Algebraic Number Theory (88-798) 5779 Semester A Question Sheet 2

- (1) Let A be a Dedekind domain. Let $I, J \subset A$ be ideals. We say that J|I if there exists an ideal $J' \subset A$ such that JJ' = I. Prove that J|I if and only if $I \subseteq J$.
- (2) Let A be a Dedekind domain. Prove that A is a PID (principal ideal domain) if and only if it is a UFD (unique factorization domain).
- (3) Let K be a number field with $n = [K : \mathbb{Q}]$, and let p be a prime number. Prove that there are at most n prime ideals $P \subset \mathcal{O}_K$ such that $p\mathcal{O}_K \subseteq P$.
- (4) Let K be a number field and let $x \in \mathcal{O}_K$. Prove that $N(x\mathcal{O}_K) = |N_{K/\mathbb{Q}}(x)|$.
- (5) Let $r, s \geq 0$ be integers such that r + 2s = n. Let $t \in \mathbb{R}$, and let $X_t \subset \mathbb{R}^n$ be the set

$$X_t = \left\{ (x_1, \dots, x_r, y_1, z_1, \dots, y_s, z_s) : |x_1| + \dots + |x_r| + 2\sqrt{y_1^2 + z_1^2} + \dots + 2\sqrt{y_s^2 + z_s^2} < t \right\}.$$

Prove that X_t is bounded, convex, and symmetric. Recall that the volume of X_t is $vol(X_t) = \int_{X_t} 1 \cdot dx_1 \cdots dz_s$. Prove that

$$\operatorname{vol}(X_t) = \frac{2^{r-s} \pi^s t^n}{n!}.$$

Hint: Change to polar coordinates and use induction on r.

- (6) Let $I \subset \mathcal{O}_K$ be a non-zero ideal, and let $\mathcal{C} \in \operatorname{Cl}_K$ be any class in the class group. Prove that there exists an ideal $J \subset \mathcal{O}_K$ such that $J \in \mathcal{C}$ and J is co-prime to I.
- (7) Let K be a number field. Prove that if $|d_K| \leq 1$, then $K = \mathbb{Q}$.
- (8) Let K be a number field. In this exercise we will give a proof of the finiteness of Cl_K that avoids the geometry of numbers.
 - (a) Let x_1, \ldots, x_n be an integral basis of K, and let $a = c_1 x_1 + \cdots + c_n a_n \in K$. Consider the map

$$\varphi : \mathbb{Z} \rightarrow [0,1]^n$$

$$t \mapsto (\{tc_1\}, \dots, \{tc_n\}),$$

where $\{y\}$ denotes the fractional part of $y \in \mathbb{Q}$. Subdivide each edge of the *n*-cube $[0,1]^n$ into L equal segments (for some $L \in \mathbb{N}$ to be chosen judiciously later). Let $\sigma_1, \ldots, \sigma_n$ be the embeddings $K \hookrightarrow \mathbb{C}$. Using the pigeonhole principle, show that there exists an integer $1 \leq t \leq L^n$ and $b \in \mathcal{O}_K$ such that

$$|N_{K/\mathbb{Q}}(ta-b)| \le \frac{1}{L^n} \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \prod_{j=1}^n |\sigma_j(x_{i_j})|.$$

(b) Fix some $H_K > \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \prod_{j=1}^n |\sigma_j(x_{i_j})|$ and observe that this condition is independent of a. Show that for any $a \in K$ there exists $b \in \mathcal{O}_K$ and an integer $1 \le t \le H_K$

- such that $|N_{K/\mathbb{Q}}(ta-b)| < 1$. This statement should be viewed as a basic Diophantine approximation theorem: every $a \in K$ is close to a fraction with bounded denominator.
- (c) Let $I \subset \mathcal{O}_K$ be a non-zero ideal, and fix $0 \neq y \in I$ such that $|N_{K/\mathbb{Q}}(y)|$ is minimal. Let $a \in I$ be arbitrary. Using the previous part of the question, show that there exists $w \in \mathcal{O}_K$ and an integer t such that $|t| \leq H_K$ and ta = wy.
- (d) Conclude that every class in Cl_K contains an (integral) ideal J satisfying $N(J) \leq (H_K!)^n$. As we discussed in the lecture, this implies that Cl_K is finite.