LECTURE IV: THE MODULAR REPRESENTATIONS
OF THE SYMMETRIC GROUPS AND THE
REPRESENTATIONS OF HECKE ALGEBRAS AT
ROOTS OF UNITY

MALKA SCHAPS

We review the definition of the Jwahori-Hecke algebra Hy(F, &) from
the previous lecture. Let ¢ be an element of F*. We define an algebra
H; with generators T1,...,7T,_1 over the field F', using relations

(T, 4+1)(T;—€)=0,1<i<n-—1
Tz‘+1TiTi+1 :TiTi+1Ti1 <i<n-—2
NI =TT, 1<i<j<n—1l]i—j|>2

If £ is not a root of unity, then the representation theory of Hy
is essentially the same as the ordinary representation theory of Sy,
with the algebra being semi-simple and the irreducible representations
parameterized by the partitions of d. If the field F' is generic for S,
and £ = 1, then we get the symmetric group. There is an analog of this
construction for the so-called cyclotomic Hecke algebras H?, in which
the blocks correspond to weights with highest weight A but we will not
go into that theory in these lectures.

The main difference is in the meaning of the residues label the nodes
of a partition. These are now taken to be elements of I = Z/eZ,
which we will represent by numbers in the set {0,1,...,e —1}. In the
degenerate case they represent elements of the base field of F', and in

the nondegenerate case they represent powers of £&. More formally, we
define

g (£ 1).

These elements v(i) enter the theory as the eigenvalues of the fol-
lowing elements of H;, known as Jucys-Murphy elements:

sz{i (if € =1)

LTE{(1,r)+(2,7“)+---+(7’—1,7“) (te=1) . _,

é‘l—rTTTT_l .. .TQTlTlTQ .. -Tr—lTr <lf 5 7é ].)7
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In either case, the L, commute with each other and form a commu-
tative subalgebra Z of H; known as the Gelfand-Zetlin subalgebra. Let
us just consider Lo and L3 in the nondegenerate case:

L2L3 = £2T1T1<T2T1T1T2> = §2T1 (TITQTl)TlTQ) = £2T1 (T2T1T2>T1T2) = £2T1T2T1 (T1T2T1)

LsLy = (TN TTo) VT = €T, T (T TT)T = ETTV(TI )Ty = (M T) T TR T,

The restriction of any Hy; module M to this subalgebra breaks up
into a direct sum of linear representations, with eigenvalues of the form
v(i). The module induced from an irreducible module for H; 1 will be
a direct sum of indecomposable projective modules for H,, each with
irreducible socle and each socle with a single eigenvalue of the Jucys-
Murphy element Ly. It is this choice of idempotents which distinguishes
among various components in the induced modules.

The residues which appear in the nodes of the Young diagram cor-
respond to the nodes of a graph, called a Dynkin diagram, which is a
cycle of length e. Associated to this diagram is a matrix, called a Car-
tan matrix, which has 2 along the diagonal, —1 on the off-diagonals,
and an additional —1 at the corners of the anti-diagonal. The j-column
is a projection of an object denoted by «; and called the j-th simple
root. The sum of the simple roots is called the null-root ¢ and its pro-
jection is 0. There is actually a great deal of Lie algebra theory hiding
behind the scenes here. Thus for e = 5 the Cartan matrix would be

2 -1 0 0 -1
-1 2 -1 0 O

In the modular case, it is no longer true that every indecomposable
representation is irreducible. The blocks now correspond to collections
of partitions which can all be reduced to a common a common core
partition, obtained by removing a fixed number w of rim hooks of
length e. Each rim hook will contain a complete set of residues.

The irreducible modules correspond to those partitions which are e-
restricted, i.e., do not have e consecutive columns of the same length.
(This is dual to the more traditional notion of e-regular, under the
duality which flips the partitions across the main diagonal.) There is
a diagram called the crystal graph, due originally to Kashiwara, which
describes the way that the irreducible representations are built up by
induction.

Example 0.1. Let us consider a Young tableau for e = 3.

0[1]2]0]
210
1]
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We can remove two rim hooks, which corresponds to adding two copies
of ¢, giving Ag — .

210
L

J[=[1]2]0] o]

We will now give that part of the crystal graph containing all the paths
leading to (4,2, 1).

0
|
0
/ N
0
0]1]
N /
0
2]10[1]
1][2]
o' N\
0[1]
0/1]2] 01 2]
2] 210 1]
| N\ '
0/1]2] 0]1
0[1]2] 2] 2[0
2]0 1 1]
| N /
0/1]2]
0/1[2]0] 210
2[0 1]
N
0[1]2]0]
2/0
1]

Each i-string, for ¢ € I, has a structure. As one goes down an -
string, the i-nodes are added starting at the bottom left and working
along to the upper right. We give a few strings of this type. Note that
the second 0-string is not contained in the diagram because it does not



4 MALKA SCHAPS

lead to the partition (4,2, 1).

0[1]
2]
1=1: 1]
0[1] lo]1]2]
i=2:01][2] —[2]
0/1] [o0]1

0
0
i=0:2]10]

There is also a reduced version of the crystal graph in which the
vertices correspond to blocks of the symmetric groups instead of to
irreducible representations. The reduced crystal graph has a geomet-
ric representation in which the vertices are the integer lattice points
determined by the b contents.

Example 0.2. If we redo the diagram in Example 0.1 as a part of
the reduced crystal graph, letting a block with core v and weight w be
represented by v, we get the following, where we have now included all
blocks for d < 7, including one which was not in the previous diagram.
Note the symmetry between left and right, which is just taking the
dual partition and multiplying the residues by —1.



l
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—

0[1]2]0]

\}
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o
=
[

One can also see that the exponents are symmetric along the strings,
increasing toward the center.

The hub of a block is the set of coordinates with respect to the basis
for the rows of the Cartan matrix.
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(1,0,0)°
|
(—-1,1,1)°
e N\
(0,2, —1)° (0,-1,2)°
N /
(1,0,0)*
' N\
(2,1,-2)" (—1,1,1)* (2,-2,1)"
| YN aw
(0,2, —1)* (3,—1,-1)° (0,-1,2)*
| N !
(-2,3,0)" (1,0,0)? (-2,0,3)"
N e
(—1,1,1)2

The blocks correspond to the weights in a highest weight space for Ag
for the affine Lie algebra A._;, where e is the order of ¢ in F. Chuang
and Rouquier proved that the symmetrically-placed blocks along an
i-string have equivalent derived categories [1].
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