LECTURE IV: THE MODULAR REPRESENTATIONS OF THE SYMMETRIC GROUPS AND THE REPRESENTATIONS OF HECKE ALGEBRAS AT ROOTS OF UNITY

MALKA SCHAPS

We review the definition of the Iwahori-Hecke algebra $H_{d}(F, \xi)$ from the previous lecture. Let ξ be an element of F^{*}. We define an algebra H_{d} with generators T_{1}, \ldots, T_{n-1} over the field F, using relations

$$
\begin{gathered}
\left(T_{i}+1\right)\left(T_{i}-\xi\right)=0,1 \leq i \leq n-1 \\
T_{i+1} T_{i} T_{i+1}=T_{i} T_{i+1} T_{i} 1 \leq i \leq n-2 \\
T_{i} T_{j}=T_{j} T_{i}, 1 \leq i<j \leq n-1,|i-j| \geq 2
\end{gathered}
$$

If ξ is not a root of unity, then the representation theory of H_{d} is essentially the same as the ordinary representation theory of S_{d}, with the algebra being semi-simple and the irreducible representations parameterized by the partitions of d. If the field F is generic for S_{n} and $\xi=1$, then we get the symmetric group. There is an analog of this construction for the so-called cyclotomic Hecke algebras H_{d}^{Λ}, in which the blocks correspond to weights with highest weight Λ but we will not go into that theory in these lectures.

The main difference is in the meaning of the residues label the nodes of a partition. These are now taken to be elements of $I=\mathbb{Z} / e \mathbb{Z}$, which we will represent by numbers in the set $\{0,1, \ldots, e-1\}$. In the degenerate case they represent elements of the base field of F, and in the nondegenerate case they represent powers of ξ. More formally, we define

$$
\nu(i) \equiv \begin{cases}i & (\text { if } \xi=1) \\ \xi^{i} & (\text { if } \xi \neq 1)\end{cases}
$$

These elements $\nu(i)$ enter the theory as the eigenvalues of the following elements of H_{d}, known as Jucys-Murphy elements:

$$
L_{r} \equiv\left\{\begin{array}{ll}
(1, r)+(2, r)+\cdots+(r-1, r) & (\text { if } \xi=1) \\
\xi^{1-r} T_{r} T_{r-1} \ldots T_{2} T_{1} T_{1} T_{2} \ldots T_{r-1} T_{r} & (\text { if } \xi \neq 1) ;
\end{array} 1 \leq r \leq d .\right.
$$

In either case, the L_{r} commute with each other and form a commutative subalgebra Z of H_{d} known as the Gelfand-Zetlin subalgebra. Let us just consider L_{2} and L_{3} in the nondegenerate case:
$\left.\left.L_{2} L_{3}=\xi^{2} T_{1} T_{1}\left(T_{2} T_{1} T_{1} T_{2}\right)=\xi^{2} T_{1}\left(T_{1} T_{2} T_{1}\right) T_{1} T_{2}\right)=\xi^{2} T_{1}\left(T_{2} T_{1} T_{2}\right) T_{1} T_{2}\right)=\xi^{2} T_{1} T_{2} T_{1}\left(T_{1} T_{2} T_{1}\right)$
$L_{3} L_{2}=\xi^{2}\left(T_{2} T_{1} T_{1} T_{2}\right) T_{1} T_{1}=\xi^{2} T_{2} T_{1}\left(T_{1} T_{2} T_{1}\right) T_{1}=\xi^{2} T_{2} T_{1}\left(T_{2} T_{1} T_{2}\right) T_{1}=\xi^{2}\left(T_{1} T_{2} T_{1}\right) T_{1} T_{2} T_{1}$
The restriction of any H_{d} module M to this subalgebra breaks up into a direct sum of linear representations, with eigenvalues of the form $\nu(i)$. The module induced from an irreducible module for H_{d-1} will be a direct sum of indecomposable projective modules for H_{d}, each with irreducible socle and each socle with a single eigenvalue of the JucysMurphy element L_{d}. It is this choice of idempotents which distinguishes among various components in the induced modules.

The residues which appear in the nodes of the Young diagram correspond to the nodes of a graph, called a Dynkin diagram, which is a cycle of length e. Associated to this diagram is a matrix, called a Cartan matrix, which has 2 along the diagonal, -1 on the off-diagonals, and an additional -1 at the corners of the anti-diagonal. The j-column is a projection of an object denoted by α_{j} and called the j-th simple root. The sum of the simple roots is called the null-root δ and its projection is 0 . There is actually a great deal of Lie algebra theory hiding behind the scenes here. Thus for $e=5$ the Cartan matrix would be

$$
\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right]
$$

In the modular case, it is no longer true that every indecomposable representation is irreducible. The blocks now correspond to collections of partitions which can all be reduced to a common a common core partition, obtained by removing a fixed number w of rim hooks of length e. Each rim hook will contain a complete set of residues.

The irreducible modules correspond to those partitions which are e restricted, i.e., do not have e consecutive columns of the same length. (This is dual to the more traditional notion of e-regular, under the duality which flips the partitions across the main diagonal.) There is a diagram called the crystal graph, due originally to Kashiwara, which describes the way that the irreducible representations are built up by induction.

Example 0.1. Let us consider a Young tableau for $e=3$.

0	1	2	0
2	0		
1			

We can remove two rim hooks, which corresponds to adding two copies of δ, giving $\Lambda_{0}-\alpha_{0}$.

We will now give that part of the crystal graph containing all the paths leading to $(4,2,1)$.

Each i-string, for $i \in I$, has a structure. As one goes down an i string, the i-nodes are added starting at the bottom left and working along to the upper right. We give a few strings of this type. Note that the second 0 -string is not contained in the diagram because it does not
lead to the partition $(4,2,1)$.

$$
\begin{aligned}
& i=1: \begin{array}{|l|}
\hline 0 \\
2 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|}
\hline \frac{0}{2} \\
\hline 1 \\
\hline \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline & \\
\hline 1 \\
\hline
\end{array} .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& i=0: \begin{array}{|l|l}
\hline 0 & 1 \\
\hline 2 & \rightarrow \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 2 & 0 \\
\hline
\end{array} .
\end{array} \\
& i=0: \begin{array}{|l|}
\hline \frac{0}{1} \\
\hline 2 \\
\hline 2
\end{array} \rightarrow \begin{array}{|l}
\hline \frac{0}{1} \\
\hline \frac{2}{2} \\
\hline 0 \\
\hline
\end{array} .
\end{aligned}
$$

There is also a reduced version of the crystal graph in which the vertices correspond to blocks of the symmetric groups instead of to irreducible representations. The reduced crystal graph has a geometric representation in which the vertices are the integer lattice points determined by the b contents.

Example 0.2. If we redo the diagram in Example 0.1 as a part of the reduced crystal graph, letting a block with core ν and weight w be represented by ν^{w}, we get the following, where we have now included all blocks for $d \leq 7$, including one which was not in the previous diagram. Note the symmetry between left and right, which is just taking the dual partition and multiplying the residues by -1 .

One can also see that the exponents are symmetric along the strings, increasing toward the center.

The hub of a block is the set of coordinates with respect to the basis for the rows of the Cartan matrix.

The blocks correspond to the weights in a highest weight space for Λ_{0} for the affine Lie algebra \widetilde{A}_{e-1}, where e is the order of q in F. Chuang and Rouquier proved that the symmetrically-placed blocks along an i-string have equivalent derived categories [1].

References

[1] [CR] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and $\mathfrak{s l}_{2}$-categorification, Annals of Mathermatics, 167 (2008), 245298.

