
Algebraic Number Theory (88-798)

5779 Semester A

Question Sheet 4

(1) Find all the pairs (x, y) ∈ Z2 such that 5x2 = y4 + 5y2.

(2) Prove that 26 is the only natural number that is the successor of a perfect square and the

predecessor of a perfect cube.

(3) Let d > 1 be a square-free integer and let K = Q(
√
d). If D = dK , then show that x, y ∈ Z

are solutions of Pell’s equation x2 −Dy2 = ±4 if and only if 1
2(x+ y

√
D) ∈ O∗K .

(4) Say that a solution (x, y) of Pell’s equation is positive if x ≥ 0 and y ≥ 0. Show that

there exists a positive solution (x, y) that is minimal in the sense that if (x′, y′) is any other

positive solution, then x′ ≥ x and y′ ≥ y. If (x, y) is this minimal positive solution, then

show that

u =
1

2
(x+ y

√
D)

is a fundamental unit of K = Q(
√
d). (In other words, O∗K = {±uk : k ∈ Z}.)

(5) The following problem appeared in 1917 in H.E. Dudeney’s classic puzzle book Mathematical

Amusements. When I first solved it, I thought I must have made a mistake because the

solution differs by several orders of magnitude from the actual number of participants in

the Battle of Hastings. Don’t be troubled by that.

Read the following text from an ancient manuscript about the Battle of Hastings, which

took place in 1066 between William the Conqueror and his Normans, who had just invaded

England, and the Saxons led by King Harold II. Determine how many men were in the

Saxon army.

“The men of Harold stood well together, as was their wont, and formed thirteen squares,

with a like number of men in every square thereof, and woe to the hardy Norman who

ventured to enter their redoubts; for a single blow of a Saxon war hatchet would break his

lance and cut through his coat of mail. After Harold joined his men and threw himself

into the fray the Saxons were one mighty square of men shouting the battle cries ‘Ut!’

‘Olicrosse!’ and ‘Godemite!’ ”

(6) Let L and L′ be finite Galois extensions of Q and suppose that gcd(dL, dL′) = 1. Let LL′

be the compositum. Prove that [LL′ : Q] = [L : Q][L′ : Q].

Hint: Prove that L ∩ L′ = Q.

(7) Let n = `a be a power of the prime number `, and let ζn denote a primitive n-th root of

unity. Consider the extension Q(ζn)/Q. Show that {1, ζn, ζ2n, . . . , ζ
ϕ(n)−1
n } is a Q-basis of

Q(ζn). Prove that d(1, ζn, ζ
2
n, . . . , ζ

ϕ(n)−1
n ) = ±``a−1(a`−a−1).
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Hint: Let Φn(X) ∈ Z[X] be the minimal polynomial of ζn. Consider the element Φ′n(ζn).

item Let A be an integral domain, let K = Frac(K), and let L and L′ be two Ga-

lois extensions of K such that L ∩ L′ = K. Suppose that [L : K] = n and [L′ :

K] = m. If Gal(LL′/L′) = {σ1, . . . , σn} and Gal(LL′/L) = {τ1, . . . , τm}, then prove that

Gal(LL′/K) = {σiτj |1 ≤ i ≤ n, 1 ≤ j ≤ m}.
(8) Let B and B′ be the integral closures of A in L and L′, respectively. Suppose that

B = Ax1 +Ax2 + · · ·Axn
B′ = Ay1 +Ay2 + · · ·+Aym

and that d(x1, . . . , xn) = d and d(y1, . . . , ym) = d′. Suppose that d and d′ (which are

elements of A) are relatively prime, in the sense that dA + d′A = A. The aim of this

exercise and the next one is to prove that {xiyj |1 ≤ i ≤ n, 1 ≤ j ≤ m} is an integral basis

of LL′.

Let O be the integral closure of A in LL′. Let a ∈ O. Show that we may write a =∑n
i=1

∑m
j=1 aijxiyj , with aij ∈ K. We need to prove that all the aij actually lie in A. For

every j, define bj =
∑n

i=1 aijxi. Prove that d′bj ∈ B and hence that d′aij ∈ A for each pair

i, j.

Hint : Use the same idea that we used to prove that d(z1, . . . , zn)B ⊂ Az1 + · · ·+Azn for

any basis {z1, . . . , zn} of L as a K-vector space.

(9) Prove also that daij ∈ A for each pair (i, j) and conclude that aij ∈ A.

(10) Prove that d(x1y1, . . . , xnym) = dm(d′)n.

(11) Let L/K be a Galois extension of number fields, and suppose that Gal(L/K) is not cyclic.

Prove that there are only finitely many prime ideals of K that are non-split in L. (Recall

that a prime ideal of K is called non-split in L if only one prime ideal of L lies above it.)

(12) Let L/K be an extension of number fields, and let N/K be its normal closure. In other

words, N ⊃ L ⊃ K is the smallest extension such that N/K is Galois. The aim of this

and the next three exercises is to show that a prime ideal p ⊂ OK splits completely in L if

and only if it splits completely in N . Show that if p splits completely in N , then it splits

completely in L.

(13) Let G be a group and let U, V ⊂ G be two subgroups. If g, h ∈ G, we say that g ∼ h if

there exist u ∈ U and v ∈ V such that h = ugv. Then ∼ is an equivalence relation, and

the equivalence classes UgH are called double cosets. The set of double cosets is written

U\G/V . (Note that if U is trivial, then the double cosets are just the usual left cosets of

V .)

Set G = Gal(N/K) and H = Gal(N/L) ⊂ G. Choose a prime ideal PN of N dividing p,

and let GPN
⊂ G be its decomposition subgroup. Let Ap be the set of prime ideals of OL
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dividing p. Show that the following map is a bijection:

H\G/GPN
→ Ap

σ(∈ G) 7→ σ(PN ) ∩ OL

(14) Suppose now that p splits completely in L. For any σ ∈ G, show that HσGPN
= Hσ.

Conclude that σGPN
⊆ Hσ for all σ ∈ G.

(15) Let H̃ =
⋂
σ∈G σ

−1Hσ. Show that GPN
⊂ H̃ and that H̃ ⊂ H is a normal subgroup.

Conclude that either H̃ = H or H̃ is trivial, and in both cases show that p splits completely

in N .

(16) Let p ∈ Z be an odd prime number such that p ≡ 2 mod 3. If L = Q( 3
√

2), prove that

pOL = P1P2, where f(P1|p) = 1 and f(P2|p) = 2.

Hint : Use the previous exercises. You may also use the following facts without proof:

(a) If m is a cube-free integer, then Q( 3
√
m) has discriminant −27m2.

(b) Let n be an integer, and let ζn be a primitive n-th root of unity ((ζn)n = 1 and

(ζn)m 6= 1 for 1 ≤ m < n). An odd prime number p splits completely in Q(ζn) if and

only if p ≡ 1 mod n.


