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A Separation Principle for the Control of a Class of
Nonlinear Systems

A. N. Atassi and H. K. Khalil

Abstract—In this note, we extend the separation results of a previous
work to a case where a globally bounded state feedback controller renders a
certain compact set positively invariant and asymptotically attractive. The
extension covers a wide range of control tasks that arise in adaptive con-
trol, servomechanisms, and practical stabilization. It is shown that by im-
plementing the control law using a high-gain observer, we can recover the
performance of the state feedback controller.

Index Terms—Nonlinear control, observers, output feedback control,
separation principle, singular perturbation.

I. INTRODUCTION

In [3], we present separation results for the stabilization of a class of
nonlinearsystemshavingachainormoreof integrators in their structure.
Therein, we consider feedback controllers that make the origin of the
closed-loop system an asymptotically stable equilibrium point. In this
note, we are interested in feedback controllers that achieve boundedness
of trajectories but not necessarily with convergence to an equilibrium
point. Such situation arises in adaptive control [1], [8], where only the
tracking error or both the trackingerrorand theparametererror converge
tozero.Anotherexampleistheconvergencetoazero-errormanifoldas in
the servomechanism problem discussed in [7], [10], and [6]. Additional
examplescanbefound instabilizationproblemsin thepresenceofdistur-
bances as in [11] and [5], where only finite-time convergence to a set can
be achieved. In most of these cases, it can be shown that the trajectories
approachanattractive,positively invariant,compactset.

We consider a class of nonlinear systems similar to the one considered
in [3]andcharacterize theperformanceof thestate feedbackcontrolleras
rendering a certain compact set positively invariant and asymptotically
attractive.Asin [3],werequirethecontrol lawtobegloballyboundedand
implement it using a high-gain observer. We show that, for sufficiently
high observer gain, the output feedback controller recovers the perfor-
mance of the state feedback controller. In particular, it renders a compact
set of interest positively invariant and asymptotically attractive. More-
over, any compact subset of the region of attraction under state feedback
canbe included in the regionofattractionunderoutput feedback.Finally,
trajectoriesunderoutputfeedbackconvergetothoseunderstatefeedback
as theobservergainapproaches infinity.

II. PROBLEM FORMULATION

We consider a nonlinear system represented by

_x =Ax +B�(x; z; d(t); u) (1)

_z = (x; z; d(t); u) (2)

y =Cx (3)

� =q x; z; d(t) (4)
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where
u 2 Rm control input;
� 2 Rs andy 2 Rp measured outputs;
x 2 Rr andz 2 R` state vector;
d(t) 2 Rd vector of signals that belongs toMD, the set

of all piecewise continuous functions fromR
toD, whereD is a compact subset ofRd.

The matricesA, B, andC representp chains of integrators as in [3,
Sec. II]. The state feedback control is assumed to be in the form

_# =� #; x; �; d(t) (5)

u =
 #; x; �; d(t) (6)

Assumption 1:

1) � and
 are locally Lipschitz functions in#; x, and�, uniformly
in d, over the domain of interest;

2) � and
 are globally bounded functions ofx;
3) the closed-loop system is uniformly globally asymptotically

stable with respect to the compact positively invariant setA.1

Assumption 2:The functionsq, � and are locally Lipschitz in
x; z, andu uniformly in d over the domain of interest. Moreover,
�(x; z; d; 
(#; x; �; d)) is zero inA uniformly in d.

To implement the control (5) and (6), we use the state estimatex̂

generated by the high-gain observer
_̂x = Ax̂+B�0(x̂; �; d(t); u) +H(y � Cx̂) (7)

where the observer gainH is chosen as

H = block diag[H1; . . . ; Hp] Hi =

�

�

�

�

...
�

�

�

� r �1

(8)

� is a positive constant to be specified, and the positive constants�ij
are chosen such that the roots of

s
r + �

i
1s

r �1 + � � �+ �
i
r �1s

1 + �
i
r = 0

are in the open left-half plane, for alli = 1; . . . ; p. The function
�0(x; �; d(t); u) is a nominal model of�(x; z; d(t); u) which is re-
quired to satisfy the following assumption.

Assumption 3:�0 is a locally Lipschitz function inx; �, andu, uni-
formly in d, over the domain of interest. Furthermore, it is globally
bounded inx and zero inA, uniformly in d.

Remark 1: The functions
, �, and�0 are allowed to depend ond
since some components ofd may comprise reference signals that are
available on line. They cannot, of course, depend on unknown distur-
bance signals. In the special case where the function� is known and
depends only on(x; �; u) and the known components ofd, we can take
�0 = �. Taking�0 = 0 yields a linear high-gain observer.

III. PERFORMANCERECOVERY

The objective of this section is to show that the output feedback
controller recovers the performance of the state feedback controller
for sufficiently small�. The performance recovery manifests itself in
three points. First, the compact setA � fx � x̂ = 0g is a posi-
tively invariant set of the closed-loop system under output feedback
and the closed-loop system is asymptotically stable with respect to
A � fx � x̂ = 0g. Second, the output feedback controller achieves
semiglobal stabilization; that is, for the initial states(x0; z0; #0) 2 S ,

1We define uniform asymptotic stability with respect to a set in the spirit of
[4, Def. 4.1, 4.12] and [13, Sec. 1.10, Def. 1]. The definition of a Lyapunov
function with respect to a compact, positively invariant set is given in [9].

andx̂0 2 Q, whereS is any compact set containingA andQ is any
compact subset ofRr , the setS�Q is included in the region of attrac-
tion under output feedback control. Third, the trajectory of(x; z; #)
under output feedback approaches the trajectory under state feedback
as� ! 0.

For the purpose of analysis, we replace the observer dynamics by
the equivalent dynamics of the scaled estimation errorD(�)� = x� x̂,
where

D(�) =block diag[D1; . . . ; Dp]

Di =diag[�r �1; . . . ; 1]r �r :

The closed-loop system can be represented by

_x =Ax+B� x; z; d(t); 
(�) (9)

_z = x; z; d(t); 
 #; x �D(�)�; �; d(t) (10)

_# =� #; x�D(�)�; �; d(t) (11)

� _� =A0� + �Bg x; z; #;D(�)�; d(t) (12)

whereg(�) = �(x; z; d(t); 
(�)) � �0(x̂; �; d(t); 
(�)) andA0 is a
constant Hurwitz matrix. For simplicity, we write the system (9)–(11)
as

_� = fr(�; d(t);D(�)�) (13)

where� = [xT; zT; #T]T and�(0) = [xT0 ; z
T

0 ; #
T

0 ]
T. Then, the

system under state feedback is given by

_� = fr(�; d(t);0): (14)

The results of the analysis are given in the forthcoming theorems whose
proofs can be found in [2]. The proofs are omitted for lack of space.
They are very similar to the corresponding ones of [3], except that all
bounds are calculated ford 2 D. Most proofs follow a Lyapunov
argument where the Lyapunov function is supplied by results from [9].

Theorem 1: Let Assumptions 1–3 hold. Then, there exists�?1 > 0
such that for every0 < � � �?1 , the trajectories(�(t; �); �(t; �)) of
the system (9)–(12) starting inS � Q are bounded for allt � 0 and
all d 2 MD , and come arbitrarily close toA � f� = 0g as time
progresses.

Theorem 2: Under the conditions of Theorem 1, given any� > 0,
there exist�?2 = �?2(�) > 0 andT1 = T1(�) such that, for every
0 < � � �?2 , we have

j�(t; �)jA + k�(t; �)k � � 8 t � T1 8 d 2MD: (15)

Let �r(t) be the solution of (14) starting from�(0). The following
theorem shows that�(t; �) converges to�r(t) as� ! 0, uniformly in
t, for all t � 0.

Theorem 3: Under the conditions of Theorem 1, given any� > 0,
there exists�?3 > 0 such that, for every0 < � � �?3 we have

k�(t; �)� �r(t)k � � 8 t � 0 8 d 2MD: (16)

Next, we deal with local uniform asymptotic stability with respect
to a compact, positively invariant set. We assume that the trajectory
belongs to some ball aroundA. First, we deal with the case where
�0 = � and the system (14) is uniformly asymptotically stable with
respect toA.

Theorem 4: Let Assumptions 1–3 hold and assume that�0 = �.
Then, there exists�?4 > 0 such that, for every0 < � � �?4, the system
(9)–(12) is uniformly asymptotically stable with respect to the compact
positively invariant setA � f� = 0g.

Second, we deal with the case where the system (14) is uniformly
exponentially stable, whether or not we know�.

Theorem 5: Let Assumptions 1–3 hold and assume that the
closed-loop system (14) is uniformly exponentially stable with respect
to the setA. Then, there exists�?5 > 0 such that, for every0 < � � �?5 ,
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the system (9)–(12) is uniformly exponentially stable with respect to
the setA � f� = 0g.

The Lyapunov function needed for this proof comes from an exten-
sion of the proof of [12, Th. 19.1, 19.2] to the case of exponential sta-
bility with respect to sets.

Third, we deal with the case where the system (14) is uniformly
asymptotically stable with respect toA, but �0 6= �. The following
condition is imposed on the modeling error.

Assumption 4:There exist aC1 function V3(t; �) defined on
[0;1) � U , whereU = f� : j�jA � r3; r3 > 0g is a neighborhood
ofA in 
, and three functions 1,  2, and 3, defined and continuous
on U , which are positive–definite with respect toA (i.e., positive
everywhere and zero only inA) such that, for allt � 0, we have
(17)–(20), shown at the bottom of the page for all� 2 U and all
d 2 D, for some positive constantsc0 � 0, c1 > 0 anda; b < 1, such
thata + b = 1.

Remark 2: Assumption 4 is similar to [3, Ass. 4] in the sense that
it relates the modeling error magnitude and the rate of convergence of
trajectories near the attractor (which is a set in the case at hand).

The recovery of asymptotic stability can now be stated as follows.
Theorem 6: Let Assumptions 1–4 hold. Then, there exists�?6 >

0 such that, for all0 < � � �?6 , the system (9)–(12) is uniformly
asymptotically stable with respect to the compact positively invariant
setA � f� = 0g.

In many cases, asymptotic stability with respect to a set, achieved
under state feedback control, is not global and the region of attraction
is a finite subset of the state space. This case is treated in [2] where it
is shown that we can recover the same measures of performance as in
the foregoing theorems. However, as in [3], we need a converse Lya-
punov theorem that yields a Lyapunov function which goes to infinity
at the boundary of an estimate of the region of attraction. This is done
by extending the converse Lyapunov results of [9] to an estimate of the
region of attraction. In the process of that extensiond(t) is further re-
stricted, as in the following assumption which replaces Assumption 1.

Assumption 5:d(t) belongs to the set of all continuously differen-
tiable functions fromR toD where the derivatived0(t) of d(t) belongs
to a compact set. Items 1) and 2) of Assumption 1 hold. The closed-loop
system under the state feedback control is uniformly asymptotically
stable.

Theorem 7: Let Assumptions 2–5 hold. LetR be an open, con-
nected subset of the region of attraction andS be any compact subset
of R that containsA. Then, the conclusions of Theorems 1, 2, 3, 4, 5,
and 6 hold.

IV. EXAMPLE

In order to illustrate the separation theory developed in the previous
section, we apply it to the regulation problem of [6]. Several other
examples can be found in [2]. The analysis of [6] applies to the
closed-loop system under output feedback, including the high-gain ob-
server. Because of the separation theory, we show that it is sufficient to
consider the closed-loop system under state feedback. This simplifies
the analysis because it eliminates the observer dynamics and the need
to worry about the singularly perturbed nature of closed-loop system
under output feedback. This part of the analysis has been already taken
care of in the separation theory. Moreover, Theorem 3 shows that the
trajectories under output feedback approach the trajectories under
state feedback, a new result that is not shown in [6]. In presenting
this example, we use the notation of [6] and design the state feedback
controller to correspond to the output feedback controller of [6] when
the observer is eliminated.

Consider the system

_z =Z(�)z + p0(x1; !; �)

_x =Fx +Gu+ P (z; x; !; �)

e =Hx (21)

where(F;G;H) represents a chain ofn integrators and

P (z; x; !; �) =

p1(z; x1; !; �)

p2(z; x1; x2; !; �)

� � �

pr�1(z; x1; x2; . . . ; xr�1; !; �)

pr(z; x1; x2; . . . ; xr; !; �)

with statex 2 Rn, control inputu 2 Rm, and regulated outpute 2
Rm. The system (21) is subject to an exogenous input! 2 Rd and
� 2 P � Rp is a vector of unknown parameters. Furthermore,P is a
compact set,p0(�) andP (�) areCk functions of their arguments (for
some largek), andp0(0; 0; �) = 0; P (0; 0; 0; �) = 0. Without loss of
generality we assume0 2 int(P). The exosystem_! = S! is neutrally
stable (the matrixS has distinct eigenvalues on the imaginary axis).

Assumption A:The eigenvalues ofZ(�) have negative real part, for
all � 2 P . Moreover, the equation

@�(!; �)

@!
S! = Z(�)�(!;�) + p0(0; !; �) (22)

has a solution�(!; �) defined for all!; �.
Given Assumption A and the structure ofF;G;H andP (�), a rou-

tine calculation shows that the system (23), shown at the bottom of the
page, has a unique and globally defined solution�a(!; �); ca(!;�)

 1(�) �V3(t; �) �  2(�) (17)
@V3

@t
+
@V3

@�
fr(�;d; 0) ��  3(�) (18)

k�(x; z;d; 
(#; x; �;d))� �0(x; �;d; 
(#; x; �;d))k

�c0 
a
3 (�) (19)

@V3

@�
(t; �) �c1 

b
3(�) (20)

@(�; �a)(!;�)

@!
S! =

Z(�)�(!;�) + p0(H�
a(!;�); !; �)

F�a(!;�) +Gca(!; �) + P (�(!;�); �a(!;�); !; �)

0 =H�a(!;�) (23)
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such that�a(0; �) = 0 andca(0; �) = 0 for all �. Hereafter, it is as-
sumed that the functionca(!; �) satisfies the following assumption.

Assumption B:For some set of real numbersa0; a1; . . . ; aq�1, the
identity

Lq
sc

a(!;�) =a0c
a(!;�) + a1Lsc

a(!;�)

+ � � �+ aq�1L
q�1
s ca(!;�) (24)

holds for all!; �, whereLs = (@=@!)S!. Moreover, the polynomial
equation

sq � aq�1s
q�1 � � � � � a1s� a0 = 0

has distinct roots on the imaginary axis.
Simple routine calculations show that, under Assumption B, there

exist aq � q matrix�, a1 � q row vector�, and a globally defined
mapping�a(!; �) such that

@�a(!; �)

@!
=��a(!; �)

ca(!;�) =��a(!; �): (25)

In fact, this happens for

� =

0 1 0 � � � 0

0 0 1 � � � 0

� � � � � � �

0 0 0 � � � 1

a0 a1 a2 � � � aq�1

�a(!; �) =

ca(!;�)

Lsc
a(!;�)

� � �

Lq�2
s ca(!;�)

Lq�1
s ca(!;�)

� = ( 1 0 0 � � � 0 ) :

Hereafter, we propose a feedback law for which we prove the exis-
tence of an attractive zero-error invariant manifold. Furthermore, this
manifold can be made semiglobally attractive. Set~z = z � �(!; �),
~x = x � �a(!;�), and

� =

e

e(1)

...
e(r�1)

=

�1
�2
...
�r

=

~x1
~x2 + ~p1(~z; ~x1; !; �)

...
~xr + ~pr�1(~z; ~x1; . . . ; ~xr�1; !; �)

: (26)

Consider now a feedback law of the form
_�1 =��1 +Ne

u =M� + T�1: (27)

Similar to the proof of [6, Prop. 1], it is straightforward to prove the
following property.

Proposition 1: Suppose Assumptions A and B hold and (27)
stabilizes the linear approximation of (21) at the equilibrium point
(�1; z; x) = (0; 0; 0), (!;�) = (0; 0). Then there exists aq � q
matrix satisfying

� = � T = � (28)

where� and� are defined as in (25). Consequently, the closed-loop
system

_�1 =��1 +NHx

_z =Z(�)z + p0(x1; !; �)

_x =Fx +G(M� + T�1) + P (z; x; !; �)

_! =S! (29)

has a globally defined center manifold

Mc = f(�1; z; x; !) : �1 = �a(!; �);

z = �(!; �); x = �a(!;�)g (30)

at (�1; z; x; !) = (0; 0; 0; 0).
Now, let us design the state feedback controller that makesMc

semiglobally attractive. The issue here is to chooseN; T andM such
that this goal is achieved. Let~�1 = �1 � �a(!; �). Then, in the co-
ordinates(~z; ~x; ~�1), the closed-loop system becomes

_~�1 =�~�1 +NH~x

_~z =Z(�)~z + ~p0(H~x; exp(St)!0; �)

_~x =F ~x +G(M� + T ~�1) + ~P (z; x; exp(St)!0; �) (31)

where!0 represents the value at timet = 0 of the state of the ex-
osystem. System (31) is an uncertain system because the actual values
of � and!0 are unknown. We assume that the initial value!0 belongs
to ana priori known compact setW 2 Rd. The invariant manifold
reduces to the origin(~�1; ~z; ~x) = (0; 0; 0) where the regulation error
e = ~x1 is zero. Thus, output regulation is achieved if the origin is at-
tractive.

In order to be able to use the separation results of the previous sec-
tion, Assumption C of [6] is modified as follows.

Assumption C:There exists a positive–definite smooth function
V (~z) satisfying

�1k~zk
2 � V (~z) ��2k~zk

2 (32)
@V

@~z
(Z(�)~z + ~p0(H~x; exp(St)!0; �)) �� �3k~zk

2 + cjH~xj2

(33)

for all ~z; ~x; t and all(!0; �) 2 W �P, where�i > 0 andc � 0.
For N choose any matrix such that the pair(�; N) is con-

trollable. Then, given any compact setS of initial conditions
(~�1(0); ~z(0); ~x(0)) 2 Rq � Rn�r � Rr, find (via backstepping
methods and high-gain feedback, for example) a pair of matricesM
andT such that the origin is locally exponentially stable with a basin
of attraction that includes the setS .

In order to apply our separation results, we consider the system

_z =Z(�)z + p0(x1; !; �)

_� =A� +G u+ ~pr(z; �; !; �)

_! =S!

e =H�:

This system fits the model (1)–(4) with� being the vector of bounded
disturbances (constant in this case).

We consider the state feedback controller

_�1 =��1 +Ne

u =M� + T�1:

This controller achieves semiglobal tracking uniformly in! and�.
Global boundedness of the control law with respect to� is achieved
by saturation outside a region of interest.

We showed, by construction, that the closed-loop system under state
feedback is exponentially stable with respect to the compact positively
invariant zero-error manifoldMc with S being an estimate of the re-
gion of attraction.



746 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 5, MAY 2001

To implement the controller, we use a linear high-gain observer.
Boundedness, ultimate boundedness, and convergence of trajectories
under the output feedback controller (starting inS � Q, whereQ is a
compact subset ofRn) are guaranteed by Theorem 7. Moreover, The-
orem 7 guarantees exponential stability with respect to the compact
positively invariant setMc � f� � �0 = 0g, where�0 is the estimate
of �.
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Observers for Discrete-Time Systems with Multiple Delays

M. Boutayeb and M. Darouach

Abstract—In this note, a useful and systematic approach to design ob-
servers for discrete-time systems with multiple delays, under general condi-
tions, is presented. The main feature of the proposed technique is that nec-
essary and sufficient conditions for asymptotic stability are derived while
the observer’s order is independent from the number of delays and is equal
to the state dimension. To illustrate efficiency of the proposed technique,
two numerical examples are provided.

Index Terms—Asymptotic stability, discrete-time systems, Kalman-type
observer, multiple delays.

I. INTRODUCTION

If the state estimation of linear systems with extensions to the de-
scriptor case in presence or not of unknown inputs is well understood
by now, designing an observer for time-delay systems remains, how-
ever, a challenge as can be shown through the works developed in this
field [1]–[11].On theotherhand,wenotice thatmostofobserversdesign
methodsweredevelopedforcontinuous time-delaysystems,werefer the
reader to [1], [4], [6], [8], [11], and the references therein, with very few
extensions to discrete-time models particularly with multiple delays.

Trinh et al. [9] have proposed a memoryless reduced-order state ob-
server which is an extension of the recent works by Leyva–Ramoset al.
[4] and themselves [8]. The main result performed there is to reduce the
observer’s order to only the number of unstable and/or poorly damped
eigenvalues of the system. In the presence of unknown inputs, which
act on the outputs, necessary and sufficient conditions for the existence
of an observer were established in [7]. However, the observer’s order is
proportional to the number of delays that leads to high computational
requirements and technical difficulties when the time-delay increases
and when the observer implementation is considered.

Motivated by a recent result [2] where only sufficient conditions for
asymptotic stability are derived, we propose here a simple and system-
atic approach to design observers for discrete-time systems with mul-
tiple delays. Thanks to the Lyapunov approach and a useful design of
some arbitrary matrices and parameters, necessary and sufficient con-
ditions for asymptotic convergence are established.

The idea consists, in fact, of showing that the proposed algorithm
is equivalent to a modified global Kalman observer when the arbitrary
matrix, namelyQk in this note, is appropriately chosen.

Numerical examples are provided.

II. PROBLEM FORMULATION

Consider a discrete-time system with multiple delays of the form

xk+1 =

r

i=0

Aixk�i +

s

j=0

Bjuk�j (1)

yk =Cxk +Duk (2)

wherexk 2 Rn; uk 2 Rm andyk 2 Rp denote the state, input, and
output vectors, respectively, at time instantk. Ai; Bj , C andD are
constant matrices of appropriate dimensions. The integersr � 0 and
s � 0 are the number of time-delays assumed to be known.
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