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¢ =q(z.2.d(1)) @)
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where
w € R™
(€ R’ andy € R?
x € R andz € R*
d(t) € R?

control input;

measured outputs;

state vector;

vector of signals that belongs ol », the set
of all piecewise continuous functions fraf
to D, whereD is a compact subset are.

The matrices4, B, andC represenp chains of integrators as in [3,
Sec. ll]. The state feedback control is assumed to be in the form

3 :F(ﬁ, 2, d(t)) (5)
U :'y’('l?., z, ¢, d(t)) (6)

Assumption 1:

1) T and~ are locally Lipschitz functions id, =, and¢, uniformly
in d, over the domain of interest;
2) T and~ are globally bounded functions of

3) the closed-loop system is uniformly globally asymptotically

stable with respect to the compact positively invariant4ét
Assumption 2: The functionsq, ¢ and are locally Lipschitz in

x, z, andu uniformly in d over the domain of interest. Moreover,

é(x, z,d,v(¢,2,(,d)) is zero inA uniformly in d.
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andzo € Q, whereS is any compact set containing and Q is any
compact subset &&", the setS x Q is included in the region of attrac-
tion under output feedback control. Third, the trajectoryefz, J)
under output feedback approaches the trajectory under state feedback
ase — 0.

For the purpose of analysis, we replace the observer dynamics by
the equivalent dynamics of the scaled estimation &brgr)y = « — &,
where

D(e) =block diad D1, . .
D; =diage™ ', ..,
The closed-loop system can be represented by

..,

& =Az + Bq’)(;z:, 2, d(t),»,/(-)) 9)
2 =1 <¢ 2 d(t). (J‘L — D(e). €, d(t))) (10)
§ =T (1}4 — D(e). €. d(t)) (11)
iy =Aon + eBg (0, 2,9, D(). d(t)) (12)

whereg() = ¢(z,z,d(t), () — do(2, ¢, d(t),7(-)) and 4o is a
constant Hurwitz matrix. For simplicity, we write the system (9)—(11)

To implement the control (5) and (6), we use the state estifiﬂateas

generated by the high-gain observer

& = A& + Boo(@, ¢, d(t),u) + H(y — C&) )
where the observer gaiff is chosen as _
2
H = block diagH+1,....H,] H; = : (8)
“’;71
T —1

c”i
i
[e%
T

e

i X1
€ is a positive constant to be specified, and the positive cons«h@nts
are chosen such that the roots of
_l+...+a;i7131+ai‘i =0

are in the open left-half plane, for all = 1,...,p. The function
¢o(x,C,d(t),u) is a nominal model ofs(z, z, d(t), ) which is re-
quired to satisfy the following assumption.

Assumption 3: ¢, is a locally Lipschitz function ir:, ¢, andw, uni-

5" 4 als™

formly in d, over the domain of interest. Furthermore, it is globally

bounded in: and zero inA, uniformly ind.
Remark 1: The functionsy, I', and¢, are allowed to depend oh

X = fr(x.d(t), D(e)n)

wherey = [2%, 2", 9"]" andx(0) = |24,z ,94]". Then, the
system under state feedback is given by
X = fr(x,d(t),0). (14)

The results of the analysis are given in the forthcoming theorems whose
proofs can be found in [2]. The proofs are omitted for lack of space.
They are very similar to the corresponding ones of [3], except that all
bounds are calculated fat € D. Most proofs follow a Lyapunov
argument where the Lyapunov function is supplied by results from [9].

Theorem 1: Let Assumptions 1-3 hold. Then, there exists> 0
such that for every) < e < €7, the trajectoriegx (¢, ), n(t,€)) of
the system (9)—(12) starting ifi x Q are bounded for al > 0 and
alld € Mp, and come arbitrarily close tal x { = 0} as time
progresses.

Theorem 2: Under the conditions of Theorem 1, given anhy> 0,
there existe; = €3(¢) > 0 andT, = Ti(&) such that, for every
0 < € < &, we have

N+t <¢  VE>T  Vde Mp.  (15)

Let x,(t) be the solution of (14) starting from(0). The following
theorem shows that(t, €) converges to-(¢) ase — 0, uniformly in

(13)

since some components éfmay comprise reference signals that are forallt > 0.
available on line. They cannot, of course, depend on unknown diStuerheorenTS: Under the conditions of Theorem 1, given any 0

bance signals. In the special case where the funetiemknown and
depends only ofw, ¢, w) and the known components &fwe can take
¢. Takinggo = 0 yields a linear high-gain observer.

bo

Ill. PERFORMANCE RECOVERY

The objective of this section is to show that the output feedba
controller recovers the performance of the state feedback contro

there exists; > 0 such that, for everg < ¢ < €3 we have
Ix(te) =x-(OII<E VE>0  VdeMp. (16)
Next, we deal with local uniform asymptotic stability with respect
to a compact, positively invariant set. We assume that the trajectory
belongs to some ball around. First, we deal with the case where

‘&16 = ¢ and the system (14) is uniformly asymptotically stable with
ll'@&pect taA.

for sufficiently smalle. The performance recovery manifests itself in Theorem 4: Let Assumptions 1-3 hold and assume that= ¢.

three points. First, the compact sdtx {z — # = 0} is a posi-
tively invariant set of the closed-loop system under output feedb

Then, there exists; > 0 such that, for every) < ¢ < ¢;, the system

a@"5—(12) is uniformly asymptotically stable with respect to the compact

and the closed-loop system is asymptotically stable with reSpeCtHSSitively invariant setd x {5 = 0}.
A x {x — & = 0}. Second, the output feedback controller achieves second, we deal with the case where the system (14) is uniformly

semiglobal stabilization; that is, for the initial states, zo, 7o) € S,

exponentially stable, whether or not we kngw
Theorem 5:Let Assumptions 1-3 hold and assume that the

We define uniform asymptotic stability with respect to a set in the spirit of . ) 8 .
[4, Def. 4.1, 4.12] and [13, Sec. 1.10, Def. 1]. The definition of a Lyapunoglosed-loop system (14) is uniformly exponentially stable with respect
function with respect to a compact, positively invariant set is given in[9].  to the setd. Then, there exists; > 0 such that, for ever§ < e < ¢z,
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the system (9)—(12) is uniformly exponentially stable with respect to IV. EXAMPLE

the setd x {n = 0}. . . . .
. . In order to illustrate the separation theory developed in the previous
The Lyapunov function needed for this proof comes from an exten- P y P P

sion of the proof of [12, Th. 19.1, 19.2] to the case of exponential S%f_ectlon, we apply it to th? regulation proble_m of [6]. Sev_eral other
o . xamples can be found in [2]. The analysis of [6] applies to the
bility with respect to sets.

. . . . losed-loop system under output feedback, including the high-gain ob-

Thll’(:, tyvelltjezatl \gllth t.r:ﬁ case V\tlhjgrit?? systt?mT(#4)f 'ﬁ un.lform@erver. Because of the separation theory, we show that it is sufficient to

asymplotically stable with respect 18, but ¢o 7 ¢. The following consider the closed-loop system under state feedback. This simplifies
condition is imposed on the modeling error.

Assumption 4:There exist aC'" function Va (¢ defined on the analysis because it eliminates the observer dynamics and the need
Ssu pYo ) Ye € exist ac” functio 3( X) jefined on worry about the singularly perturbed nature of closed-loop system
[0,00) x U, whereU = {x : |x|a < rs,r3 > 0} is a neighborhood d feedback. Thi fth \vsis has b ready tak
of Ain 2, and three functions , ¢’», andy s, defined and continuous under output feedback. This part ot the analysis has been already taken
N Wl‘yli h ar v d' filr1in ’with}’ ‘18 (i itiv care of in the separation theory. Moreover, Theorem 3 shows that the
on u, ch are posilive—gefinite espec (ie., positive trajectories under output feedback approach the trajectories under
everywhere and zero only i) such that, for alt > 0, we have

7 . state feedback, a new result that is not shown in [6]. In presenting
(17)-(20), shown at_t_he bottom of the page foralle 7 and all this example, we use the notation of [6] and design the state feedback
d € D, for some positive constants > 0,¢; > 0 anda,b < 1, such

controller to correspond to the output feedback controller of [6] when
thata + b = 1. he observer is eliminated
Remark 2: Assumption 4 is similar to [3, Ass. 4] in the sense thal ’

. . . onsider the system
it relates the modeling error magnitude and the rate of convergence o? y

trajectories near the attractor (which is a set in the case at hand). 2=2Z(p)z + po(r1,w, )
The recovery of asymptotic stability can now be stated as follows. #=Fx+ Gu+ P(z,x,w, 1t)
Theorem 6: Let Assumptions 1-4 hold. Then, there exisfs > e =Hu 1)

0 such that, for al0 < ¢ < €5, the system (9)—(12) is uniformly where

asymptotically stable with respect to the compact positively invariant (F. G, H) represents a chain ofintegrators and

setA x {5 = 0}. pi(z 21w, p)

In many cases, asymptotic stability with respect to a set, achieved p2(z; 21, w2, 0, 1)
under state feedback control, is not global and the region of attraction P(z,w,w,p) = e
is a finite subset of the state space. This case is treated in [2] where it Pr—1(2, 1, Tay ooy Bpy, W,y i)
is shown that we can recover the same measures of performance as in D2, 01, 22, oy Bry W, 1)

the foregoing theorems. However, as in [3], we need a converse Lydth statex € R", control inputu € R™, and regulated output €
punov theorem that yields a Lyapunov function which goes to infinitR™. The system (21) is subject to an exogenous inpu¢ R? and
at the boundary of an estimate of the region of attraction. This is dopec P C RP is a vector of unknown parameters. Furtherm@tds a
by extending the converse Lyapunov results of [9] to an estimate of thempact setyo(-) and P(-) areC* functions of their arguments (for
region of attraction. In the process of that extensi¢t) is further re- some largé:), andpo (0,0, 1) = 0, P(0,0,0, ) = 0. Without loss of
stricted, as in the following assumption which replaces Assumptiondenerality we assurie€ int(P). The exosysteny = Sw is neutrally

Assumption 5:d(t) belongs to the set of all continuously differen-stable (the matri)s has distinct eigenvalues on the imaginary axis).
tiable functions fromR to D where the derivative’ (¢) of d(¢) belongs Assumption A: The eigenvalues df (1) have negative real part, for
to a compact set. Items 1) and 2) of Assumption 1 hold. The closed-localp;: € P. Moreover, the equation
zilastt)(leem under the state feedback control is uniformly asymptotically 6((8% ) Sw = Z(0C(ws 1) + po(0, w0, 1) 22)

. w

Theorem 7: Let Assumptions 2-5 hold. LeR be an open, con- has a solutior(w, ;) defined for allw, .
nected subset of the region of attraction @htde any compact subset Given Assumption A and the structure Bf G, H and P(-), a rou-
of R that contains4. Then, the conclusions of Theorems 1, 2, 3, 4, 8jne calculation shows that the system (23), shown at the bottom of the

and 6 hold. page, has a unique and globally defined soluti6iiw, 1), ¢*(w, i)
1(x) <Va(t.x) < v2(x) a7
Vs 9V, s
||(b(l7_) Z“ d? 7(197 1"“ C? d)) - (,Z)O (‘t? C? d“ /7(197 ;1:7 é‘? d)) ||
<cotpz () (19)
oV b
|G| <ot (20)
a(C,W“)(w»u)sw:< Z(p)C(w, ) + po(H7" (w, 1), w0, 1) )
B Frt(w, ) + G (w, 1) + P(C(w, ), 7 (w, 1), w, 1)

0=Hr"(w,p) (23)
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such thatr®(0, x) = 0 andc¢® (0, u) = 0 for all u. Hereafter, it is as- has a globally defined center manifold
sumed that the functioef' (w, ;1) satisfies the following assumption.

Assumption B: For some set of real numbers, ay, ..., a,—1, the M. ={(&,z,2,w): & = HT“(w.u)v
identit ) u
Y . . . 2= (wp),e = 7w, )} (30)
Lic*(w,p) =agc™(w,p) +arLsc® (w, pt)
4t ag—1 LI e (w, ) (24) at(&,z,2,w) = (0,0,0,0).
holds for allw, 1, whereL, = (8/dw)Sw. Moreover, the polynomial ~ Now, let us design the state feedback controller that makes
equation semiglobally attractive. The issue here is to chod$@" and M such
. that this goal is achieved. Lgt = & — [ 7% (w, ). Then, in the co-
st —ag_1sT T~ —ais —ao =0 ordinates(z, #, & ), the closed-loop system becomes
has distinct roots on the imaginary axis. - o
Simple routine calculations show that, under Assumption B, there 5% =P& + NHx
exist aqg x ¢ matrix®, al x ¢ row vectorl’, and a globally defined E=Z(p); 4 po(Hz, exp(St)w’, 1)
mapping7* (w. p1) such that & =Fi+G(Mn+T&)+ Pz, x,exp(St)w’,p)  (31)
aTa (:‘Ua H) _(I’Ta‘(' \ ,U/)
f)w Y ’ wherew” represents the value at time= 0 of the state of the ex-
. (w, p) =07 (w0, ). (25) osystem. System (31) is an uncertain system because the actual values
In fact, this happens for of » andw® are unknown. We assume that the initial vakfebelongs
o 1 0 - 0 to ana priori known compact sety € R‘. The invariant manifold
o o 1 --- 0 reduces to the origif¢;, z, ) = (0,0,0) where the regulation error
d=1 - - R . e = &1 is zero. Thus, output regulation is achieved if the origin is at-
o 0 0 --- 1 tractive.
a0 ai ax - ag_y In order to be able to use the separation results of the previous sec-
e (w, ) tion, Assumption C of [6] is modified as follows.
I Ca(:u 1) Assumption C:There exists a positive—definite smooth function
o o V() satisfyin
T (w, ) = (%) fying
L2 (w. ) 12 s 112
Limle (o ) I SV <ol (32)
F=(1 0 0 --- 0). RE (Z()% + po(HE, exp(SH)w’, 1)) < — a|Z||* + ¢|Hz|?
Hereafter, we propose a feedback law for which we prove the exis- (33)

tence of an attractive zero-error invariant manifold. Furthermore, this
manifold can be made semiglobally attractive. Set = — ((w.p), forall z,#, ¢ and all(w®, 1) € W x P, wherea; > 0 ande > 0.

& =a—n"(w,pu) and For N choose any matrix such that the pdid,N) is con-
e m trollable. Then, given any compact set of initial conditions
e N2 (€,(0),%(0),#(0)) € R? x R"™" x R", find (via backstepping
n= : =1 - methods and high-gain feedback, for example) a pair of matides
(,f,l) ' and7’ such that the origin is locally exponentially stable with a basin
c K of attraction that includes the s&t
o In order to apply our separation results, we consider the system
o+ p1(2, 21, w, )
B . (26) z :Z(ll’)3+p0(mlawvﬂ’)
j}r + ﬁr'—l(‘:v -'ile BRI ir'—lz ) :u’) 77 :‘477 + G(u + ﬁ"(zv n,w, #))
Consider now a feedback law of the form o =Sw
& =P& + Ne e =M.
w=Mn+TE. 27)
Similar to the proof of [6, Prop. 1], it is straightforward to prove thehis system fits the model (1)—(4) withbeing the vector of bounded
following property. disturbances (constant in this case).

Proposition 1: Suppose Assumptions A and B hold and (27) We consider the state feedback controller
stabilizes the linear approximation of (21) at the equilibrium point
(&,2z,2) = (0,0,0), (w,p) = (0,0). Then there exists a x ¢ & =®¢ + Ne
matrix ]| satisfying u =Mn +T&
e[[=]]¢ T]]=r (28)
where® andI are defined as in (25). Consequently, the closed-lodfhis controller achieves semiglobal tracking uniformlydnand .
system Global boundedness of the control law with respecy e achieved
¢ =%¢ + NHaz by saturation outside a region of interest.
. g We showed, by construction, that the closed-loop system under state
2=Z(p)z + po(x1,w, p) . - . "
) , feedback is exponentially stable with respect to the compact positively
& =Fr+G(Mn+T&)+ Pz, v,w, 1) invariant zero-error manifoldf. with S being an estimate of the re-
w=Sw (29) gion of attraction.
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To implement the controller, we use a linear high-gain observe@bservers for Discrete-Time Systems with Multiple Delays
Boundedness, ultimate boundedness, and convergence of trajectories
under the output feedback controller (startingSik Q, whereQ is a M. Boutayeb and M. Darouach
compact subset adR™) are guaranteed by Theorem 7. Moreover, The-

orem 7 guarantees exponential stability with respect to the CompaCtAbstract—ln this note, a useful and systematic approach to design ob-

positively invariant setM. x {n — & = 0}, whereg is the estimate geryers for discrete-time systems with multiple delays, under general condi-
of . tions, is presented. The main feature of the proposed technique is that nec-
essary and sufficient conditions for asymptotic stability are derived while
the observer’s order is independent from the number of delays and is equal
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The idea consists, in fact, of showing that the proposed algorithm
is equivalent to a modified global Kalman observer when the arbitrary
matrix, namelyQ, in this note, is appropriately chosen.

Numerical examples are provided.

Il. PROBLEM FORMULATION
Consider a discrete-time system with multiple delays of the form

r

Tpa1 = Z Aizi—; + Z Bjup—; 1)

i=0 =0

Y = CTIc + Duy (2)

wherer, € R", u, € R™ andy, € RP denote the state, input, and
output vectors, respectively, at time instdnt4;, B;, C and D are
constant matrices of appropriate dimensions. The integérsy and

s > 0 are the number of time-delays assumed to be known.
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