Algebraic Number Theory (88-798) 5779 Semester A Question Sheet 5

- (1) Let K be a field complete with respect to an Archimedean valuation $|\cdot|$. The aim of this exercise is to prove Ostrowski's theorem that there exists either an isomorphism $\sigma: K \to \mathbb{R}$ or an isomorphism $\sigma: K \to \mathbb{C}$ such that there exists $s \in (0,1]$ such that for all $a \in K$ we have $|a| = |\sigma(a)|_{\infty}$. Here $|\cdot|_{\infty}$ is the usual valuation on \mathbb{R} or \mathbb{C} .
 - (a) Prove that char K = 0 and hence that \mathbb{Q} embeds in K.
 - (b) Replacing the valuation by an equivalent one if necessary, show that \mathbb{R} embeds in K and that $|\cdot|_{\mathbb{R}} = |\cdot|_{\infty}$.
 - (c) Let $a \in K$ be arbitrary and consider the function $f_a : \mathbb{C} \to \mathbb{R}$ given by $f(z) = |a^2 (z + \bar{z})a + z\bar{z}|$. Show that $m = \min\{f_a(z) : z \in \mathbb{C}\}$ exists and that to obtain Ostrowski's theorem it is enough to prove that m = 0.
 - (d) Prove that there exists $z_0 \in S = \{z \in \mathbb{C} : f_a(z) = m\}$ such that $|z_0|_{\infty}$ is maximal.
 - (e) Assume by way of contradiction that m > 0 and let $0 < \varepsilon < m$. Let $z_1 \in \mathbb{C}$ be a root of the polynomial $g(x) = x^2 (z_0 + \overline{z_0})x + z_0\overline{z_0} + \varepsilon$. Prove that $f_a(z_1) > m$.
 - (f) For any $n \in \mathbb{N}$ consider the polynomial $G_n(x) = (g(x) \varepsilon)^n + (-1)^{n+1} \varepsilon^n$. Show that $G_n(z_1) = 0$ and that $|G_n(a)|^2 \ge f_a(z_1) m^{2n-1}$.
 - (g) Show that $|G_n(a)| \leq m^n + \varepsilon^n$. Conclude that $f_a(z_1) \leq m$. Now finish the proof.
- (2) Show that K is dense in the completion \hat{K} (with its metric topology) and that \hat{K} is indeed complete, i.e. for every Cauchy sequence (a_n) of elements of \hat{K} there exists $\ell \in \hat{K}$ which is the limit of the sequence in the usual sense: for every $\varepsilon > 0$ there exists N such that $|a_n \ell| < \varepsilon$ for all n > N.
- (3) Let p be a prime number and let \mathbb{Z}'_p be the ring of formal series $\sum_{n=0}^{\infty} a_n p^n$, where $a_n \in \{0, 1, \ldots, p-1\}$. Given $\sum_{n=0}^{\infty} a_n p^n \in \mathbb{Z}'_p$, prove that the sequence $b_k = a_0 + a_1 p + \cdots + a_k p^k$ is a Cauchy sequence of rational numbers with respect to the valuation $|\cdot|_p$. Hence the equivalence class of $\{b_k\}$ is an element of \mathbb{Q}_p . Prove that it actually lies in \mathbb{Z}_p and that this construction gives an isomorphism of rings $\mathbb{Z}'_p \simeq \mathbb{Z}_p$.
- (4) Let K be a field, complete with respect to the non-Archimedean valuation $|\cdot|$. Let L/K be an algebraic extension. We proved in class that $|\cdot|$ extends uniquely to a valuation of L. Prove that L is complete with respect to this valuation if and only if $[L:K] < \infty$.
- (5) Let K be a number field, let p be a prime number, and suppose that $p\mathcal{O}_K = P_1^{e_1} \cdots P_r^{e_r}$. Let \mathcal{O}_{P_i} be the valuation ring of K_{P_i} , the completion of K with respect to the P_i -adic valuation. Let \mathfrak{m}_i be the maximal ideal of \mathcal{O}_{P_i} . Show that $p\mathcal{O}_{P_i} = \mathfrak{m}_i^{e_i}$.
- (6) Let p be an odd prime and let $u \in \mathbb{Z}_p^*$ be an element that is not the square of any element of \mathbb{Z}_p . Fix an algebraic closure of \mathbb{Q}_p , and let K/\mathbb{Q}_p be a quadratic extension contained in this algebraic closure. Show that K is equal to one of $\mathbb{Q}_p(\sqrt{u})$, $\mathbb{Q}_p(\sqrt{p})$, or $\mathbb{Q}_p(\sqrt{up})$.

Note: This is another example of the behavior of \mathbb{Q}_p being very different from that of \mathbb{Q} . Recall that the fields $\mathbb{Q}(\sqrt{d})$ are all non-isomorphic for distinct square-free integers d, so \mathbb{Q} has infinitely many non-isomorphic quadratic extensions.

- (7) Let p be an odd prime. For every $\lambda \in \mathbb{F}_p$, let $[\lambda] \in \mathbb{Z}_p$ be the (p-1)-th root of unity whose image in \mathbb{F}_p is λ . Recall that we proved in class that $[\lambda]$ exists and is unique.
 - (a) Recall the isomorphism, from an earlier exercise, between \mathbb{Z}_p and the ring of formal power series $\sum a_n p^n$. Which power series corresponds to $[\lambda]$?
 - (b) Prove that $[\lambda_0] + p[\lambda_1] + 1 \equiv [\lambda_0 + 1] + p[\lambda_1 + \frac{\lambda_0^p + 1 (\lambda_0 + 1)^p}{p}] \mod p^2$, for all $\lambda_0, \lambda_1 \in \mathbb{F}_p$.
- (8) If K is a valued field, let k_K be the residue field \mathcal{O}/\mathfrak{m} , where \mathcal{O} is the valuation ring of K and \mathfrak{m} is its maximal ideal. In particular, $k_{\mathbb{Q}_p} = \mathbb{F}_p$. A finite extension F/\mathbb{Q}_p is called unramified if $[k_F : \mathbb{F}_p] = [F : \mathbb{Q}_p]$. Prove that any unramified extension F/\mathbb{Q}_p of degree n is isomorphic to $\mathbb{Q}_p(\zeta)$, where ζ is a primitive $(p^n 1)$ -th root of unity.
- (9) Prove the following statement, which is called Krasner's Lemma and turns out to be very useful. Let K be a non-Archimedean Henselian valued field, and let \overline{K} be an algebraic closure. Let $\alpha = \alpha_1 \in \overline{K}$ be separable over K, and let $\alpha_1, \ldots, \alpha_r$ be all its conjugates over K. Suppose that $\beta \in \overline{K}$ satisfies $|\alpha \beta| < |\alpha \alpha_i|$ for all $2 \le i \le r$. Then $K(\alpha) \subseteq K(\beta)$. Hint: Suppose the claim is false. Show that there exists an embedding $\sigma : K(\alpha, \beta) \to \overline{K}$
- that fixes β but not α . (10) Let p be a prime number, and let ζ_p be a primitive p-th root of unity. Show that $\mathbb{Q}_p(\zeta_p)$
- (11) Let n > 2. Prove that the cyclotomic field $\mathbb{Q}(\zeta_n)$ contains at least one quadratic subfield, i.e. that there exists a field $K \subset \mathbb{Q}(\zeta_n)$ such that $[K : \mathbb{Q}] = 2$.

contains a primitive (p-1)-st root of -p.

- (12) Let G be a finite abelian group. Show that there exists a Galois extension L/\mathbb{Q} such that $\operatorname{Gal}(L/\mathbb{Q}) \simeq G$.
- (13) The last question is a whirlwind introduction to Witt vectors. It may be useful to consult the seventh question on this question sheet for inspiration.
 - (a) Let p be a fixed prime and let X_0, X_1, X_2, \ldots be variables. For every $n \geq 0$, set $W_n = X_0^{p^n} + pX_1^{p^{n-1}} + \cdots + p^nX_n$. Show that there exist polynomials $S_0, S_1, \ldots, P_0, P_1, \ldots \in \mathbb{Z}[X_0, X_1, \ldots, Y_0, Y_1, \ldots]$ such that

$$W_n(S_0, S_1, S_2, \dots) = W_n(X_0, X_1, \dots) + W_n(Y_0, Y_1, \dots)$$

 $W_n(P_0, P_1, P_2, \dots) = W_n(X_0, X_1, \dots) \cdot W_n(Y_0, Y_1, \dots).$

(b) Let A be any commutative ring. Let W(A) be the set $A^{\mathbb{N}} = \{a = (a_0, a_1, a_2, \dots) | a_i \in A\}$ with the operations

$$a + b = (S_0(a, b), S_1(a, b), ...)$$

 $ab = (P_0(a, b), P_1(a, b), ...).$

Prove that this is a commutative ring. It is called the ring of Witt vectors of A.

(c) Assume that the commutative ring A is p-torsion, so that $p\alpha = 0$ for every $\alpha \in A$. For every $a = (a_0, a_1, \dots) \in W(A)$ consider

$$a^{(n)} = W_n(a) = a_0^{p^n} + pa_1^{p^{n-1}} + \dots + p^n a_n.$$

Consider also the maps $V, F : W(A) \to W(A)$ given by

$$V(a) = (0, a_0, a_1, \dots)$$

$$F(a) = (a_0^p, a_1^p, \dots).$$

These maps are called the transfer map (transfer is Verschiebung in German, hence the standard notation V) and the Frobenius map, respectively. Prove the following identities:

$$(V(a))^{(n)} = pa^{(n-1)}$$

 $a^{(n)} = (F(a))^{(n)} + p^n a_n.$

- (d) Restricting even further, let k be a field of characteristic p. Then V is an endomorphism of the underlying abelian group of W(k), whereas F is a ring endomorphism. Moreover, F(V(a)) = V(F(a)) = pa for any $a \in W(k)$.
- (e) Let k be a perfect field of characteristic p; recall this means that the map $x \mapsto x^p$ is an automorphism. Then W(k) is a complete discrete valuation ring with residue field k.
- (f) Finally, show that $W(\mathbb{F}_p) \simeq \mathbb{Z}_p$.