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Abstract. We discuss the category of topological spaces, as well as several
related categories from the point of view of universal objects and universal

constructions.

1. Introduction

1.1. Aim and structure of this work. The aim of this work is to introduce
some categorical constructions in the category of topological spaces, and exhibit
some connections to related categories. This work is the final project submitted in
the course 88-806 in Bar-Ilan University.

More concretely, we start with investigating monomorphisms and epimorphisms,
initial and terminal objects, products and coproducts, limits and colimits, fiber
products and pushouts. Then we turn to investigate the connection with several
other categories, in particular with Set, introducing right and left adjoints to the
forgetful functor. We then show how topological spaces form small categories by
themselves, and take as a case study the notion of compact objects and compactly
generated categories to exhibit the meta-mathematical idea of generalizing proper-
ties of objects from specific categories in different mathematical contexts - to the
wide and general framework of category theory. During the entire work we try to
put examples that demonstrate in our opinion the points we try to show.

1.2. Preliminary remarks. In this work, the emphasis is on general understand
of the categories under investigation. Proofs are given usually in full details, while
in some repetative cases, where few technical details had already appeared (or quite
similar details had) we omit them in order to put the emphasis on the new or crucial
points - in our opinion.

As mentioned before, this work is the final project of the writer in the a course
about categroy theory, number 88-806 in Bar-Ilan University, lectured by Prof.
Malka Schaps, to whom I would like to thank for the wide vision on category theory
(and hence, in a way, on the whole mathematics) provided during the lectures.

2. The Category Top and Related Categories

2.1. Basics. Let Top denote the category of topological spaces. Its objects are
topological spaces and the morphisms are continuous maps. Clearly this is a locally
small category. Recall that the topology consisting of all subsets of a given space is
called the discrete topology on it, whereas the topology consisting only of the empty
set and the full space is called the trivial topology. Recall also that isomorphisms
in Top are called homeomorphisms. We say a map is dominant if its image is dense
in the codomain.
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Recall that topology can be essentially expressed in terms of nets. We remind the
reader that a directed set is a poset in which every pair of elements has a common
upper bound, i.e. (D,≤) is a directed set if for every α, β ∈ D there exists some
γ ∈ D for which α, β ≤ γ.

Provided a topological space X and a directed set (D,≤), a net is a function
φ : D → X. We say the net φ converges to a point x ∈ X if for every x ∈ U open
neighborhood there exists some α ∈ D such that φ(β) ∈ U for all α ≤ β. Indeed, a
function f is continuous at a point x if and only if for every net φ converging to x
we have that the net f ◦ φ converges to f(x); a point lies in the closure of a given
set if and only if it is a limits of a net contained in the given set, and so on.

2.2. Objects and morphisms. We begin by providing a full description of monics
and epics.

Proposition 2.1. (1) Let f : X → Y be a continuous map. Then f is monic
if and only if it is injective.

(2) Let f : X → Y be a continuous map. Then f is epic if and only if it is
surjective.

Proof. (1) It is clear that if f is injective then it is a monomorphism, as if
fg1 = fg2 then by forgetting the topological structure we obtain that
g1 = g2 pointwise.

For the other direction, assume f is a monomorphism. On the contrary,
assume that there exist distinct p, q ∈ X such that f(p) = f(q). Let {∗} be
a one point space and define g1(∗) = p, g2(∗) = q. Clearly g1,2 are distinct
morphisms, but fg1 = fg2.

(2) Assume f is surjective and g1, g2 : Y → Z are distinct. Then there exists
p ∈ Y such that g1(p) 6= g2(p), and since f is onto there exists some q ∈ X
that is mapped by f to p; thus g1f(q) = g1(p) 6= g2(p) = g2f(q) so g1f, g2f
are distinct morphisms.

For the other direction, assume f is an epimorphism. On the contrary,
suppose that f is not surjective - so there exists p ∈ Y such that no point
in X is mapped by f to p. Let {∗,#} be the topologically trivial two point
spaces. Define g1,2 : Y → {∗,#} by: g1(y) = ∗ for any y ∈ Y , and g2(z) = ∗
for every z 6= p and g2(p) = #. It is clear that g1, g2 are distinct morphisms,
as the topology on {∗,#} is trivial; but g1f = g2f , a contradication.

�

We present a slight modification of Top in which the situation is different.

Example 2.2 (Hausdorff Spaces). Let T2 be the full subcategory of Top whose
objects are topological spaces satisfying Hausdorff’s separation axiom, namely for
every two distinct points x, y there exist disjoint open sets x ∈ U, y ∈ V .

We have an analoguous result to 2.1, that is (the same proof for monomorphisms
holds):

Proposition 2.3. Let f : X → Y be a morphism. Then it is dominant if and only
if it is epic.

Proof. Assume f is dominant, and let g1,2 : Y → Z such that g1f = g2f . Pick a
point y ∈ Y . As f is dominant we can take a directed system Λ and a net yλ → y,
such that yλ = f(xλ) (convergence in λ). Then g1(yλ) = g1f(xλ) = g2f(xλ) =
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g2(yλ) and so g1(y), g2(y) are limits of the same net, and since we work in the
category of Hausdorff spaces they must coincide. Hence g1 = g2, so f is epic.

For the opposite direction, assume f is epic. Let T ⊂ Y denote the closure of the
image of f , and set S = Y −T the complement. Define Z = S

∐
{∗} declaring that

O ⊆ Z is open if and only if either O ⊆ S open in the topology inherited from Y
or ∗ ∈ O and O∩S ∪T is open in Y . This is in fact the quotient topology, induced
by identifying T with ∗. It is evident that Z is again Hausdorff, thus we may define
morphisms g1 : Y → Z by g1(T ) = ∗, g1(s) = s for every s ∈ S (i.e. the quotient
map) and g2 : Y → Z by g2(Y ) = ∗. It is clear that g1,2 are morphisms, and in

addition g1f = g2f . Thus g1 = g2 so S = ∅ hence Im f = Y so f is dominant. �

Before passing to discuss some universal constructions, let us mention that the
empty space is initial, while the one point set is terminal. (It is clear that the empty
function and the constant map onto the one point set are both continuous.)

2.3. Products and Coproducts. We start by describing coproducts. Let {Xi}i∈I
be a family of topological spaces, I an index set. The underlying set theoretic
structure is nothing but the disjoint union of the spaces; this is clear, since we can
apply the forgetful functor and pass to Set.

Regarding the topology on
∐
i∈I Xi, we put S ⊆

∐
i∈I Xi open if and only if

S ∩ Xi is open in Xi for every index i ∈ I. This can be easily seen to form a
topology on

∐
i∈I Xi.

The set theoretic embeddings ji : Xi → Xi are naturally defined and can be
easily seen to be morphisms.

Proposition 2.4. The topological space
∐
i∈I Xi constructed above is indeed the

coproduct in the category Top.

Proof. Let Y be a topological space with ki : Xi → Y . We define f :
∐
i∈I Xi → S

by f(x) = ki(x) where i ∈ I is the unique index such that x ∈ Xi. Clearly ki = fji
(and this is the only possible map with this property, even set theoretically).

To see that f is a continuous map, let U ⊆ Y be open. Then to prove f−1(U)
is open, it is necessary and sufficient to prove that f−1(U) ∩Xi is; but the latter
is nothing but ki(U) (as ki = fji), but this evidently follows from the assumption
that ki are continuous. �

We now describe products. Let {Xi}i∈I be a family of topological spaces, I an
index set. The set theoretic description of

∏
i∈I Xi is the usual cartesian product

in the category Set: this is the set of functions a : I →
∐
i∈I Xi (the coproduct in

Set is the disjoint union) such that a(i) ∈ Xi for every i ∈ I. The projections πi
are naturally defined: πi(a) = a(i).

We now turn to describe the topology on
∏
i∈I Xi. This is nothing but the

Tychonoff’s topology, whose non-empty open sets are unions of products of sets
(Ui)i∈I where Ui ⊆ Xi are open and for all but finitely many indices, Ui = Xi is
the full component.

Proposition 2.5. The topological space
∏
i∈I Xi constructed above is indeed the

product in the category Top.

Since we already dealt with some similar details while constructing the coprod-
ucts, and the construction of product spaces is basic and well known, let us provide
a partial proof to this:
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Proof. Modulo some technical details which we omit (since they are essentially the
same as in the dual statement for coproducts), it remains to prove that Tychonoff’s
topology is the minimal such that πi are continuous; since π−1

i (Ui) must be open
whenever Ui are, it follows that sets which are the full components Xi in almost
all indices are open (and arbitrary open subsets in the rest components) - must be
open in order that the projections will be continuous, as the collection of open sets
is stable under finite intersections. �

Remark 2.6. We note that the product endows Top with a monoidal structure, the
identity object being the one point set. However, this is not a preadditive category;
no group structure can be placed for the hom-sets.

2.4. Limits and Colimits. Let {Xλ}λ∈Λ be a directed system with index set Λ,
and fij : Xi → Xj the associated compatible (in the sense that fjkfij = fik)
morphisms with respect to which we attempt to form a limit or a colimit. In
general one deals with Λ a category, and morphisms Xi → Xj are associated with
morphisms between the objects in the index category. (For this reason we write
i→ j even when working in posets where i ≤ j). For now, we restrict ourselves to
the case where all morphisms are 1:1 (constructing colimits) or onto (limits).

For the case of colimits, consider the union if all spaces, with a subset being open
if and only if its intersection with every Xλ is open. Alternatively, one can take the
coproduct defined in 2.3 and identify points xi ∈ Xi and xj ∈ Xj whenever there
exists i, j → k such that fik(xi) = fjk(xj), resulting in a quotient space being the
desired colimit.

We construct limits in the same spirit: using the construction of products from
2.3. Let limXλ be the subspace of

∏
Xλ consisting of all functions a ∈

∏
Xλ

satisfying fija(i) = a(j) whenever i→ j.
If Xλ are all from T2 then we have the following:

Lemma 2.7. The space limXλ is a closed subspace of
∏
Xλ.

Proof. We can present limXλ =
⋂
i→j{a ∈

∏
Xλ : fija(i) = a(j)}, an intersection

of closed subsets. The latter claim can be proved as follows: assume fijπi(b) 6=
πj(b), then there exist fijπi(b) ∈ U open and disjoint from πj(b) ∈ V (hence also

f−1
ij (U) is open). Taking the open subset of the product: π−1

j (V ) ∩ π−1
i f−1

ij (U). It
contains b and disjoint from limXλ. This finishes the proof. �

Remark 2.8. A nice place where the limits/colimits duality appears is in Pontrya-

gin duality: for a locally compact abelian group G, define Ĝ = {χ : G → T} the
group of continuous homomorphisms to the unit circle group.

The assignment G 7→ Ĝ defines an auto-antiequivalence of the category of locally
compact abelian groups, fixing finite groups, and thus exchanging between limits of
finite groups (that is, profinite groups) and colimitis of finite groups (that is, torsion
groups).

We demonstrate the above remark in the following example:

Example 2.9. Let p be a prime, and consider the groups Gn = Z/pnZ endowed
with the discrete topology, and consider the epimorphisms φn : Gn+1 → Gn given
by φn(k) = k(mod pn); they form a compatible system of morphisms, with respect
to which we can take a limit, which can be described as the ring of p-adic integers,
Zp = {

∑∞
i=0 aip

i|ai ∈ {0, . . . , p − 1}}. Another way to see it is by deforming p to
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an indeterminate X: consider Hn = Z[X]/(Xn)→ Gn by X 7→ p. We thus recover
Zp as Z[[X]]/(X − p).

For the dual morphisms ψn : Gn → Gn+1 let ψn(k) = kp, resulting in a colimit

isomorphic to the group of all complex roots of the unity ehich are of the form e
2πi
pn

for some n.

2.5. Fiber products and Pushouts. We start by describing fiber products of
spaces.

Proposition 2.10. Let fi : Yi → Z for i = 1, 2. Then X = {(a1, a2)|f1(a1) =
f2(a2)} ⊆ Y1 × Y2 is the fiber product and it is a closed subspace of the product
Y1 × Y2.

Proof. The fact that X ⊆ Y1 × Y2 is closed is very similar to the proof of 2.7. It is
also clear that X is the set theoretic fiber product.

The maps πi : X → Yi are the natural projections from the product restricted
to Xi (for i = 1, 2), thus continuous. Let gi : W → Yi be another space with
morphisms to Y1, Y2, such that f1g1 = f2g2. Define a map φ : W → Y1 × Y2

by φ(w) = (g1(w), g2(w)). Its image falls inside X. As this is already the fiber
product in Set, it follows that this map is unique; what remains to prove is that φ
is continuous.

Let U1 × U2 ⊆ Y1 × Y2 with U1,2 open in the corresponding spaces. It suffices
to prove that for such sets φ−1(U1 × U2) = {w ∈ W |g1(w) ∈ U1, g2(w) ∈ U2} are
open; but they can be presented as g−1

1 (U1) ∩ g−1
2 (U2) which are clearly open, as

g1,2 are continuous. �

Remark 2.11. Being a closed subspace of the product, many properties of Y1,2 are
inherited to the fiber product: compactness, local compactness, several separation
axioms (such as T1, T2; but not T4).

Let us now describe pushouts in terms of quotient spaces. Suppose we are given
f1,2 : X → Y1,2, respectively. We define Z = Y1

∐
Y2/R where R is the equivalence

relation defined by y1 ≈ y2 if and only if there exists some x ∈ X such that
f1(x) = y1, f2(x) = y2. Let π : Y1

∐
Y2 → Z be the natural projection.

We now endow the pushout Z with a topology. This is nothing but the quotient
topology: a subset U ⊆ Z is open if and only if π−1(U) ⊆ Y1

∐
Y2 is.

2.6. Related Categories and Fibers over Set. In this subsection we discuss
several categories related to Top.

We start with the forgetful functor F : Top → Set that assigns to a topolog-
ical space its underlying set of points, and continuous functions are mapped to
themselves, ’forgetting’ they were continuous.

A natural functor D from Set to Top is given by endowing a set with the
discrete topology, declaring all subsets are open. It is well defined since every
function between discrete spaces is continuous. We claim that there is an intimate
connection between F and D:

Claim 2.12. The functors F admits a left adjoint which is D:

HomTop(D(X), S) ∼= HomSet(X,F(S))

naturally in both X,S.
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The map between these two sets is clear: it maps a continuous fuction to itself;
as every function from a discrete space to another space is obviously continuous the
result follows. In fact, it is the case that

FD ∼= 1Set

embedding Set fully faithfully into Top.
We can think of the discrete topology over a set X as a ’point’ in the fiber of the

forgetful functor F : Top → Set above the set X. Actually the set of topologies
over X (to which we refer as the ’fiber’ over X) forms a lattice with respect to
inclusion, the maximal element being the discrete topology mentioned above, and
the minimal being the trivial topology. Let T : Set→ Top be the functor assigning
to a set the trivial topology over it. As every function (from an arbitrary space)
with codomain a trivial topological space is continuous, we have the following:

HomTop(S, T (X)) ∼= HomSet(F(S), X)

proving T is the right adjoint of F .
We turn to discuss some additional categories related to Top. Namely, let X

be a topological space and denote by Xcl the category whose objects are the open
subsets of X with morphisms the inclusions. We note that this category is small.
We mention that the category of functors from Xcl to the category of commutative
rings (or abelian groups, or modules) is precisely the category of presheaves on X
(with coefficients in one of the mentioned categories).

In this context, there is a good example of how properties of objects appearing
’in nature’ - that is, in concrete and well studied categories - generalize to the wide
context of category theory.

Definition 2.13. We say an object c ∈ C is compact if the hom-functor preserves
filtered colimits:

HomC(c, colimΛXλ) ∼= colimΛHomC(c,Xλ)

the colimit taken over some filtered category Λ, which we refer to, at least in the
following discussion as a poset.

We now deal with the question: which objects are compact in Xcl?

Proposition 2.14. A subset U of X is a compact object in Xcl if and only if it is
a compact subset.

Proof. Let U be compact, and {Xλ}λ∈Λ a collection of open sets, ordered by inclu-
sion with respect to a poset Λ. In this case, the colimit is nothing but the union⋃
λ∈ΛXλ.
Pick a morphism U →

⋃
λ∈ΛXλ namely U is a subset of the union. As U is

compact, there is some µ ∈ Λ such that the morphism we picked factors through
U → Xµ; conversely, it is clear that every morphism U → Xµ gives rise to a umique
morphism U →

⋃
λ∈ΛXλ.

For the converse, assume U is a compact object. Let {Xλ}λ∈Λ be an open
covering of U (we can easily define an appropriate Λ in this case, simply by assigning
to every open subset in the covering an index, and declaring λ ≤ µ whenever
Xλ ⊆ Xµ). Then there exists some morphism U →

⋃
λ∈ΛXλ and thus a morphism

U → Xµ for some µ ∈ Λ (as the colimit of empty sets is again empty). �
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We mention that Xcl is a category in which every morphism is both monic and
epic. This is because for any two objects either there exists a unique morphism
between them (the natural inclusion) or there does not exist any morphism.

We call a category in which every object is a colimit of compact objects a com-
pactly generated category. It is clear that a σ-compact space X gives rise to Xcl a
σ-compactly generated category; namely, every object is a colimit over a countable
index set of compact objects.

On the other hand, recall that there is a countable version of compactness: a
space is Lindelof if for every covering by open sets there exists some countable
subcovering. It is clear that if Xcl is a σ-compactly generated category then X is
Lindelof (by intersecting with every compact subset from the countable covering by
compact subsets). We introduce the following example, showing that the converse
does not necessarily hold:

Example 2.15. Let X = R with the co-ℵ0 topology: the non-empty sets are pre-
cisely those with complement (at most) countable. We note that this space is Lin-
delof (pick one open subset in the covering, and other countably many open sets
containing the complement. This is indeed possible as the complement is count-
able).

However, Xcl is not σ-compactly generated. If it would be, we could have present
X as a union of countably many compact subsets, so at least one of them would be
uncountable. But every uncountable subset of X is homeomorphic to X itself, and
clearly non-compact.

Let us (briefly) go over some universal construction in the context of Xcl. As we
mentioned, the colimit can be though of as a union, as well as the pushouts and the
coproduct, while the limit is just the intersection; the fiber products and products
are again formed by intersection.

Before ending this summary, we briefly mention that there are some natural con-
tinuations of the categorical research of the category of topological spaces. We refer
to [1] for information about projective and injective objects in various categories of
topological spaces.

For discussion of algebaic topology, in particular homotopy and homology theory,
there are many references. A relatively elementary one is [4].
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