers from 1 to n in the nodes of the
diagram, creating a standard tableau in which the integer are increasing
on every row and column. The degree rλ of the representation ρλ is
the number of such paths and the set of standard tableaux may be
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taken as a basis. The defining property of this representation, in the
classical theory, is that it is simultaneously induced from the trivial
representation of the subgroup of Sn stabilizing the rows and from
the alternating representation of the subgroup of Sd stabilizing the
columns.

The character corresponding to a partition λ will the denoted by χλ.
The representation corresponding to the partition with one part, (n),
is the trivial representation of degree 1, sending every group element to
1, and the representation corresponding to the partition with d parts,
(1, 1, . . . , 1) is the alternating representation, also of degree 1, which
sends each group element to 1 if the permutation is even and to −1 if
the permutation is odd.

2. Modular representations of the symmetric groups and
Iwahori-Hecke algebras at root of unity

We now turn to the representation theory of the symmetric group
over a field whose characteristic e does divide d!, the so-called modular
case. Dipper and James discovered that in this case the representation
theory is similar to that of an Iwahori-Hecke algebra in which ξ is an
e-th root of unity in F (which has characteristic different from e). The
symmetric group case is called the degenerate case, and the remaining
values of ξ give non-degenerate Hecke algebras, but the two cases can
be treated together with only minor modifications.

We now define the Iwahori-Hecke algebra Hd(F, ξ). Let ξ be an
element of F ∗. We define an algebra Hd with generators T1, . . . , Tn−1

over the field F , using relations

(Ti + 1)(Ti − ξ) = 0, 1 ≤ i ≤ n− 1

Ti+1TiTi+1 = TiTi+1Ti1 ≤ i ≤ n− 2

TiTj = TjTi, 1 ≤ i < j ≤ n− 1, |i− j| ≥ 2

If ξ is not a root of unity, then the representation theory of Hd

is essentially the same as the ordinary representation theory of Sd,
with the algebra being semi-simple and the irreducible representations
parameterized by the partitions of d. If the field F is generic for Sn

and ξ = 1, then we get the symmetric group. There is an analog of this
construction for the so-called cyclotomic Hecke algebras HΛ

d , in which
the blocks correspond to weights with highest weight Λ but we will not
go into that theory in these lectures.

The main difference is in the meaning of the residues label the nodes
of a partition. These are now taken to be elements of I = Z/eZ,
which we will represent by numbers in the set {0, 1, . . . , e− 1}. In the
degenerate case they represent elements of the base field of F , and in
the nondegenerate case they represent powers of ξ. More formally, we
define
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ν(i) ≡
{

i (if ξ = 1)

ξi (if ξ 6= 1).

These elements ν(i) enter the theory as the eigenvalues of the fol-
lowing elements of Hd, known as Jucys-Murphy elements:

Lr ≡
{

(1, r) + (2, r) + · · ·+ (r − 1, r) (if ξ = 1)

ξ1−rTrTr−1 . . . T2T1T2 . . . Tr−1Tr (if ξ 6= 1);
1 ≤ r ≤ d.

Note that in the degenerate case, L1 = 0 and L2 = (1, 2). In either
case, the Lr commute with each other and form a commutative subal-
gebra Z of Hd known as the Gelfand-Zetlin subalgebra. The restriction
of any Hd module M to this subalgebra breaks up into a direct sum of
linear representations, with eigenvalues of the form ν(i). The module
induced from an irreducible module for Hd−1 will be a direct sum of
indecomposable projective modules for Hd, each with irreducible socle
and each socle with a single eigenvalue of the Jucys-Murphy element
Ld. It is this choice of idempotents which distinguishes among various
components in the induced modules.

Example 2.1. Let n = 3. When F was a field of characteristic 0, there
were three irreducible representations, corresponding to three distinct
partitions:

0 1 2 ,

0
a
b ,

0 1
a .

However, if F is a field of characteristic 3, all of these young diagrams
have the same content, that is, they all have the same residues

0 1 2 ,

0
2
1 ,

0 1
2

This means that they all collapse into a single block, of dimension 6,
since the blocks are determined by the content.
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