MAXIMAL STRINGS IN THE CRYSTAL GRAPH OF
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ABSTRACT. We define a block-reduced version of the crystal graph
of spin representations of the symmetric and alternating groups,
and separate it into layers, each obtained by translating the previ-
ous layer and, possibly, adding new defect zero blocks. We demon-
strate that each layer has weight-preserving central symmetry, and
study the sequence of weights occurring in the maximal strings.

The Broué conjecture, that a block with abelian defect group
is derived equivalent to its Brauer correspondent, has been proven
for blocks of cyclic defect group and verified for many other blocks.
This paper is part of a study of the spin block case.

1. INTRODUCTION

Let G be a finite group and let & be a field of characteristic p, where p
divides |G|. Assume that k is sufficiently large that it is a splitting field
for all relevant finite groups. Let kG = @& B; be a decomposition of the
group algebra into blocks, and let D; be the defect group of the block
B;, of order p%. By Brauer’s Main Theorems, [A], there is a one-to-one
correspondence between blocks of kG with defect group D; and blocks
of kN¢g(D;) with defect group D;. Let b; be the block corresponding to
B;, called its Brauer correspondent.

Broué [B2] has conjectured that if D; is abelian and B; is a principal
block, then B; and b; are derived equivalent, i.e., the bounded derived
categories D°(B;) and D°(b;) are equivalent. In fact, it is generally
believed by researchers in the field that the hypothesis t hat B; be
principal is unnecessary.

In the case of the symmetric groups, the attempt to prove Broué’s
conjecture led Rouquier and Chuang to a much stronger result. The p-
blocks of the symmetric groups are determined by a partition p called
the p-core and by a non-negative integer w called the weight. They
showed that all blocks of a fixed weight are derived equivalent. To-
gether with a result by Chuang and Kessar, showing that a certain
block is Morita equivalent to the Brauer correspondent, this proved
the Broué conjecture for the symmetric groups, and the result was
extended to the alternating groups. Central to the Chuang-Rouquier
method, called sly-categorization, was the use of Lie group methods,

including reflection functors.
1
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The symmetric and alternating groups have central extensions S,
and A, with kernel C,, the cyclic group of order 2, which we will
loosely refer to as covering groups (although, for a few small values of
n, the kernel of the extension is not contained in the commutator of
the group). We assume henceforward that p is an odd prime, in which
case all blocks can be divided into ordinary blocks, which are simply
blocks of S,, or A, or spin blocks, whose characters all take the value
—1 on the non-trivial element of the center.

The covering groups of the alternating group are unique. The cov-
ering groups of the symmetric groups come in two versions, but the
versions have isomorphic spin blocks so we will simply assume one con-
sistent choice.

The irreducible representations of the symmetric group over a field
of characteristic 0 correspond to partitions A = (Ay,...,A.), with
Ay > -+ > A, and we use the notation |A| to denote the sum of
the parts. Over a field of prime characteristic p, the irreducible repre-
sentations are grouped into blocks, each determined by a p-core p and
a weight w. We will not review this standard material here.

The roles of S, and A,, are much more symmetrical in the spin case
then they are for the ordinary representations of the symmetric and
alternating groups. Over a field of characteristic zero, the irreducible
spin representations of both S, and A, correspond to partitions, but
now they are strict partitions, containing no repeated parts, not even
the part 1. Whereas in the symmetric case there was a one-to-one
correspondence of partitions and irreducible representations, in the spin
case the matter is determined by the parity of the partition. Let n(\)
denote the number of part in the partition A, and recall that || denotes
the sum of the parts. Each strict partition A\ of n has a parity

e=ce(A) =\ —-n(\) (mod 2).

The partition is called even if ¢ = 0 and odd if e = 1. Over a field of
characteristic 0, an even strict partition labels two conjugate irreducible
representations of A, and one of S,. An odd strict partition labels one
irreducible representation of A, and two of S,,.

As with blocks of the symmetric groups, the spin blocks are deter-
mined by a non-negative integer, the weight w, and by a partition p
called the p-bar core. However, the p-bar cores must be strict parti-
tions, cannot contain any parts divisible by p, and cannot contain parts
congruent to ¢ and to p — i for any ¢ satisfying 1 <i < p— 1. Any pair
(p,w) for w > 0 determines exactly one block of S, and one block of
A,. In the sequel, we will denote the pair (p,w) by p®.

Returning temporarily to the symmetric group case, the irreducible
modules for all the blocks of all the symmetric groups can be arranged
into a labeled graph called the crystal graph, with the edges connecting
irreducible modules of S, to simple modules of S, labeled by the
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residues modulo p. A mazimal string is a maximal connected sequence
of simple modules joined by edges with the same label. The reflection
functors of Chuang-Rouquier reflect the maximal strings around their
midpoint, with the reflection preserving the weights of the blocks to
which the simples belong. Furthermore, it was shown by Scopes [Sc]
that the extremal points of the maximal strings are actually Morita
equivalent. A Lie theoretic version of this result, due to Brundan and
Kleshchev, can be found in Section 11 of [KI].

The obstruction to making an immediate generalization of the Chuang-
Rouquier result to the spin blocks of S, lies in the fact that blocks
which, by the combinatorics of the reflection functors, should seem-
ingly be derived equivalent, do not always have the same number of
simple modules. Since the number of simples is invariant under de-
rived equivalence, this meant that they could not in fact be in the
same derived equivalence class.

Similarly, the generalization by Kessar of the Scopes result to the
covering groups could not deal with all maximal strings, because if the
cores at the two ends of a string had different parities, the number of
simples in the corresponding blocks of S, differed by a factor of 2, and
thus there can be no Morita equivalence.

The solution to this dilemma is the following, inspired by the results
of [KS]:

Crossover Conjecture. (Kessar-Schaps) If p is an odd prime, then
among all the spin blocks of kS, and kA, there are exactly two derived
equivalence classes for each weight w > 0, and for each p-bar core there
is exactly one block of weight w in each equivalence class. The extremal
points of the maximal strings in the crystal graph correspond to Morita
equivalent blocks, making the appropriate crossover from kS, to kA,
if the parities differ.

In Section 2 we define the block-reduced crystal graph and give some
of its properties. In Section 3 we prove that an edge of label ¢ between
two blocks in the block-reduced crystal graph implies the existence of
an edge with that label in the actual crystal graph for every irreducible
module in the in the block of smaller weight. A natural geometric
realization of the graph is given in Section 4. A recursive construction
for the maximal strings in given in Section 5.

2. THE BLOCK-REDUCED CRYSTAL GRAPH

We now define a version of the crystal graph of [LT] in which the
vertices are not labels of irreducible modules but labels of blocks, each
block being represented in the form p* for some p-bar-core p. In the
case w = 0, the corresponding label will correspond to two conjugate
blocks of A, if p is of even parity, and two “associate” blocks of S, if
p is of odd parity.
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Recalling that p is odd, we set t = (p — 1)/2.

Definition 2.1. The diagram of a partition A = (A1,..., \.) is a set of
r rows of boxes, with \; boxes in row i. Each row will be filled in, as far
as possible, by repetitions of the sequence 0,1, ..., t—1,¢,t—1,...,1,0.
The content v(\) is the (¢ 4+ 1)-tuple v = (y0,...,7:), where ; is the
number of boxes containing the integer 7.

Since we will be dealing largely with blocks, we need a representation
for the p-bar cores which will be suited to our purposes. One standard
way of representing strict partitions is on an abacus with p runners,
numbered by the residues modulo p of the various parts. A part equal
to ap 41, with 0 <i <p—1, a > 0, will be represented by a bead in
position @ on runner %.

The process of reducing a partition A to its p-bar-core consists of
the removal of p-bars. This is done either by removing p from some
part A;, provided that \; — p is not a part of A\, or by removing two
complementary parts equal to 7 and p — ¢ for some 0 < ¢ < p — 1.
In terms of the abacus notations, these possible moves correspond to
moving one bead down into an empty space, removing the bottom bead
on the 0-runner, or removing the bottom beads on two complementary
runners. The effect any of these moves on the content v(\) is always to
subtract off a copy of the t+1-tuple § = (2,2, 2, ...,2,1). After w moves
of these kinds have been made, the new content will be v(\) — wd.

A p-bar core is a strict partition from which no p-bars can be re-
moved. In abacus notation it has no gaps on any runner, no beads on
the O-runner, and beads on only one of two complementary runners.
Thus we can define a condensed numerical notation appropriate for
representing p-bar cores:

Definition 2.2. Given a p-bar core p = (p1,. .., p.), the core t-tuple is
C<p) = ((61751)7 ceey (&f)gt))a

where the length ¢; is the number of parts of p congruent to ¢ or p — i
modulo p, and ¢; is 0 if there is at least one part congruent to ¢, and 1
otherwise. We will also write p = p(c) when ¢ = ¢(p).

Definition 2.3. We will extend the exponential notation p* to the
core t-tuples, so that if ¢ = ¢(p), then ¢* will also be used to represent
the block p*. Furthermore, we set

w|_

| \p| + wp,

this being the rank n of the symmetric (or alternating) group containing
the block labeled by . We further define the layer number of the block
p¥ or c¥ to be

L(c") = n(p(c) + w.
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We also define the length composition of the core ¢ to be the composi-
tion given by

alc) =l +e1,..., b +ep).

The normalized length composition (3(c) is the composition obtained
by rearranging the elements of a(c) in ascending order.

Lemma 2.1. Let ¢ be the core t-tuple of a core p.

(1)

(2)

(3)

Proof.
(1)

The layer number of a p-core depends only on the orbit of its
length composition under permutation by elements of S;, and

equals
t

i=1
For any block ¢, there are 2't!/|Sts, (a(c))| blocks with the same
weight and normalized length composition, all with the same
layer number.
|c¥] = (L(c) +w)p+ ((—1) 4y, ..., (1)) (1,2,...,t), where
the dot represents the scalar product.

The layer number of a core t-tuple ¢ depends only on the ¢
coordinate of the content v(p)), where ¢ = ¢(p). These numbers
can be calculated separately for the parts on each runner and
then summed together. There are two cases:

Case 1. ¢; = 0: Every part on the ¢ runner is of the form
ap~+1. This contributes a copies of ¢, one for each copy of p. As
there are ¢; parts of this form, correspondingtoa =0, ..., ¢;—1,
we get the sum of these values of a, which is (¢; — 1)(¢;)/2.
Adding the 0O-valued g; gives the formula in the lemma.

Case 2. ¢; = 1: Every part on the p — i-runner is of the form
(a+1)p—1i. the number of copies of ¢ in the row corresponding
to the part (a 4+ 1)p — i is (a + 1), since ¢ < ¢ and thus the i
boxes removed from the end of (a+ 1)p do not contain copies of
t. Thus 7;(p) contains the sum of the numbers a+1=1,... ¢,
Since the formula for the layer number of a core deduced in the
first part of the proof does not depend on the values of the ¢;,
we get 2! possibilities for every length composition a. Since the
number of length compositions in the orbit of a(c) under the
action of S; is [S¢|/|St(a(c))|, the required formula follows for
the cores. However, raising each of these cores to the exponent
w simply adds w to the layer number.

The formula for the rank |c| comes from representing the parts
in the form (ap 4+ (—1)%4) and summing, with a running from
E; to fz—f—i-fz— 1.

O



6 H. ARISHA, M. SCHAPS

Our aim in this section is to define the block-reduced crystal graph,
but let us first review the definition of the crystal graph [LT] of irredu-
cible modules for the covering groups of the symmetric and alternating
groups. The vertices represent irreducible modules over the field k& of
characteristic p, which we have assumed large enough to be a splitting
field for all the groups involved. Brundan and Kleshchev [BK]| have
shown that these irreducible modules can be labeled by partitions from
the set of partitions which have distinct parts except for multiples of p

DPp = {)\ = ()\1,...,/\7~)|>\i — >\7j+1 —>p|)\}

In order to get a single label for each irreducible module, we make a
further set of restrictions:
(1) X=X <p
(2) Ai — A\ix1 = p implies that p does not divide A;.
Partitions in D P, satisfying these additional conditions will be called
p-restricted, and the set of such partitions will be denoted by RPF,.

Definition 2.4. Consider ¢ in I = {0, ... ,t}. The i-signature of a
partition A is determined by the following rules, applied to the Young
diagram of the partition with the boxes filled by residues:

(1) A “47 is added to the Young diagram wherever a box A labeled
i could be added to produce a new Young diagram of an element
M of RP,.

(2) A “7 is added to the Young diagram in any box B which could
be removed to produce a new Young diagram of an element \g
of RP,.

(3) In the special case i = 0, where two boxes of the same residue
can appear side by side, we can get a double plus or double
minus provided both operations, one after the other, produce
valid partitions.

The list of pluses and minuses, read from the left bottom to the
top right is the signature of the partition. We then remove all
instances of “+-7, to get the reduced signature, which is of the form
“— — ... — +..- + 47, where either the list of pluses or of minuses
might be empty. It has been shown that this is well-defined; the order
in which the “+-” are removed does not affect the final result. The box
corresponding to the leftmost “4”, if any exist, is called i-good and the
box corresponding to the rightmost “-”, if any exist, is called i-cogood.

The following definition is essentially the definition given in [LT]:

Definition 2.5. The crystal graph for S, or A, has as vertices the
elements of RP,. A vertex labeled A with |\| = n is connected by an
edge labeled by i to a vertex p with |u| = n+1 if there exists an i-good
box A such that u = A\, or, equivalently, there is an i-cogood box B
of p such that A = up.
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We now modify this definition so that the vertices will be, not labels
of irreducible modules, but labels of p-blocks.

Definition 2.6. The block-reduced crystal graph is a graph with ver-
tices labeled by pairs p* consisting of a p-bar core p and a non-negative
integer weight w, i.e., labels of p-blocks. A block p* will be connected
to a block ¢V by an edge labeled i if some irreducible of the block p*
is connected to some irreducible of the block ¢V in the ordinary crystal
graph by an edge labeled ¢, which can only happen if |p| + wp differs
from |o| + vp by 1.

Remark 2.1. If the partition A is a core, then the signature will consist
entirely of pluses or of minuses and is already reduced. It may be
empty. If ¢ = ¢()) is the core t-tuple, then in each of three cases we
define a number d:

(1) i=t: d = (—1)%t4,,

(2) i =0: d= ((=1)}=12¢; — (=1)t7=1,

(3) O<i<t:d= (—1)67‘61 - <—l)€i+1€i+1.

The reduced signature of the core consists of |d| copies of sgn(d).

Since the length of the reduced signature will be seen soon to equal

the length of a maximal string, these formulae will be justified in
Theorem 5.2 below.

Example 1. Consider p = 7, ¢ = ((2,0),(2,0),(3,1)). The corre-
sponding partition A equals (18,11,9,8,4,2,1). We have the following

signatures:
(1) i=0———,
(2) i=10,
(3) i =24+ +++,
(4)i=3———.

Consider the following two values for ¢:
i=0:
0/1]2[3]2]1]0]o|1[2][3]2][1]0]0]1]2]3]
0]112]3(2/1]0]0]1]2]3
0/112]3](2/1/0]/0]1
0/1/2[3[2]1]|—|—
0/1/2]3
01
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3. THE SCOPES INVOLUTIONS

We now define the so-called Scopes involutions. These were defined
by Scopes [Sc| in the symmetric group case, and generalized to the
spin case by Kessar in [K]|. In order to achieve compatibility with the
labeling of the edges in the crystal graph, we will change the notations
slightly. We let RP; represent the subset of RP, consisting of element
containing the part 1 and RF," be the set not containing the part 1.

Definition 3.1. For 0 < i <, the Scopes involution K; : RP, — RP,
will interchange the parts congruent to ¢ and 2+ 1 and also interchange
the parts congruent to the complements p —i and p —¢ — 1. For ¢ = 0,
we have an involution Ky : RF, — RP, which interchanges Rp; and
RP;, sending the part ap — 1 to ap + 1, sending ap + 1 to ap — 1, and
adding a part 1 is it was not previously present, or removing it, if it
was present.

Remark 3.1. For ¢ > 0, the mapping K is approximately the same as
Sciqq of [K]. The definition of K is different.

Remark 3.2. On cores, the Scopes involution K; corresponds to adding
(or removing) all the boxes in the Young diagram of the partition which
correspond to the pluses (or minuses) of the signature. The Scopes
involutions have simple descriptions in terms of the core t-tuple. For
i # 0,t, we simply switch (¢;,¢;) and (¢;11,€;11), while for i = ¢ we
reverse the value of ¢;, and for + = 0, we both reverse the value of
g; and we replace ¢y with ¢y — (—1)%°. Thus for the example given
at the end of the last section, with A = (18,11,9,8.4,2,1) and ¢ =
((2,0),(2,0), (3,1)) we have:

( ) KO()\) (18 11,9,6,4, 2), ((1,1),(2,0),(3,1)),
(2) Ki(A) = = ¢,

(3) Ka(N) :( 12 10,8,4,3,1), co = ((2,0), (3,1),(2,0)),
(4) K3(\) = (17 10,9,8,3,2,1), = ((2,0),(2,0),(3,0)).

4. GEOMETRIC REALIZATIONS OF THE BLOCK-REDUCED CRYSTAL
GRAPH

We get a geometric realization of the block-reduced crystal graph in
R by locating the vertex labeled by p® at the point v(p®*) given by
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Block—reduced crystal graph for p=3 upto S 18

FIGURE 1

its content. Letting the variables be xg, ..., x;, we let an edge labeled
by ¢ be represented by a line of length one parallel to the z; axis. The
layer number of a block is then simply its ¢-coordinate. In Fig. 1,
we give the geometric realization of the block-reduced crystal graph
for p = 3. In Fig. 2, we give the geometric realizations for p = 5,
in a three-dimensional representation. To make the three-dimensional
representation easier to view, we have drawn the positive v; axis going
down rather than up. Within each layer, the edges labeled 0 go from
the upper right to the bottom left, and the edges labeled 1 from the
upper left to the bottom right. All blocks in a horizontal line on the
two-dimensional representation, in both figures, have the same rank,
i.e., represent blocks in the same S, or the same A,. Each layer has
central symmetry determined by an involution called the flip involution,
which will be defined shortly.
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FIGURE 2

Note that each layer contains a translated copies of the previous
layer. For the vertices this is automatic from the definitions. In the
next section we will prove that this is true of the edges as well.

Definition 4.1. The flip involution of the block-reduced crystal graph
is an involution 7 which is most easily described in terms of the core t-
tuples. Forc = ((¢1,¢1), ..., (l, ), we define 7(c) = ((¢},€)), ..., (6, €})),
where

U=t — (—1)e. =1—¢.
This is clearly an involution on cores, and can be extended to an involu-

w

tion of the entire block-reduced crystal graph by setting 7(c*) = 7(c)".



MAXIMAL STRINGS 11

Lemma 4.1. For any normalized length composition (mq, ..., my), the
corresponding cores with minimal and maximal rank are

¢ =((my—1,1),...,(my —1,1);

ct=1(c7) = ((my,0),...,(m,0)).

Any other core t-tuple ¢ with the same normalized length composition
can be obtained from ¢t (resp. ¢~ ) by a sequence of Scopes involutions
K; which decrease (resp., increase) the rank.

Proof. We will describe the algorithm for getting from c¢™ to ¢ by
rank decreasing involutions. The dual sequence of operations will go
from ¢~ to 7(c) but will increase the rank at each K;. As an aid
to the reader, we will carry along an example for p = 11. Sup-
pose that ¢ = ((3,0),(1,1),(4,1),(2,0), (1,0)). The corresponding ¢* =
((1,0),(2,0),(2,0),(3,0),(5,0)) has rank 213.

The algorithm has four stages:

Step 1: Unshuffling. During this stage all £ are 0. The involution
K; for 1 < i <t is rank decreasing whenever ¢; + ¢; < {;11 + €41-
Because the ¢; are non-decreasing as ¢ increases, we can choose any
minimal length product of the generators s; = (i,7+ 1) of .S; which will
“unshuffle” a(c™) so that all the ¢; + ¢; which will have ¢; = 0 in ¢ will
be in places 1,...,s, still in non-decreasing order, and the remaining
elements, also in non-decreasing order, would be in places s+ 1,...,t.
In the example above, the result of this first step would be

((2,0),(5,0),(1,0),(2,0), (3,0))-

The new rank is 203.

Turning the corner. The pairs destined for €; = 1 are brought around
the corner one after the other using: K, Ky - Ki, etc. At this point
those with second term 0 are increasing and the others are decreasing.
In the example, this would give

((4,1),(1,1),(1,0),(2,0), (3,0))-

The rank is now 185.

Reordering Each of the two sets should be separately reordered into
the order they have in ¢. This can be done while decreasing the rank
by representing each of the permutations by a minimal length product
of the appropriate generators s;.

((1,1),(4,1),(3,0),(2,0), (1,0)).

The rank is now 178.

Shuffling Intersperse the pairs with second term 1 among those of
second term 0. All such permutation will be rank-decreasing: if (¢, 1)
is in position i and (¢, 0) is in position i + 1, then K; will shift the ¢
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beads on runner ¢+ 1 to the lower runner ¢, and the ¢ beads on runner
p — ¢ to the lower runner p — ¢ — 1. In the example, we now get

c= ((3’ 0)7 (1v 1)7 (47 1)7 (27 0)7 <1a O))
The rank of ¢ is 167. O

5. THE COMBINATORICS OF STRINGS

We are about to consider the relationship between the block-reduced
crystal graph and the crystal graph. All the blocks of a given p-weight
have the same number of labels of irreducible modules, the generating
formula for the exact number being given by raising the generating
function of the partitions to the power ¢, [Bo|]. For the first three odd
primes the sequences begin as follows, starting with w = 0:

(1) p=3:1,1,2,3,5, ...
(2) p=5:1,2,5,10, ...,
3)p=71,3,9,....

The actual number of simples is either equal to the number of labels
or is twice as large. In particular, for blocks of weight 1 it is either ¢
or 2t = p — 1. Thus an edge in the block-reduced crystal graph, which
connects two blocks of different weights, is also connecting two sets of
different sizes. Our theorem will take this into account by considering
the passage from the smaller weight to the larger.

Theorem 5.1. Let p* and o” be blocks such that w < v and the ranks
|p”| and |c?| differ by 1. If v(p*)—~(c") is either plus or minus the i-th
basis vector e; of RY, then in the crystal graph every label corresponding
to the block p* s connected by an i-labeled edge to an irreducible in .

Proof. As shown in [KI], the content of a spin block corresponds to
a central character of a certain degenerate affine Hecke algebra, and
thus there is a unique block for a given content. Thus, it suffices to
show that any partition A in RP, corresponding to the block p* has an
i-good (or i-cogood) node, for the result of adding (or removing) the
corresponding box will necessarily be in ¢”. We will give the proof for
the case that [o| = |p*|+ 1 and we need an i-good node, the other case
being dual. Translating by the weight w, and letting e; be the standard
basis vector with 1 in position ¢ and 0 elsewhere, we have that

v—w)‘

Y(p) +ei=7(o

We now divide into the standard three cases:

Case 1. i = t: The t-runner of p is non-empty. Let ¢; be the number
of beads on that runner. The lowest bead is the i-good bead, and the
change from p to ¢"~" is obtained by moving that lowest bead to the
t 4+ 1 runner. Now let A\ be any partition in RP, labeling irreducibles
from the block p*. The number of beads on the ¢{-runner must be /¢;
more than the number of beads on the t+ 1 runner, since moving beads
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on a runner does not change the number, and adding p-bars does not
change the difference. Beads on the ¢ runner produce a “+” and beads
on the ¢t + 1 runner produce a minus, except when a pair of adjacent
beads cancel out one “4” and one “-”. Thus, after canceling out pairs
of “+-7 from the signature to arrive at the reduced signature, there
must be at least one “+” left, and therefore there must be an i-good
node.

Case 2. 1 = 0: In this case, there are ¢; beads on runner p — 1,
and o is obtained from p by adding a bead to runner 1 and reducing
if necessary. If A is the chosen partition of p", there will be ¢; more
beads on the p—1-runner than on the 1 runner. If there are no adjacent
beads on runners p — 1, 0 and 1 (where, for example, ap — 1 and ap
are adjacent, and also ap and ap + 1 are adjacent) then every bead on
runner ¢ would produce a “+” in the signature, every bead on runner
0 would produce a “+” and a “-” and every bead on runner 1 would
produce a “-”. Where there are adjacent beads, one “+” and one “-”
do not appear in the signature. The total effect is that there are ¢;
more copies of “+” in the reduced signature than of “-”, and thus an
i-good node exists. In the special case of £; = 0, there is still one plus
in the signature for adding a part equal to 1 at the bottom.

Case 3. 0 < i < t: Here there are four runners involved, correspond-
ing to the residues 7,7 + 1,p — ¢ — 1, and p — ¢. The total number of
beads on the “low” side is larger than the total number of beads on the
“high” side, and thus the number of “4” signs in the reduced signature
is positive, guaranteeing an i-good node. Il

Corollary 5.1.1. If p° is connected to o° by an edge labeled i, then
every p* is connected to o5t by an edge i.

Proof. By the proof of the theorem above, every A in the block p* has
an i-good node, which necessarily sends it to a partition in o*t%, the
unique block with content v(p") + e;. d

We now consider the internal points of the maximal strings. Let us
begin with a core p and a Scopes involution K; such that the resulting
core T = K;(p) satisfies

ol # I7l.

Although our goal is to give a complete combinatorial description of
the entire i-string from p* to 7% for any non-negative integer w, the
main result concerns the first step of the string.

Theorem 5.2. Let p be a p-bar core, with c(p) = ((€1,€1), ..., (b, €t)),
and let K; be a Scopes involution such that |p| # |K;(p)|. Then the re-
sult of making the change corresponding to the i-good (or i-cogood) node
is a partition p in the block o°, with ¢ = c(o) = ((¢1,€}), ..., (l},€h)),
first step in a string whose length is the absolute value of d given as
follow:
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(1)
(2)
(3)
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i =t d= (=1 if bt =1, thens =0, e, =1 —¢g, U, = {;
if &g > 1, then s =20, — 2, l}, = 0, — 2;

1=0: d = ((-1)1_81261 — (-1)81; Zf fz > O,S = 51 + &1 — 1,
gll :el - 1,’ ngz 2078:0,6/1 :€1+1, €/1 =0.

O<i<t:d= (-1)51& — (_1)51"‘!‘1[“_1; if d =1, then s = 0; Zf
d>1, then s = |d| — 1; if ; # i1, 0, = max(l; — 1,0),0,,, =
max({;1 —1,0); if & = €;41, then max({;, {;1 1) is reduced by 2.

Proof. We will do the proof for the direction of increasing rank, with
the opposite direction being exactly dual.

(1)

1 = t: If K; increases the rank, then ¢, = 0. There are ¢; “+”
signs in the signature, corresponding to all the parts congruent
to “t”, and thus the string is of positive length d = /¢;, that
being the number of parts to be increased. The t-good node is
at the end of the lowest row of length congruent to t.

The simplest case is when ¢; = 1. Then the i-good move,
moving the unique bead on runner ¢ to runner ¢ 4 1, is the
entire Scopes involution. The new partition is also a core, so
s = 0. Finally, ¢, = ¢; and ¢, is now 1 instead of 0.

If ¢, > 1, then moving the bottom bead to the ¢ + 1-runner
does not produce a core, but instead provokes a cascade of
moves. All the /;—1 bead above drop down. Then the bead that
was moved over cancels the bottommost bead, another move,
and finally, the remaining beads on the t-runner drop again, for
a total of s = 2(¢; — 1) moves. In the core of the new parti-
tion, ¢, = ¢; — 2 because of the double drop. The position &
remains equal to 0, unless ¢, = 0, in which case, by convention,
we change ¢; to 1.
1=0: If Ky increases the rank, then ¢; = 1, so the l-runner
is empty. In the O-signature of p, there is one “4” for adding
a part 1, which is 0-good, and every other row corresponding
to a part congruent to p — 1 ends in 2 “+”7-signs, for a total
signature of length 2¢; 4+ 1. (If we were dealing with the dual
case, when g1 = 0,the length of the signature would be 2¢; — 1,
so we combine these into the single formula 2¢ — (—1)=!).

If ¢/, = 0, then the unique move is the Scopes involution, so
s =0and ¢ =1, &} = 0. In the non-trivial case that ¢; > 0,
the result of the 0-good “+” is to create a bead on the 1-runner.
This will cancel the bottom bead on the p — l-runner, giving
one move to reduce to the p-bar core, and then there will be
an additional /; — 1 moves as the remaining beads move down,
giving s = ¢;. The new core will have ¢, = ¢; — 1.

0 < i < t: We consider two separate cases: short strings, in
which ¢; = ;.1 and long strings, with ¢; # ;..
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Case 1. ¢; = €;11: Since we have assumed that K increases
the rank, we must have either ¢; > 0,1, if ¢, =0, or ; < l;11,
if ¢, = 1. We combine the two situations into one formula by
writing (—1)%(¢; — ;1) > 0. We have |{; —¥;, | i-normal nodes.
The 7 good node moves the first possible bead from one runner
to the adjacent runner, leaving s = |¢; — ¢;,1| — 1 beads to drop
down. The larger of ¢; and ¢;, is reduced by 1 in the new core,
and the smaller is increased by 1.

Case 2. g; # ;41: In this case, there are |¢; + ;11| copies of
“+” in the signature, and this will be the length of the string.
When the lowest of these moves over, it cancels a bead from
the complementary runner if such exists. All the beads on both
runners drop one place, giving a total s = ¢; + ¢;.1 — 1 moves
to reduce to the core. Each non-zero runner is reduced by one.
Thus ¢ = max(¢; — 1,0) for j =i,i+ 1.

OJ

Corollary 5.2.1. The mazimal strings in the block-reduced crystal
graph are symmetrical, with the weights increasing toward the center
and the successive differences decreasing.

Proof. The duality in the definition of each step in the theorem shows
that the strings are constructed symmetrically, with the ends of lower
weight than the s-translated central part, each maximal ¢-string cor-
responding to an involution K;. The difference between each weight
and that of the block closer to the center is a linear function of ¢; and
possibly /;1, and thus the differences decrease as one approaches the

center of the string. O
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