
LECTURE IV: THE MODULAR REPRESENTATIONS
OF THE SYMMETRIC GROUPS AND THE

REPRESENTATIONS OF HECKE ALGEBRAS AT
ROOTS OF UNITY

MALKA SCHAPS

We review the definition of the Iwahori-Hecke algebra Hd(F, ξ) from
the previous lecture. Let ξ be an element of F ∗. We define an algebra
Hd with generators T1, . . . , Tn−1 over the field F , using relations

(Ti + 1)(Ti − ξ) = 0, 1 ≤ i ≤ n− 1

Ti+1TiTi+1 = TiTi+1Ti1 ≤ i ≤ n− 2

TiTj = TjTi, 1 ≤ i < j ≤ n− 1, |i− j| ≥ 2

If ξ is not a root of unity, then the representation theory of Hd

is essentially the same as the ordinary representation theory of Sd,
with the algebra being semi-simple and the irreducible representations
parameterized by the partitions of d. If the field F is generic for Sn

and ξ = 1, then we get the symmetric group. There is an analog of this
construction for the so-called cyclotomic Hecke algebras HΛ

d , in which
the blocks correspond to weights with highest weight Λ but we will not
go into that theory in these lectures.

The main difference is in the meaning of the residues label the nodes
of a partition. These are now taken to be elements of I = Z/eZ,
which we will represent by numbers in the set {0, 1, . . . , e− 1}. In the
degenerate case they represent elements of the base field of F , and in
the nondegenerate case they represent powers of ξ. More formally, we
define

ν(i) ≡
{

i (if ξ = 1)

ξi (if ξ 6= 1).

These elements ν(i) enter the theory as the eigenvalues of the fol-
lowing elements of Hd, known as Jucys-Murphy elements:

Lr ≡
{

(1, r) + (2, r) + · · ·+ (r − 1, r) (if ξ = 1)

ξ1−rTrTr−1 . . . T2T1T1T2 . . . Tr−1Tr (if ξ 6= 1);
1 ≤ r ≤ d.
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In either case, the Lr commute with each other and form a commu-
tative subalgebra Z of Hd known as the Gelfand-Zetlin subalgebra. Let
us just consider L2 and L3 in the nondegenerate case:

L2L3 = ξ2T1T1(T2T1T1T2) = ξ2T1(T1T2T1)T1T2) = ξ2T1(T2T1T2)T1T2) = ξ2T1T2T1(T1T2T1)

L3L2 = ξ2(T2T1T1T2)T1T1 = ξ2T2T1(T1T2T1)T1 = ξ2T2T1(T2T1T2)T1 = ξ2(T1T2T1)T1T2T1

The restriction of any Hd module M to this subalgebra breaks up
into a direct sum of linear representations, with eigenvalues of the form
ν(i). The module induced from an irreducible module for Hd−1 will be
a direct sum of indecomposable projective modules for Hd, each with
irreducible socle and each socle with a single eigenvalue of the Jucys-
Murphy element Ld. It is this choice of idempotents which distinguishes
among various components in the induced modules.

The residues which appear in the nodes of the Young diagram cor-
respond to the nodes of a graph, called a Dynkin diagram, which is a
cycle of length e. Associated to this diagram is a matrix, called a Car-
tan matrix, which has 2 along the diagonal, −1 on the off-diagonals,
and an additional −1 at the corners of the anti-diagonal. The j-column
is a projection of an object denoted by αj and called the j-th simple
root. The sum of the simple roots is called the null-root δ and its pro-
jection is 0. There is actually a great deal of Lie algebra theory hiding
behind the scenes here. Thus for e = 5 the Cartan matrix would be



2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2




In the modular case, it is no longer true that every indecomposable
representation is irreducible. The blocks now correspond to collections
of partitions which can all be reduced to a common a common core
partition, obtained by removing a fixed number w of rim hooks of
length e. Each rim hook will contain a complete set of residues.

The irreducible modules correspond to those partitions which are e-
restricted, i.e., do not have e consecutive columns of the same length.
(This is dual to the more traditional notion of e-regular, under the
duality which flips the partitions across the main diagonal.) There is
a diagram called the crystal graph, due originally to Kashiwara, which
describes the way that the irreducible representations are built up by
induction.

Example 0.1. Let us consider a Young tableau for e = 3.

0 1 2 0
2 0
1
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We can remove two rim hooks, which corresponds to adding two copies
of δ, giving Λ0 − α0.

− − − −
2 0
1 , − 1 2 0 , 0 .

We will now give that part of the crystal graph containing all the paths
leading to (4, 2, 1).

∅
↓
0

↙ ↘
0
2 0 1

↘ ↙
0
2
1 ,

0 1
2

↙ ↓ ↘

0 1 2
2

0 1
2 0

0 1
2
1

↓ ↙↘ ↙ ↓

0 1 2
2 0

0 1 2
2
1

0 1
2 0
1

↓ ↘ ↓ ↙

0 1 2 0
2 0

0 1 2
2 0
1

↘ ↓
0 1 2 0
2 0
1

Each i-string, for i ∈ I, has a structure. As one goes down an i-
string, the i-nodes are added starting at the bottom left and working
along to the upper right. We give a few strings of this type. Note that
the second 0-string is not contained in the diagram because it does not
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lead to the partition (4, 2, 1).

i = 1 :

0
2 →

0
2
1 →

0 1
2
1 .

i = 2 : 0 1 →
0 1
2 →

0 1 2
2 .

i = 0 :

0 1
2 →

0 1
2 0 .

i = 0 :

0
1
2 →

0
1
2
0 .

There is also a reduced version of the crystal graph in which the
vertices correspond to blocks of the symmetric groups instead of to
irreducible representations. The reduced crystal graph has a geomet-
ric representation in which the vertices are the integer lattice points
determined by the b contents.

Example 0.2. If we redo the diagram in Example 0.1 as a part of
the reduced crystal graph, letting a block with core ν and weight w be
represented by νw, we get the following, where we have now included all
blocks for d ≤ 7, including one which was not in the previous diagram.
Note the symmetry between left and right, which is just taking the
dual partition and multiplying the residues by −1.
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∅0

↓
0 0

↙ ↘
0
2 0 0 1 0

↘ ↙
∅1

↙ ↓ ↘

0 1 2
2 0 0 1

0 1
2
1 0

↓ ↙↘ ↙↘ ↓

0
2 1

0 1 2
2
1 0 0 1 1

↓ ↘ ↓ ↙ ↓

0 1 2 0
2 0 0 ∅2

0 1
2 0
0
2 0

↘ ↓ ↙
0 2

One can also see that the exponents are symmetric along the strings,
increasing toward the center.

The hub of a block is the set of coordinates with respect to the basis
for the rows of the Cartan matrix.
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(1, 0, 0)0

↓
(−1, 1, 1)0

↙ ↘
(0, 2,−1)0 (0,−1, 2)0

↘ ↙
(1, 0, 0)1

↙ ↓ ↘
(2, 1,−2)0 (−1, 1, 1)1 (2,−2, 1)0

↓ ↙↘ ↙↘ ↓
(0, 2,−1)1 (3,−1,−1)0 (0,−1, 2)1

↓ ↘ ↓ ↙ ↓
(−2, 3, 0)0 (1, 0, 0)2 (−2, 0, 3)0

↘ ↓ ↙
(−1, 1, 1)2

The blocks correspond to the weights in a highest weight space for Λ0

for the affine Lie algebra Ãe−1, where e is the order of q in F . Chuang
and Rouquier proved that the symmetrically-placed blocks along an
i-string have equivalent derived categories [1].
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