OF THE SYMMETRIC GROUPS AND THE REPRESENTATIONS OF HECKE ALGEBRAS AT ROOTS OF UNITY

MALKA SCHAPS

We review the definition of the *Iwahori-Hecke* algebra $H_d(F, \xi)$ from the previous lecture. Let ξ be an element of F^* . We define an algebra H_d with generators T_1, \ldots, T_{n-1} over the field F, using relations

$$(T_i + 1)(T_i - \xi) = 0, 1 \le i \le n - 1$$
$$T_{i+1}T_iT_{i+1} = T_iT_{i+1}T_i1 \le i \le n - 2$$
$$T_iT_j = T_jT_i, 1 \le i < j \le n - 1, |i - j| \ge 2$$

If ξ is not a root of unity, then the representation theory of H_d is essentially the same as the ordinary representation theory of S_d , with the algebra being semi-simple and the irreducible representations parameterized by the partitions of d. If the field F is generic for S_n and $\xi = 1$, then we get the symmetric group. There is an analog of this construction for the so-called cyclotomic Hecke algebras H_d^{Λ} , in which the blocks correspond to weights with highest weight Λ but we will not go into that theory in these lectures.

The main difference is in the meaning of the residues label the nodes of a partition. These are now taken to be elements of $I = \mathbb{Z}/e\mathbb{Z}$, which we will represent by numbers in the set $\{0, 1, \ldots, e-1\}$. In the degenerate case they represent elements of the base field of F, and in the nondegenerate case they represent powers of ξ . More formally, we define

$$\nu(i) \equiv \begin{cases} i & \text{(if } \xi = 1) \\ \xi^i & \text{(if } \xi \neq 1). \end{cases}$$

These elements $\nu(i)$ enter the theory as the eigenvalues of the following elements of H_d , known as Jucys-Murphy elements:

$$L_r \equiv \begin{cases} (1,r) + (2,r) + \dots + (r-1,r) & \text{(if } \xi = 1) \\ \xi^{1-r} T_r T_{r-1} \dots T_2 T_1 T_1 T_2 \dots T_{r-1} T_r & \text{(if } \xi \neq 1); \end{cases} 1 \le r \le d.$$

Date: Dec. 10, '13.

In either case, the L_r commute with each other and form a commutative subalgebra Z of H_d known as the Gelfand-Zetlin subalgebra. Let us just consider L_2 and L_3 in the nondegenerate case:

$$L_2L_3 = \xi^2 T_1 T_1 (T_2 T_1 T_1 T_2) = \xi^2 T_1 (T_1 T_2 T_1) T_1 T_2) = \xi^2 T_1 (T_2 T_1 T_2) T_1 T_2) = \xi^2 T_1 T_2 T_1 (T_1 T_2 T_1) T_1 T_2$$

$$L_3L_2 = \xi^2 (T_2 T_1 T_1 T_2) T_1 T_1 = \xi^2 T_2 T_1 (T_1 T_2 T_1) T_1 = \xi^2 T_2 T_1 (T_2 T_1 T_2) T_1 = \xi^2 (T_1 T_2 T_1) T_1 T_2 T_1$$

The restriction of any H_d module M to this subalgebra breaks up into a direct sum of linear representations, with eigenvalues of the form $\nu(i)$. The module induced from an irreducible module for H_{d-1} will be a direct sum of indecomposable projective modules for H_d , each with irreducible socle and each socle with a single eigenvalue of the Jucys-Murphy element L_d . It is this choice of idempotents which distinguishes among various components in the induced modules.

The residues which appear in the nodes of the Young diagram correspond to the nodes of a graph, called a Dynkin diagram, which is a cycle of length e. Associated to this diagram is a matrix, called a Cartan matrix, which has 2 along the diagonal, -1 on the off-diagonals, and an additional -1 at the corners of the anti-diagonal. The j-column is a projection of an object denoted by α_j and called the j-th simple root. The sum of the simple roots is called the null-root δ and its projection is 0. There is actually a great deal of Lie algebra theory hiding behind the scenes here. Thus for e=5 the Cartan matrix would be

$$\begin{bmatrix}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{bmatrix}$$

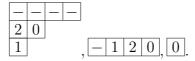
In the modular case, it is no longer true that every indecomposable representation is irreducible. The blocks now correspond to collections of partitions which can all be reduced to a common a common core partition, obtained by removing a fixed number w of rim hooks of length e. Each rim hook will contain a complete set of residues.

The irreducible modules correspond to those partitions which are e-restricted, i.e., do not have e consecutive columns of the same length. (This is dual to the more traditional notion of e-regular, under the duality which flips the partitions across the main diagonal.) There is a diagram called the crystal graph, due originally to Kashiwara, which describes the way that the irreducible representations are built up by induction.

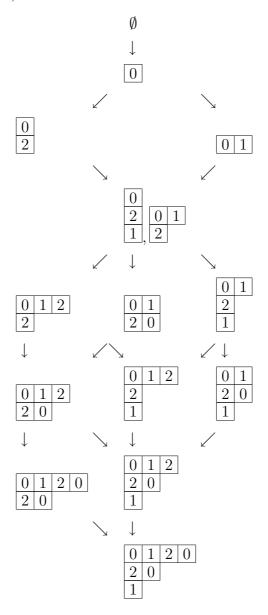
Example 0.1. Let us consider a Young tableau for e = 3.

$$\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 & 0 \\
2 & 0 & & \\
1 & & & & \\
\end{array}$$

We can remove two rim hooks, which corresponds to adding two copies of δ , giving $\Lambda_0 - \alpha_0$.



We will now give that part of the crystal graph containing all the paths leading to (4, 2, 1).



Each *i*-string, for $i \in I$, has a structure. As one goes down an *i*-string, the *i*-nodes are added starting at the bottom left and working along to the upper right. We give a few strings of this type. Note that the second 0-string is not contained in the diagram because it does not

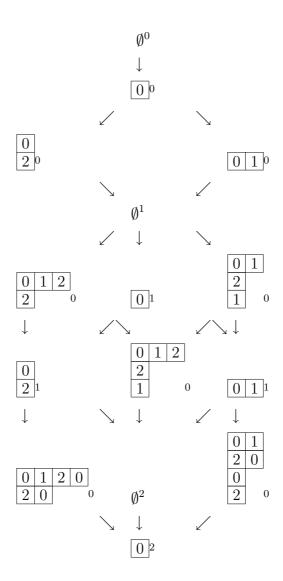
lead to the partition (4, 2, 1).

$$i = 0: 2 \longrightarrow 0 1$$

$$i = 0 : 2 \to 0$$

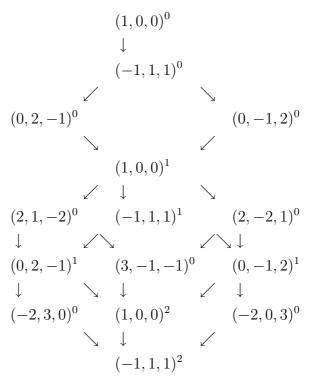
There is also a reduced version of the crystal graph in which the vertices correspond to blocks of the symmetric groups instead of to irreducible representations. The reduced crystal graph has a geometric representation in which the vertices are the integer lattice points determined by the b contents.

Example 0.2. If we redo the diagram in Example 0.1 as a part of the reduced crystal graph, letting a block with core ν and weight w be represented by ν^w , we get the following, where we have now included all blocks for $d \leq 7$, including one which was not in the previous diagram. Note the symmetry between left and right, which is just taking the dual partition and multiplying the residues by -1.



One can also see that the exponents are symmetric along the strings, increasing toward the center.

The hub of a block is the set of coordinates with respect to the basis for the rows of the Cartan matrix.



The blocks correspond to the weights in a highest weight space for Λ_0 for the affine Lie algebra \widetilde{A}_{e-1} , where e is the order of q in F. Chuang and Rouquier proved that the symmetrically-placed blocks along an i-string have equivalent derived categories [1].

References

[1] [CR] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and \mathfrak{sl}_2 -categorification, Annals of Mathermatics, 167 (2008), 245-298.