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Abstract. Let O be an order of index m in the maximal order of a quadratic number field
k = Q(

√
d). Let Od,m be the orthogonal Z-group of the associated norm form qd,m. We describe the

structure of the pointed set H1
fl(Z,Od,m), which classifies quadratic forms isomorphic (properly or

improperly) to qd in the flat topology. Gauss classified quadratic forms of fundamental discriminant
and showed that the composition of any binary Z-form of discriminant ∆k with itself belongs to
the principal genus. Using cohomological language, we extend these results to forms of certain
non-fundamental discriminants.

1. Introduction

Let q be an integral binary quadratic form, namely a map q : Z2 → Z represented by a symmetric

matrix Bq satisfying q(x, y) = (x, y)Bq(x, y)t = ax2 + bxy + cy2, where a, b, c ∈ Z. For brevity we

write q = (a, b, c). We will underline schemes defined over SpecZ, omitting the underline for their

generic fibers. Any change of variables by A ∈ GL2(Z) gives rise to an isomorphic form q′ = q ◦A

represented by the congruent matrix Bq′ = ABqA
t. In particular, if q = q ◦ A, then A is said

to be an isometry of q. It is called proper if A ∈ SL2(Z). The discriminant of q is the integer

∆(q) = b2 − 4ac = −4 det(Bq); it is independent of the choice of the basis of Z2 since det(A) = ±1

for any A ∈ GL2(Z). Given an integer n ∈ Z, a natural and very classical problem is to describe

the set of equivalence classes

cl+(n) := {q : ∆(q) = n}
/
SL2(Z). (1.1)

Consider the quadratic number field k = Q(
√
d), where d 6∈ {0, 1} is a square-free integer. Denote

its discriminant by ∆k and the norm map by Nr : k× → Q×. Fixing an integral basis {1, ω} of

the ring of integers Ok, associate to k the norm Z-form qd(x, y) := Nr(x+ yω). Then ∆(qd) = ∆k

is a fundamental discriminant. As Ok is a Dedekind domain, its narrow ideal class group Ik/P
+
k

coincides with its (narrow) Picard group Pic+(Ok). If d < 0, write cl+(∆(qd))
′ for the restriction

of cl+(∆(qd)) to only positive definite forms, namely those for which a, c > 0. If d > 0, define

cl+(∆(qd))
′ = cl+(∆(qd)). Gauss, in his Disquisitiones Arithmeticae [Gau], proved the following
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bijection of pointed sets:

cl+(∆(qd))
′ ∼= Pic+(Ok) : [(a, b, c)] 7→

[〈
a,
b− F

√
d

2

〉]
where F =

 2 d ≡ 2, 3 (mod 4)

1 d ≡ 1 (mod 4).

The main aim of this paper is to describe the sets

cl(n) := {q : ∆(q) = n}
/
GL2(Z),

in terms of geometric invariants of orders in quadratic number fields. This extends the question

considered by Gauss in three ways: we consider all quadratic forms, and not only the positive

definite ones; we consider all isometries, and not only proper ones; we consider discriminants n

that are not fundamental.

A modern perspective on these classical ideas, used in the 1980’s by Ono [Ono] for number fields

and extended by Morishita [Mor] to general global fields, identifies cl+(∆(qd)) with H1
fl(Z,O+

d ),

where O+
d is the special orthogonal group of qd. This flat cohomology, which a priori is a pointed

set but is an abelian group since O+
d is commutative, classifies all integral binary forms that are

locally isomorphic to qd in the flat (i.e. fppf) topology modulo proper isometries. Analogously,

the first Nisnevich cohomology set classifies forms in the principal genus of qd. We extend this

approach to arbitrary quadratic orders O ⊆ Ok and obtain a classification, in terms of the Picard

group Pic O, of isomorphism classes (not just proper isomorphism classes) of integral forms that

are locally isomorphic in the flat topology to the norm form associated with O.

1.1. Organization of the paper. We briefly describe the structure of the paper and point out

its main results. Sections 2 and 3 recall the basic notions we will use, most notably the norm torus

associated to an order. Section 4 defines the orthogonal and special orthogonal groups Oq and O+
q

associated to a quadratic form q. If q is degenerate over Z, the orthogonal group Oq need not be

flat over Z. Thus we work instead with Õq, the schematic closure in Oq of the generic point. We

obtain an identification (Lemma 4.5) of the special orthogonal group of a norm form of an order O

(with respect to a fixed Z-basis of O) with the norm torus of O. Finally, we let Od,m denote the

unique order of index m in the maximal order of k = Q(
√
d) and fix Z-bases of the orders Od,m.

There is a natural bifurcation into two cases: either the norm form qd,m := qOd,m
is diagonal for

a suitable choice of basis (Case (II)) or not (Case (I)). Case (I) holds when d ≡ 1 mod 4 and m is

odd, whereas Case (II) covers all other instances.

Section 5, the heart of the paper, starts by determining (Proposition 5.1) the structure of the

quotient Õqd,m
/O+

qd,m
, which is always a finite flat group scheme of order two. The proof is short

2



and relies on the theory of finite flat group schemes. For comparison, in an appendix to the paper

we provide a more classical proof that writes down defining polynomials of Õqd,m
and O+

qd,m
. We

then turn to studying the pointed set H1
fl(Z,Oqd,m

) = H1
fl(Z, Õqd,m

). In Case (I) it is canonically

identified with H1
fl(Z,O+

qd,m
), whereas in Case (II) it also contains classes of forms of discriminant

−∆(qd,m). This is shown in Proposition 5.5 and Lemma 5.6, respectively. From this we can study

the sets cl(n) for many discriminants n. The following is the content of Propositions 5.17 and 5.18:

Proposition 1.1. Let D ∈ Z be an integer such that D ≡ 0 mod 4 or D ≡ 1 mod 4. Suppose further

that D is not a perfect square and not of the form D = −3 · 4m for some m ≥ N0. Then

cl(D) =

{
cl+(D) = H1

fl(Z,O+
q ) : D ≡ 1 mod 4

cl+(D)/ ∼= H1
fl(Z,O+

q )/ ∼ : D ≡ 0 mod 4,

where the explicit quadratic form q is the norm form of a quadratic order with respect to one of our

explicit bases, and the equivalence relation ∼ is given by [ax2 + bxy + cy2] ∼ [ax2 − bxy + cy2].

The relation stated here between quadratic forms and flat cohomology fails for discriminants of

the form −3 · 4m; see Remark 5.16. Along the way we study a number of explicit examples. For

any square-free d 6= 0, 1 we show in Theorem 5.19 that

cl+(∆Q(
√
d))
∼= {±1}µ(d) × Pic+(Ok), where µ(d) =

{
1 d < 0
0 d > 0.

This is a straightforward extension of Gauss’ proper classification to all forms, not just the positive

definite ones. More generally, our analysis of Case (II) leads to an extension of the classification

to many cases in which 4D is not a fundamental discriminant. Theorem 5.20, another classical

theorem that we prove with new methods, states that if D is any integer that is not a perfect

square and not of the form D = −3 · 4m, then

cl+(4D) ∼= {±1}ε̃(D) × Pic(Z[
√
D]),

where

ε̃(D) =

{
0 D > 0 and Nr(Z[

√
D]×) = {±1}

1 otherwise.

Note that Z[
√
D] is not a Dedekind domain in general, and that Theorem 5.20 remains true for

discriminants of the form −3 · 4m; it is our proof that fails. Recall that k = Q(
√
d). In Proposi-

tion 5.21, we express the cardinality |H1
fl(Z,OqOk

)| in terms of the narrow class numbers of Q(
√
d)

and Q(
√
−d). These results do not allow us to deduce any interesting relation between the two

narrow class numbers. Finally, we show in Corollary 5.23 that any O+
qd,m

-torsor, tensored with

itself, belongs to the principal genus of qd,m. This may be viewed as as extension, in the language

of cohomology, of another classical theorem of Gauss.
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2. Preliminaries

Let k/Q be a finite Galois extension with Galois group Γ = Gal(k/Q) and degree n = [k : Q]. Let

Gm and GLn denote the multiplicative and general linear Z-groups, respectively. Recall that an

order in Ok is a subring that has the maximal rank n as a Z-lattice. Fix a Z-basis Ω = {ω1, ..., ωn}

for an order OΩ ⊆ Ok. The Weil restriction of scalars RΩ = ResOΩ/Z(Gm) is an n-dimensional

algebraic Z-torus that admits an isomorphism ρ : RΩ(Z) ' O×Ω [BLR, §7.6]. The natural action of

ρ(RΩ(Z)) on OΩ yields a canonical embedding of RΩ in Aut(OΩ) = GL(OΩ), depending only on

the order OΩ and not on the Z-basis Ω. The choice of Ω provides an embedding ι : RΩ ↪→ GLn.

The composition of ι with the determinant gives a map RΩ → Gm that we abusively denote1 det.

Then Nr(α) = det(ι(ρ−1(α))) for all α ∈ O×Ω , where Nr : k× → Q× is the usual norm map; see

Exercise 9(c) of [Bou, Section II.5]. We get a short exact sequence of commutative Z-group schemes

where the quotient map is faithfully flat in the sense of [EGAI, 0.6.7.8]:

1→ NΩ → RΩ
det−−→ Gm → 1. (2.1)

The generic fibers of the elements of this sequence are the norm torus N = Res
(1)
k/Q(Gm), the Weil

torus R = Resk/Q(Gm), and the multiplicative Q-group Gm, respectively. Their fibers at any prime

p are denoted by (NΩ)p, (RΩ)p and (Gm)p, respectively, while their reductions are overlined. We

omit the subscript Ω when OΩ is the maximal order Ok.

While Gm and RΩ are smooth over SpecZ, the kernel NΩ need not be smooth, in that it may

have a non-reduced reduction at some prime. However, NΩ is the kernel of a morphism of OΩ-tori

and thus is of multiplicative type. In particular, it is faithfully flat and affine. So instead of using

étale cohomology, we shall restrict ourselves to flat cohomology.

1Note that the map det depends only on the order OΩ and not on the choice of basis Ω. Indeed, the constructions
of this and the following two sections, up to the explicit matrix realizations of (4.2) and (4.4), are independent of the
choice of Ω.
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Applying flat cohomology to (2.1) gives rise to a long exact sequence of pointed sets; see [Gir,

III, Proposition 3.3.1.(i)]:

1→ NΩ(Z)→ RΩ(Z) ∼= O×Ω
Nr−→ {±1} → H1

fl(Z, NΩ)→ H1
fl(Z, RΩ)→ H1

fl(Z,Gm) = Pic Z = 0.

(2.2)

Now OΩ is finite and torsion-free over Z, hence flat. By Shapiro’s Lemma [SGA3, XXIV, Prop. 8.2],

we have H1
fl(Z, RΩ) ∼= H1

fl(OΩ,Gm,OΩ
) = Pic OΩ. Thus (2.2) can be rewritten as

1→ {±1}/Nr(O×Ω)→ H1
fl(Z, NΩ)→ Pic (OΩ)→ 1. (2.3)

The maximal order Ok is a Dedekind domain whose Picard group coincides with the ideal class

group of k. The set {±1}/Nr(O×k ) is equal to the zero-Tate cohomology set H0
T (Γ,O×k ) [Ono,

Example 1]. Thus, in the case OΩ = Ok, we deduce an isomorphism of finite groups

H1
fl(Z, N)/H0

T (Γ,O×k ) ∼= Pic Ok. (2.4)

If n is odd, then Nr(−1) = (−1)n = −1. Therefore H1
fl(Z, N) ∼= Pic Ok and it follows that

hk = |H1
fl(Z, N)|. (2.5)

In the quadratic case n = 2, we have k = Q(
√
d) for some square-free integer d 6∈ {0, 1}. If OΩ is the

maximal order Ok, we set hd and Nd to be the class number hk and the Z-group N , respectively.

Then (2.3) implies that

|H1
fl(Z, Nd)| = hd · 2ε(d), (2.6)

where [Ono, §5,Example 2]:

ε(d) =

{
0 d > 0 and Nr(O×k ) = {±1}
1 otherwise.

(2.7)

Let Pic+(Ok) be the narrow class group of k and let h+
d denote its cardinality. Then h+

d = hd

unless d > 0 and Nr(O×k ) = {1}, in which case h+
d = 2hd. Now (2.6) implies

|H1
fl(Z, Nd)| = h+

d · 2
µ(d), µ(d) :=

{
1 d < 0
0 d > 0.

(2.8)

Hence computing the narrow class number h+
d is equivalent to determining |H1

fl(Z, Nd)|.

3. The class set of the norm torus

Let G be an affine flat group scheme defined over SpecZ with generic fiber G. We denote by

Gp the Zp-scheme obtained from G by the base change SpecZp → SpecZ. For a global field F ,

recall that the adelic group G(AF ) is the restricted product of the groups G(Fv), where Fv is the

completion of F at a place v. We write G(A) for G(AQ). As in [Bor, §1.2], consider its subgroup

G(A∞) = G(R)×
∏
pG(Zp).
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Definition 3.1. The class set of G is the set of double cosets Cl∞(G) := G(A∞)\G(A)/G(Q).

This set is finite ([Bor, Thm. 5.1]) and its cardinality, denoted by h(G), is called the class number

of G.

Definition 3.2. Let S be a finite set of places in Q. The first Tate-Shafarevich set of G over Q

relative to S is

X1
S(Q, G) := ker

[
H1(Q, G)→

∏
v/∈S

H1(Qv, Gv)

]
.

When S = ∅, we simply write X1(Q, G).

As G is affine, flat and of finite type, Y. Nisnevich has shown [Nis, Theorem I.3.5] that it admits

an exact sequence of pointed sets

1→ Cl∞(G)→ H1
fl(Z, G)→ H1(Q, G)×

∏
p

H1
fl(Zp, Gp) (3.1)

whose left exactness reflects the fact that Cl∞(G) is the set of Z-forms of G that are isomorphic

to G over Q and over Zp for all p. If H1
fl(Zp, Gp) injects into H1(Qp, Gp) for all p, then, as in [Nis,

Cor. I.3.6], the sequence (3.1) simplifies to

1→ Cl∞(G)→ H1
fl(Z, G)→ H1(Q, G). (3.2)

More precisely, there is an exact sequence of pointed sets (cf. [GP, Corollary A.8])

1→ Cl∞(G)→ H1
fl(Z, G)→ B → 1 (3.3)

in which

B =
{

[γ] ∈ H1(Q, G) : ∀p, [γ ⊗ Zp] ∈ Im
(
H1

fl(Zp, Gp)→ H1(Qp, Gp)
)}
.

Let k/Q be a finite Galois extension as in the previous section. Let p be a rational prime, and

let P be a prime of k dividing p. Write Qp and kP for the localizations of Q at p and of k at P ,

respectively, noting that kP is independent of the choice of P , up to isomorphism. Observe that

k⊗QQp
∼= krP , where r is the number of primes of k dividing p. The norm map Nr : k → Q induces

a map Nr : k ⊗Q Qp → Qp; under the isomorphism above this corresponds to the product of the

norm maps NkP /Qp
on the components. Similarly, Ok ⊗Z Zp ' OrkP . Write UP for O×kP .

Fixing a Z-basis Ω of an order OΩ ⊂ Ok as in the previous section and applying flat cohomology

to the short exact sequence of flat Zp-groups

1→ Np → Rp → (Gm)p → 1

yields the exact and functorial sequence

1→ Np(Zp)→ Rp(Zp) ∼= U rP
Nr−→ Z×p → H1

fl(Zp, Np)→ 1,
6



since H1
fl(Zp, Rp) is the Picard group of a product of local rings and thus vanishes. We deduce an

isomorphism H1
fl(Zp, Np)

∼= Z×p /Nr(U rP ) = Z×p /NkP /Qp
(UP ). Applying Galois cohomology to the

short exact sequence of Qp-groups

1→ Np → Rp → (Gm)p → 1

gives rise to the exact sequence of abelian groups

1→ Np(Qp)→ Rp(Qp) ∼= (k×P )r
Nr−→ Q×p → H1(Qp, Np)→ 1,

where the rightmost term vanishes by Hilbert’s Theorem 90. Hence we may again deduce a func-

torial isomorphism H1(Qp, Np) ∼= Q×p /NkP /Qp
(k×P ). Note that UP is compact and thus NkP /Qp

(UP )

is closed in Q×p . Only units have norms that are units, so we obtain an embedding of groups:

H1
fl(Zp, Np)

∼= Z×p /NkP /Qp
(UP ) ↪→ Q×p /NkP /Qp

(k×P ) ∼= H1(Qp, Np). (3.4)

Proposition 3.3. Suppose that [k : Q] is prime. Let Sr be the set of primes dividing ∆k. Then

there is an exact sequence of abelian groups (compare with formula (5.3) in [Mor]):

1→ Cl∞(N)→ H1
fl(Z, N)→X1

Sr∪{∞}(Q, N)→ 1.

Proof. Since H1
fl(Zp, Np) embeds into H1(Qp, Np) for any prime p by (3.4), the Z-group scheme N

admits the exact sequence (3.3), in which the terms are abelian groups as N is commutative. The

pointed set Cl∞(N) is in bijection with the first Nisnevich cohomology set H1
Nis(Z, N) (cf. [Nis,

I. Theorem 2.8]), which is a subgroup of H1
fl(Z, N) because any Nisnevich cover is flat. Hence the

first map is an embedding. Since k/Q has prime degree and so is necessarily abelian, at any prime

p the local Artin reciprocity law implies that

np = |Gal(kP /Qp)| = [Q×p : NkP /Qp
(k×P )] = |H1(Qp, Np)|.

Furthermore, since [k : Q] is prime, any ramified place p is totally ramified, so [Z×p : NkP /Qp
(UP )] =

np [Haz, Theorem 5.5]. Together with (3.4) this means that H1
fl(Zp, Np) coincides with H1(Qp, Np)

at ramified primes and vanishes elsewhere. Thus the set B of (3.3) consists of classes [γ] ∈ H1(Q, N)

whose fibers vanish at unramified places. This means that B = X1
Sr∪{∞}(Q, N), where Sr is the

set of ramified primes of k/Q. �

Remark 3.4. The group B = X1
Sr∪{∞}(Q, N) embeds in the group H1(Q, N) by definition. But

H1(Q, N) ∼= Q×/Nr(k×), so B has exponent dividing n.
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4. Norm forms of orders in quadratic number fields

4.1. Orthogonal groups. Throughout the rest of this article we will assume that k is a quadratic

number field, so that k = Q(
√
d), where d 6∈ {0, 1} is a square-free integer. Recall that a binary

integral quadratic form is a homogeneous polynomial of order two in two variables with coefficients

in Z:

q : Z2 → Z; q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z.

The form q is represented by the symmetric 2× 2 matrix Bq =

(
a b/2
b/2 c

)
satisfying q(x, y) =

(x, y)Bq(x, y)t. We denote q by the triple (a, b, c) and set ∆(q) = b2− 4ac. Consider the symmetric

bilinear form

B̃q(u, v) = q(u+ v)− q(u)− q(v),

for u, v ∈ Z2. Set disc(q) to be the determinant of the matrix B̃q(ei, ej)1≤i,j≤2, where e1 = (1, 0)

and e2 = (0, 1). We say that q is non-degenerate over a Z-algebra R if disc(q) is invertible in R.

In particular, q is non-degenerate over Z when disc(q) = ±1 (cf. [Con2, §2]). It is easily checked

that this matrix is 2Bq, thus ∆(q) = −4 det(Bq) = −disc(q). We assume ∆(q) 6= 0, so q is non-

degenerate over Q. Observe that q is degenerate over Z unless q(x, y) = ±xy. Two integral forms

q and q′ are said to be isomorphic over a Z-algebra R if there exists an R-isometry from one form

to the other, namely a matrix A ∈ GL2(R) such that q ◦A = q′. If detA = 1, then we say that A

gives a proper isomorphism over R between q and q′.

Definition 4.1. ([Con2, p.303]) Let V be a free Z-module of rank two and q : V → Z a quadratic

form with disc(q) 6= 0. The orthogonal group of the quadratic lattice (V, q) is the affine Z-group

Oq = {A ∈ GL(V ) : q ◦A = q}.

Since (V, q) is not assumed to be non-degenerate over Z, we note that Oq may fail to be Z-flat

for fiber-jumping reasons [Con3, Section 2]. We are thus led to restrict our attention to the closed

subscheme Õq ⊂ Oq defined as the schematic closure in Oq of the generic point. Since (V, q) is

non-degenerate over Q, and the characteristic of Q is not 2, we may define the special orthogonal

subgroup of the generic fiber Oq = Oq ⊗Z Q naively as

O+
q = ker[Oq

det−−→ µ2].

The analogous definition over Z is more subtle but is not limited to the non-degenerate case.

Definition 4.2. ([Con3, Def. 2.8]) The special orthogonal group O+
q of a quadratic lattice (V, q)

is the schematic closure of O+
q inside Oq (or, equivalently, inside Õq). As Z is Dedekind it is flat.
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Indeed, the coordinate ring of the schematic closure, in a Z-scheme, of an affine subscheme of the

generic fiber is clearly torsion-free, hence flat over Z.

Remark 4.3. The Q-group Oq is smooth. Its open subgroup O+
q is smooth and connected [Con1,

Theorem 1.7(1)] and is the unique such subgroup [Con1, Proposition 3.2]. By the correspondence

between flat closed subschemes of Oq and closed subschemes of Oq [EGAIV, Cor. 2.8.1], O+
q is the

unique flat and closed subgroup of Oq whose generic fiber is O+
q .

Definition 4.4. Let Ω = {ω1, ω2} ⊂ Ok be a basis of a quadratic order OΩ ⊆ Ok. The norm form

associated to Ω is the integral quadratic form

qΩ(x, y) := Nr(xω1 + yω2).

Let OΩ denote the orthogonal group of qΩ. The choice of the basis Ω specifies an isomorphism

of Z-modules r : Z2 ∼→ OΩ given by r(x, y) = xω1 + yω2. In turn, as we observed at the beginning

of Section 2, the map r induces an embedding ι : RΩ ↪→ GL2.

Lemma 4.5. Let Ω be a basis of the quadratic order OΩ ⊆ Ok. Then O+
Ω = NΩ.

Proof. Over Q, consider the map qΩ = Nr ◦ r : Q2 → Q. For any b ∈ RΩ and (x, y) ∈ Z2 one has

ι(b) ·
(
x
y

)
= r−1

(
b · r

(
x
y

))
.

If b ∈ NΩ = ker(Nr : RΩ → Gm,Q), then Nr ◦ b = Nr and we obtain an inclusion of Q-groups:

O+
Ω = {A ∈ SL2 : qΩ ◦A = qΩ}

⊇ {b ∈ NΩ : qΩ ◦ ι(b) = qΩ}

= {b ∈ NΩ : qΩ ◦ r−1 ◦ b · r = qΩ}

= {b ∈ NΩ : Nr ◦ b · r = Nr ◦ r} = {b ∈ NΩ : Nr ◦ b = Nr} = NΩ.

Since O+
Ω and NΩ are both one-dimensional tori, the inclusion is an equality. Hence O+

Ω and NΩ

are Z-flat closed subgroups of OΩ with the same generic fiber O+
Ω = NΩ. Such an object is unique

by Remark 4.3, so O+
Ω = NΩ. �

We note that for the particular bases Ω used in the sequel, Lemma 4.5 can be checked explicitly;

see Remark A.3.

4.2. Orders in quadratic fields. Recall that k = Q(
√
d). For every m ∈ N, the maximal order

Ok contains a unique order Od,m of index m. If {1, ω} is any Z-basis of Ok, then Od,m is spanned
9



by {1,mω}. We fix the convenient Z-basis Ωd,m = {1, ωd,m} of Od,m, where

ωd,m =


1+m

√
d

2 : d ≡ 1 mod 4, m odd
m
2

√
d : d ≡ 1 mod 4, m even

m
√
d : d ≡ 2, 3 mod 4.

Henceforth we denote by qd,m the associated norm form qΩd,m
. We also set qd = qd,1. Define

cd,m =


1−m2d

4 : d ≡ 1 mod 4, m odd
m2d

4 : d ≡ 1 mod 4, m even

m2d : d ≡ 2, 3 mod 4

(4.1)

and note that cd,m is always an integer. For simplicity in long expressions, we will sometimes drop

the subscripts and write c for cd,m; this should cause no confusion. We also write Od,m for Oqd,m
,

Õd,m for Õd,m, etc. We say that we are in Case (I) if d ≡ 1 mod 4 and m is odd, and in Case

(II) otherwise. Then

qd,m =

{
(1, 1, cd,m) : Case (I)
(1, 0,−cd,m) : Case (II).

and Bqd,m =



(
1 1/2

1/2 cd,m

)
: Case (I)

(
1 0
0 −cd,m

)
: Case (II).

(4.2)

Hence

Nd,m := NΩd,m
=

{
SpecZ[x, y]/(x2 + xy + cd,my

2 − 1) : Case (I)
SpecZ[x, y]/(x2 − cd,my2 − 1) : Case (II).

(4.3)

The integral matrix realization ι(Nd,m(Z)) is given by

Ad =



(
x y

−cd,my x+ y

)
, det = 1 : Case (I)

(
x y

cd,my x

)
, det = 1 : Case (II).

(4.4)

For any pair (d,m), the integral model Nd,m has the generic fiber

Nd,m = Nd,m ⊗Z Q = SpecQ[x, y]/(x2 − dy2 − 1).

Note that Nd,m is independent of m.

5. The flat cohomology of the orthogonal group of a norm form

5.1. A quotient map. We have shown in the previous section that the special orthogonal sub-

group O+
d,m is a flat closed subgroup of Od,m. Since SpecZ is one-dimensional, the fppf quotient

Od,m/O
+
d,m is representable by [Ana, Théorème 4.C] and thus has the structure of an affine Z-group

scheme. However, this quotient is not flat. Instead, we consider the quotient Q
d,m

= Õd,m/O
+
d,m,

which is flat over Z because Õd,m is. Our first goal in this section is to determine the structure of
10



Q
d,m

, for which we will use the theory of finite flat group schemes. An alternative proof, by means

of explicitly writing out defining equations, is presented in an appendix at the end of the paper.

Recall that there are only two finite Z-groups of order two, up to isomorphism, namely Z/2 =

SpecZ[t]/(t2− t) and µ
2

= SpecZ[t]/(t2−1); see, for instance, the Corollary on page 21 of [TO] for

a proof of this fact. These two Z-groups are locally isomorphic everywhere except at (2), in which

case µ
2
⊗Z F2 contains one nilpotent point while Z/2⊗Z F2 is reduced and contains two points.

Proposition 5.1. Let d 6= 0, 1 be square-free and m ∈ N. Then, as Z-group schemes,

Õd,m/O
+
d,m '

{
Z/2 : Case (I)

µ
2

: Case (II).

Proof. Recall from Definition 4.1 that for any quadratic form q, an isometry A ∈ Oq satisfies q◦A =

q and hence ABqA
t = Bq. Taking determinants of both sides, we find that (detBq)((detA)2−1) =

0. In particular, if q is non-degenerate over Q, then any A ∈ Õq satisfies (detA)2 − 1 = 0. Hence

the determinant induces a morphism of group schemes det : Õq → µ
2
.

Since Õd,m is a Z-scheme defined by the polynomial (detA− 1)(detA+ 1), among others, it is

the scheme-theoretic union of the closed Z-subschemes of matrices of determinant 1 and −1. The

former of these is O+
d,m, and we denote the latter by O−d,m. The left translation action on Õd,m

of

(
1 0
1 −1

)
in Case (I) and of

(
1 0
0 −1

)
in Case (II) interchanges the subschemes O+

d,m and

O−d,m. Hence all fibers of Q
d,m

have rank two, and we conclude that Q
d,m

is a finite flat affine

Z-group scheme of order two. Thus it is isomorphic either to Z/2 or to µ
2
. To distinguish between

the two possibilities, it suffices to determine Q
d,m
⊗ZF2. Since the reduction of diag(1,−1) modulo

2 is the same as that of the identity matrix, we see that Q
d,m
⊗ZF2 contains only one point in Case

(II). In Case (I), on the other hand, it is apparent from (4.4) and Lemma 4.5 that the reduction

modulo 2 of the matrix

(
1 0
1 −1

)
does not lie in that of Nd,m(Z) = O+

d,m(Z). Thus Q
d,m
⊗Z F2

has two points in this case. We conclude that Q
d,m

= Z/2 in Case (I) and Q
d,m

= µ
2

in Case (II),

as claimed. �

5.2. Twisted forms. In this section we briefly recall the construction of a twisted form (in the

fppf topology) of a group scheme G defined over SpecR, where R is any unital commutative ring.

Let P be a representative of a class in H1
fl(R,G), i.e. a G-torsor. Viewing G as a G-torsor acting

on itself by conjugation, we may consider the affine R-group scheme PG given by the quotient of

P ×R G by the G-action s · (p, g) = (ps−1, sgs−1). This is an inner form of G, called the twist of

G by P . It is isomorphic to G in the fppf topology, and the map G 7→ PG defines a bijection of
11



pointed sets θP : H1
fl(R,G) → H1

fl(R, PG); see [Sko, §2.2, Lemma 2.2.3] and the nearby Examples

1 and 2.

Remark 5.2. Fix a quadratic Z-form q of rank n with algebraic automorphism group Aut(q) := Oq

defined over SpecZ. Any quadratic Z-form q′ of rank n corresponds to an Oq-torsor by

q′ 7→ Iso(q, q′).

This is a special case of a general framework due to Giraud; see [CF, Proposition 2.2.4.5] for

details. It follows that Oq′ is an inner form of Oq, namely its twist by Iso(q, q′). In terms of the

classification of Oq-torsors by cohomology classes, this corresponds to changing the distinguished

base point of H1
fl(Z,Oq).

Remark 5.3. For any flat, i.e. torsion-free, Z-algebra R the inclusion Õq(R) ⊆ Oq(R) of R-points

is an equality. This implies a canonical isomorphism of pointed sets H1
fl(Z, Õq) = H1

fl(Z,Oq). In

the sequel we identify these sets without further comment.

Lemma 5.4. Let POq be the twisted form of Oq by an O+
q -torsor P and let Q := Õq/O

+
q . Then

the following are equivalent:

(1) The push-forward map H1
fl(Z,O+

q )
i∗−→ H1

fl(Z, Õq) is injective.

(2) The quotient map P̃Oq(Z)
π−→ Q(Z) is surjective for any [P ] ∈ H1

fl(Z,O+
q ).

(3) The Q(Z)-action on H1
fl(Z,O+

q ) is trivial.

Proof. By the correspondence discussed above between quadratic Z-forms and Oq-torsors, the inner

form POq of Oq is the orthogonal group of some quadratic Z-form q′. Consider the commutative

diagram with exact rows (cf. [Gir, Lemme III.3.3.4])

Õq(Z)
π // Q(Z) // H1

fl(Z,O+
q )

∼= θP
��

i∗ // H1
fl(Z, Õq)

θP∼=
��

P̃Oq(Z)
P π // Q(Z) // H1

fl(Z, PO+
q )

i′∗ // H1
fl(Z, P̃Oq),

where the top row arises by applying flat cohomology to the sequence 1 → O+
q → Õq → Q → 1,

whereas the bottom row comes from the analogous sequence for q′ and the maps θP are the induced

twisting bijections defined above.

(1) ⇔ (2): The map i∗ is injective if any class [P ] of O+
q -torsors is the unique pre-image of

i∗([P ]) ∈ H1
fl(Z, Õq) = H1

fl(Z,Oq). By commutativity of the diagram, this is equivalent to the

distinguished point in H1
fl(Z, PO+

q ) being the unique pre-image of its image, for any choice of a

twisted form PO+
q of O+

q , i.e. to the triviality of ker(i′∗) for any O+
q -torsor P . By exactness of the

12



rows, this is condition (2).

(1)⇔ (3): By [Gir, Prop. III.3.3.3(iv)], i∗ induces an injection of H1
fl(Z,O+

q )/Q(Z) into H1
fl(Z, Õq).

Thus i∗ : H1
fl(Z,O+

q )→ H1
fl(Z, Õq) is injective if and only if Q(Z) acts on H1

fl(Z,O+
q ) trivially. �

5.3. Case (I). Recall that Case (I) means that d ≡ 1 mod 4 and m is odd. In this case the quotient

Õd,m/O
+
d,m is Z/2 by Proposition 5.1, the quotient map being the Dickson morphism Dqd,m .

Proposition 5.5. In Case (I), there is an equality of abelian groups H1
fl(Z, Nd,m) = H1

fl(Z,Od,m).

Proof. Applying flat cohomology to the short exact sequence of flat Z-schemes

1→ O+
d,m → Õd,m → Q

d,m
→ 1

gives rise to a long exact sequence of pointed sets

Õd,m(Z)→ Q
d,m

(Z)→ H1
fl(Z,O+

d,m)
i∗→ H1

fl(Z,Od,m)
δ→ H1

fl(Z, Q
d,m

). (5.1)

We will show that i∗ is an isomorphism; the claim then follows by Lemma 4.5. Since Z/2

is smooth, the rightmost term in (5.1) coincides with H1
ét(Z,Z/2) by [SGA4, Corollaire VIII.2.3],

which classifies étale quadratic covers of Z (cf. [Knus, Chap.III, Prop.4.1.4]). As no such non-trivial

cover exists, δ is trivial, and i∗ is surjective.

To prove that i∗ is injective, it suffices by Lemma 5.4 to show that the map P̃Od,m(Z)→ Z/2(Z)

is surjective for all [P ] ∈ H1
fl(Z,O+

d,m). This is true when [P ] is the distinguished class, since we

verified explicitly in the course of the proof of Proposition 5.1 that Dqd,m : Õd,m(Z) → Z/2(Z) is

surjective. In fact, this implies that the determinant map Õd,m(Z) → µ
2
(Z) = {±1} is surjective

on Z-points. In general, PO+
d,m is an inner form of O+

d,m by Remark 5.2, and thus it is a conjugate

of O+
d,m by some M ∈ GL2(R) for a finite flat extension R/Z. But PO+

d,m is the special orthogonal

group of a quadratic Z-form q and Oq = MOd,mM
−1. Conjugation preserves the determinant, so

Õq(Z)
det→ µ

2
(Z) is surjective, and hence so is Dq : Õq(Z)→ Z/2(Z). �

5.4. Case (II). In this case, we know from Proposition 5.1 that the determinant map induces an

isomorphism Õd,m/O
+
d,m ' µ2

. The relevant bit of the long exact sequence (5.1) is:

H1
fl(Z,O+

d,m)
i∗→ H1

fl(Z,Od,m)
disc
� H1

fl(Z, µ
2
) ∼= {±1}.

Here disc, which assigns to any class [q] ∈ H1
fl(Z,Od,m) the sign of the discriminant of q, is surjective

because [(1, 0, cd,m)], [(1, 0,−cd,m)] ∈ H1
fl(Z,Od,m); observe that (1, 0, cd,m) becomes isomorphic to

(1, 0,−cd,m) over Z[
√
−1] by the isometry A = diag(1,

√
−1).
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Lemma 5.6. Suppose that Case (II) holds, so q = (1, 0,−cd,m), i.e. q(x, y) = x2 − cd,my2. Then

H1
fl(Z,Od,m) = H1

fl(Z,O+
d,m)/µ

2
(Z)

∐
H1

fl(Z,O+
(1,0,cd,m))/µ2

(Z), (5.2)

where the non-trivial element of µ
2
(Z) maps [(a, b, c)] to [(a,−b, c)].

Proof. The action of the non-trivial element of µ
2
(Z) = {±1} on H1

fl(Z,O+
d,m) is described by [Gir,

Remarque III.3.3.2]. The pre-image of −1 under det : Õq,m → µ2 is O−d,m := diag(1,−1)O+
d,m. A

twisted form of O+
d,m by some O+

d,m-torsor is O+
q′ where q′ is of discriminant 4cd,m. Then the action

of −1 on O+
q′ is a twist by O−d,m, which is equivalent to the twist of q′ = (a, b, c) by diag(1,−1) to

(a,−b, c): (
1 0
0 −1

)(
a b/2
b/2 c

)(
1 0
0 −1

)t
=

(
a −b/2
−b/2 c

)
.

Observe that Õd,m may be realized as a semi-direct product O+
d,m o µ

2
by means of the section

x 7→ diag(1, x) of the quotient map Õd,m
det→ µ

2
. By [Gil, Lemma 2.6.3], this implies the claimed

decomposition

H1
fl(Z,Od,m) = H1

fl(Z, Õd,m) = H1
fl(Z,O+

(1,0,cd,m))/µ2
(Z)

∐
H1

fl(Z,O+
(1,0,−cd,m))/µ2

(Z), (5.3)

where the quotients are taken modulo the equivalence relation given by the action of µ
2
(Z) on each

group as above. Indeed, the twisted form (1, 0, cd,m) of discriminant −4cd,m corresponds to the

non-trivial µ
2
-torsor represented by {t2 = −1}, which splits over Z[

√
−1] and is represented by(

1 0
0
√
−1

)(
1 0
0 −cd,m

)(
1 0
0
√
−1

)t
=

(
1 0
0 cd,m

)
. �

Corollary 5.7. Each of the groups H1
fl(Z,O+

d,m) and H1
fl(Z,O+

(1,0,cd,m)) is entirely embedded in

H1
fl(Z,Od,m) if and only if it satisfies one (hence all) of the conditions of Lemma 5.4.

Remark 5.8. Although the groups Õd,m and Õ(1,0,cd,m) are not isomorphic, Lemma 5.6 provides

the same decomposition of H1
fl(Z,Od,m) as of H1

fl(Z,O(1,0,cd,m)). Hence these two pointed sets are

in bijection with each other. Observe that

Õ(1,0,cd,m) =


Õ−d,m/2 : d ≡ 1 mod 4, m even

Õ−d,m : d ≡ 2 mod 4

Õ−d,2m : d ≡ 3 mod 4.

Example 5.9. In this and the subsequent examples in this section, we set N ′d = Nd,2 for brevity.

The set H1
fl(Z, N11) contains 2h11 = 2 classes {[±(1, 0,−11)]}; see Lemma 5.19 below. Each of these

classes is a separate µ
2
(Z)-orbit. However, H1

fl(Z, N ′−11) contains six classes by [Bue, p.20]; see the

table in Example 5.13 below. Precisely, we have H1
fl(Z, N ′−11) = {[±(1, 0, 11)], [±(3,±2, 4)]}. The

pairs (3,±2, 4) and (−3,±2,−4) coincide in H1
fl(Z,O11). Thus |H1

fl(Z,O11)| = 2 + 4 = 6.
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Our next aim is to use Lemma 5.6 to study Pic Z[
√
d] even in cases where Z[

√
d] is not the

maximal order of a number field and thus need not be a Dedekind domain. As a preliminary, we

record the following exercise in algebraic number theory.

Lemma 5.10. Let d be any integer. The ring Z[
√
d] has a unique prime ideal containing 2.

Proof. The case d ∈ {0, 1} is obvious, so we assume that it does not hold. We may assume without

loss of generality that d is square-free. If d ≡ 2, 3 (mod 4), then Z[
√
d] = Od is a Dedekind domain

and 2 ramifies in Q(
√
d), so that 2Od = p2, where p is the unique prime ideal of Od dividing (2).

Now suppose that d ≡ 1 (mod 4). Then Od/Z[
√
d] is an integral extension of rings, so by [Mat,

Theorem 9.3] any prime ideal of Z[
√
d] has the form Z[

√
d] ∩ p, where p is a prime ideal of Od.

If d ≡ 5 (mod 8), then 2 is inert in Q(
√
d). Thus 2Od is prime and is the unique prime ideal

of Od containing 2; this implies our claim by the previous observation. If d ≡ 1 (mod 8), then

2Od = p1p2 = p1 ∩ p2 for distinct prime ideals p1 and p2 of Od. Hence Z[
√
d] ∩ p1 and Z[

√
d] ∩ p2

each contain I = Z[
√
d] ∩ 2Od = {a+ b

√
d : a ≡ b (mod 2)}. Since I has index 2 in the ring Z[

√
d]

and thus is a maximal ideal, it is the unique prime ideal of Z[
√
d] containing 2. �

Proposition 5.11. Let d ≡ 3 (mod 4). Set η(d) = 1 if d ≡ 3 (mod 8) and one of the following two

conditions holds:

• d > 3

• d < 0 and O×−d ⊂ Z[
√
−d].

Otherwise, set η(d) = 0. Then |Pic Z[
√
−d]| = 3η(d)h−d.

Proof. Observe that −d ≡ 1 mod 4, and thus Z[
√
−d] = O−d,2. We write Ω for Ω−d,2 = {1,

√
−d}.

The claim is clear if d = −1, so suppose that d ≡ 3 (mod 4) and d 6= −1. By Lemma 4.5, the

special orthogonal group N−d,2 is equal to O+
Ω . Set k′ = Q(

√
−d). We relate the Picard groups of

OΩ = Z[
√
−d] and O−d,1 = Ok′ = Z[1+

√
−d

2 ] by studying their localizations. For any prime ideal p

of OΩ, let Op be the localization of OΩ at p, and let (Ok′)p be the integral closure of Op in Ok′ .

Then [KP, Theorem 5.6] provides an exact sequence of abelian groups

1→ O×Ω
ϕ→ O×k′ →

⊕
p

(Ok′)×p /O×p → Pic OΩ → Pic Ok′ → 1. (5.4)

Here the direct sum in the middle runs over the prime ideals of OΩ. Let F denote the conductor

of Ok′/OΩ. By [KP, Proposition 6.2] we have the following isomorphism for any p:

(Ok′)×p /O×p ∼= ((Ok′)p/F · (Ok′)p)×
/

(Op/FOp)
×. (5.5)
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Since OΩ = Z+ 2Ok′ , the conductor is F = 2Ok′ . It is a maximal ideal of OΩ; since localization at

any prime commutes with factorization modulo F , we have (Op/FOp)
× = (OΩ/FOΩ)×p = F×2 = 1.

Moreover, we see that (Ok′)×p ∼= O×p if 2 6∈ p, so such places make no contribution to the direct sum

in (5.4). It remains therefore to compute (Ok′)×q for the unique (by Lemma 5.10) place q containing

2, where Ok′ denotes the reduction of Ok′ modulo F . Note that OΩ/F ' F2 and that c = 1+d
4 is

odd if d ≡ 3 (mod 8) and even if d ≡ 7 (mod 8). If c̄ ∈ F2 is the image of c, then it follows from (4.4)

that

(Ok′)×q ∼= (R−d(F2))q =

{
(A−d)q =

(
a c̄b
b a+ b

)
: a, b ∈ F2, det(A−d) 6= 0

}
∼=
{

Z/3 d ≡ 3 (mod 8)
1 d ≡ 7 (mod 8).

This holds also when d = −1. We deduce from (5.4) that if d ≡ 7 (mod 8), then Pic OΩ ' Pic O−d.

If d ≡ 3 (mod 8), then (5.4) implies that

|Pic (OΩ)|
h−d

=
3

| coker(ϕ)|
. (5.6)

If d 6= 3, the unit groups O×Ω and O×k′ contain the same roots of unity. Moreover, if d > 0, these

groups have no free part, hence | coker(ϕ)| = 1. If d = 3, then clearly | coker(ϕ)| = 3. If d < 0,

then the free parts of both O×Ω and O×k′ have rank 1, and coker(ϕ) = [〈ε〉 : 〈εm〉] = m, where ε is

a fundamental unit of k′ and εm is a generator of O×Ω . Note that m|3 by (5.4), so that m = 3 or

m = 1. Both cases do arise. The case m = 1 occurs, for instance, when d = −37 and d = −101; see

sequence A108160 in the On-Line Encyclopedia of Integer Sequences. Hence, recalling the definition

of η(d) from the statement of this claim, we may rewrite (5.6) as

|Pic (OΩ)|
h−d

= 3η(d). �

Remark 5.12. If the norm map Nr attains the value −1 for an element of O×Ω , it does so for

a generator of its free part. As m is odd, this implies that Nr(O×k′) = Nr(O×Ω). Recalling that

N ′d = Nd,2, we conclude by (2.3) and Corollary 5.11 that

|H1
fl(Z, N ′−d)|

|H1
fl(Z, N−d)|

=
|Pic Z[

√
−d]|

h−d
= 3η(d). (5.7)

Example 5.13. We tabulate the following data from [Bue]: see page 19 for the second and fourth

columns and page 20 for the third, noting that, as the forms obtained are definite, the number of

total classes is twice the number of positive classes by Proposition 5.20 below.

16



0 < d ≡ 3 (mod4) h−d |H1
fl(Z, N ′−d)| |H1

fl(Z, N−d)| c−d,1 = 1+d
4

3 1 2 2 1
7 1 2 2 2
11 1 6 2 3
15 2 4 4 4
19 1 6 2 5
23 3 6 6 6

Example 5.14. Let d = −5. Then (Ok′)×(2)/O
×
(2)
∼= Z/3 by the argument preceding (5.6). A

generator of the free part of O×k′ is ε = ω = 1+
√

5
2 . Let Ω = {1,

√
5}. The embedding ϕ : OΩ → Ok′

induces the embedding of NΩ(Z) in N5(Z) given by the integral matrix realization of (4.4), namely

the group homomorphism

ϕ :

(
x 5y
y x

)
7→
(
x− y 2y

2y x+ y

)
.

Since Nr(ε) = −1, a generator of the free part of N5(Z) is u =

(
1 1
1 2

)
, corresponding to

ε2 = 1 + ω, while a generator of N ′5(Z) is z =

(
9 20
4 9

)
, corresponding to ε6 = 9 + 4

√
5. Hence

ϕ(z) =

(
5 8
8 13

)
= u3,

so that | coker(ϕ)| = 3. This means that η(d) = 0 in Proposition 5.11, and |Pic (Z[
√

5])| = h5.

Recall from (1.1) that the set cl+(n) classifies quadratic forms of discriminant n up to proper

isometry. The next lemma relates cl+(n) to the flat cohomology of special orthogonal groups.

Lemma 5.15. Let d be any integer that is not a perfect square and not of the form d = −3 · 4m

for any m ∈ N0, and set q(x, y) = x2 − dy2. Then cl+(4d) = H1
fl(Z,O+

q ).

Proof. Note that ∆(q) = 4d need not be a fundamental discriminant. The equivalence relations

in cl+(4d) and in H1
fl(Z,O+

q ) are defined similarly, so we only need to show that the two sets of

representatives coincide. Indeed, those in H1
fl(Z,O+

q ) are obtained by (local) proper isometries of

q, resulting in the same discriminant ∆(q). Conversely, we claim that any quadratic Z-form q′ of

rank 2 with ∆(q′) = ∆(q) is diagonalizable over Zp for any prime p, thus is locally isomorphic to

q in the fppf topology. This is true for all odd primes p by [Cas, Theorem 8.3.1]. If p = 2, then

by the explicit form of the Jordan Decomposition Theorem [Cas, Lemma 8.4.1] q′ is isomorphic

over Z2 to a direct product of forms of rank at most 2, where the possible components of rank 2

are of the form 2exy or 2e(x2 + xy + y2) for e ∈ N0; note that [Cas] uses the classical definition

of integral forms, requiring that b be even. None of these has discriminant 4d for an integer d

satisfying our hypotheses. Hence q′ is diagonalizable over Z2. Moreover, by Lemma 5.6 a local
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isometry between q and q′ can be taken to be proper, as they share the same discriminant. So

any Z-form with discriminant ∆(q) is locally properly isomorphic to q in the flat topology. This

completes the proof. �

Remark 5.16. We justify the exclusion of discriminants of the form −3 · 4m, for m ≥ 1, in

the hypotheses of Lemma 5.15 by noting that the lemma is false in those cases. Indeed, the

form (2m, 2m−1, 2m) has discriminant −3 · 4m, but one readily checks that it is not isometric to

(1, 0, 3 · 4m−1) over any finite flat extension of Z2. Thus the class [(2m, 2m−1, 2m)] appears in

cl+(−3 · 4m) but not in H1
fl(Z,O+

(1,0,3·4m−1)
). Indeed, Pic Z[

√
−3] is trivial; see, for instance, [Cox,

Exercise 7.9]. It follows from (2.3) and Lemma 4.5 that |H1
fl(Z,O+

(1,0,3))| = 2; alternatively, see the

data of Example 5.13. Thus H1
fl(Z,O+

(1,0,3)) = {[±(1, 0, 3)]}.

5.5. Applications to the classification of binary quadratic forms. Having studied Cases (I)

and (II) separately, we gather together our results. First we determine the structure of cl(D) for

many integers D.

Proposition 5.17. Let D 6= −3 be an integer such that D ≡ 1 mod 4 and D is not a perfect square.

Set q(x, y) = x2 + xy + ((1−D)/4)y2. Then cl(D) = cl+(D) = H1
fl(Z,O+

q ).

Proof. The same argument as in the proof of Lemma 5.15 shows that cl+(D) = H1
fl(Z,O+

q ). Write

D = dm2, where d ≡ 1 mod 4 is square-free and m is odd. Then q = qd,m. Moreover, by Lemma 4.5

and Proposition 5.5 we have H1
fl(Z,O+

q ) = H1
fl(Z, Nd,m) = H1

fl(Z,Od,m). Thus any quadratic form

that is improperly isomorphic to q is also properly isomorphic to q, hence cl(D) = cl+(D). �

Proposition 5.18. Let D be any integer that is not a perfect square and not of the form D = −3·4`

for any ` ∈ N0. Set q(x, y) = x2 − Dy2. Then cl(4D) = H1
fl(Z,O+

q )/µ
2
(Z), where the non-trivial

element of µ
2
(Z) maps [(a, b, c)] to [(a,−b, c)].

Proof. We have cl+(4D) = H1
fl(Z,O+

q ) by Lemma 5.15. The description of the structure of

H1
fl(Z,Oq) provided by Lemma 5.6 shows that the only proper isomorphism classes of forms of

discriminant 4D that are improperly isomorphic to each other are those in the same orbit of the

µ
2
(Z)-action. �

Recall that k = Q(
√
d). As noted in the introduction, Gauss proved in his Disquisitiones

Arithmeticae [Gau] that the elements of cl+(∆(qd)), namely proper isomorphism classes of forms

of discriminant ∆k, are parametrized by Pic+(Ok). See, for instance, [FT, Theorem 58] for an

exposition of this result. If d < 0, his classification treats only the positive definite forms, namely

those for which a, c > 0. The following claim completes the proper classification.
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Theorem 5.19. If d 6∈ {0, 1} is a square-free integer, then

cl+(∆(qd)) = H1
fl(Z,O+

d ) ∼= {±1}µ(d) × Pic+(Ok), where µ(d) =

{
1 d < 0
0 d > 0.

Proof. By Lemma 4.5 we have H1
fl(Z, Nd) = H1

fl(Z,O+
d ), and the latter properly classifies the

integral quadratic forms that are locally isomorphic to qd for the flat topology, thus of discriminant

∆k. So if d > 0, then H1
fl(Z, Nd) injects into cl+(∆k) = cl+(∆(qd)), which is in bijection with

Pic+(Ok) by the classical theorem of Gauss mentioned above. Since H1
fl(Z, Nd) and Pic+(Ok) have

the same cardinality by (2.8), we have obtained a natural bijection between them.

If d < 0, however, then Pic+(Ok) classifies only the positive definite forms; see the proof of [FT,

Theorem 58]. The subset H1
fl(Z, Nd)

+ of classes of positive forms injects into Pic+(Ok) = Pic Ok
as above. If [q] ∈ H1

fl(Z, Nd), then the isometry diag(
√
−1,
√
−1) shows that [−q] belongs to

H1
fl(Z,Od). Thus if d ≡ 1 (mod 4), then [−q] ∈ H1

fl(Z, Nd) by Proposition 5.5. This remains

true also in the case d ≡ 2, 3 (mod 4) by the decomposition of Lemma 5.6, since disc(−q) = ∆k.

Furthermore, since q realizes only non-negative values and −q realizes non-positive values, the two

forms q and −q cannot be Z-equivalent. Since every definite form is positive or negative, we have

{±1}×H1
fl(Z, Nd)

+ = H1
fl(Z, Nd), and we have just shown that this injects into {±1}×Pic+(Ok) =

cl+(∆(qd)). Again by (2.8), these sets have the same cardinality, so our injection is a bijection. �

The following statement generalizes the result of Gauss mentioned above to cases in which 4d

is not a fundamental discriminant, and, when d < 0, to forms that need not be positive definite.

It is also classical; see, for instance, [Cox, Exercise 7.23]. We prove it by modern methods, at the

price of ruling out discriminants of the form −3 · 4`. The theorem remains true in this case, but

Remark 5.16 shows that our cohomological argument must be modified in order to treat it. If D is

an integer that is not a perfect square, then define

ε̃(D) =

{
0 D > 0 and Nr(Z[

√
D]×) = {±1}

1 otherwise.
(5.8)

Theorem 5.20. For any integer D that is not a perfect square and not of the form D = −3 · 4`

for any ` ∈ N0, there is a bijection

cl+(4D) ∼= {±1}ε̃(D) × Pic(Z[
√
D]).

Moreover, if d 6∈ {0, 1,−3} is square-free, then cl+(4d) ∼= {±1}ε(d) × Pic(Z[
√
d]).

Proof. Since D is not a perfect square, it may be written uniquely in the form D = d(m′)2, where

d 6= 0, 1 is square-free and m′ ∈ N. Set m = 2m′ if d ≡ 1 mod 4 and m = m′ otherwise. Observe
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that Z[
√
D] = Od,m and qd,m = (1, 0,−D). Consider the exact sequence (2.3) for the basis Ωd,m:

1→ {±1}/Nr(O×d,m)→ H1
fl(Z, Nd,m)→ Pic Z[

√
D]→ 1.

The group H1
fl(Z, Nd,m) is equal to H1

fl(Z,O+
d,m) by Lemma 4.5, and hence is identified with cl+(4D)

by Lemma 5.15. The first part of our claim is immediate. For the second part, there is nothing

further to prove if d ≡ 2, 3 mod 4; in this case, ε(d) = ε̃(d) by definition. If d ≡ 1 mod 4 is square-

free, then we observed in Remark 5.12 that Nr(Z[
√
D]×) = Nr(O×d ), so again ε(d) = ε̃(d). This

concludes the proof. �

Proposition 5.21. For a square-free integer d 6∈ {0, 1} let md be the number of pairs [(a,±b, c)]

which are distinct in cl+(∆(qd)), and let ld be the number of such pairs in cl+(−∆(qd)). Let h+
d be

the narrow class number of Q(
√
d). Then

|H1
fl(Z,Od)| =


2µ(d)h+

d d ≡ 1 (mod 4)

2µ(d)h+
d + 2µ(−d)h+

−d −md − ld d ≡ 2 (mod 4)

2µ(d)h+
d + 2µ(−d) · 3η(d)h+

−d −md − ld d ≡ 3 (mod 4).

Proof. If d ≡ 1 (mod 4) then |H1
fl(Z,Od)| = |H1

fl(Z, Nd)| = h+
d · 2

µ(d), where the first equality is

Proposition 5.5 and the second comes from (2.8). Otherwise, use Lemma 5.6 and notice that if

d ≡ 2 (mod 4), then −d ≡ 2 (mod 4) as well, so N ′−d = N−d. On the other hand, if d ≡ 3 (mod 4),

then −d ≡ 1 (mod 4), and the claim follows. �

Remark 5.22. Let d ≡ 2 mod 4 be square-free. Then |H1
fl(Z,Od)| = |H1

fl(Z,O−d)| by Lemma 5.6.

However, we see from Proposition 5.21 that this observation does not readily imply any relation

between the class numbers hd and h−d. Indeed, the class numbers of real and imaginary quadratic

fields behave very differently. For instance, it is well known that only nine imaginary quadratic

fields have class number one, but the Cohen-Lenstra heuristics suggest that this should be true of

infinitely many real quadratic fields.

5.6. On the principal genus theorem. Theorem 5.19 also implies another classical result of

Gauss: the principal genus theorem. Recall that k = Q(
√
d), with d 6∈ {0, 1} square-free. Then

for any binary quadratic form of discriminant ∆k, the composition of q with itself belongs to the

principal genus, namely the genus of the norm form qd. Under the identification of Lemma 5.15,

composition of quadratic forms corresponds to multiplication in the abelian group H1
fl(Z,O+

d ); we

refer the reader to the discussion in [Knus, Section V.7.3] for details.
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Corollary 5.23. Let d 6∈ {0, 1} be square-free and m ≥ 0. For any class [q] ∈ H1
fl(Z,O+

d,m), the

class [q ⊗ q] belongs to the principal genus.

Proof. To alleviate the notation, we write N for Nd,m. We have seen in (3.4) that H1
fl(Zp, Np)

injects into H1(Qp, Np) for any p. As a result, by (3.1) and Lemma 4.5 we obtain that

Cl∞(O+
d,m) = Cl∞(N) = ker[H1

fl(Z, N)→ H1(Q, N)],

showing that Cl∞(O+
d,m) is the principal genus of q. Moreover, the quotient H1

fl(Z, N)/Cl∞(N) =

X1
Sr∪{∞}(Q, N) has exponent 2 by Proposition 3.3 and Remark 3.4. Recall that N is commutative,

so that H1
fl(Z, N) is an abelian group. Thus for any class [q] ∈ H1

fl(Z, Nd), the class of the tensor

product q ⊗ q lies in Cl∞(N) = Cl∞(O+
d,m). �

Remark 5.24. Proposition 3.3 shows that Cl∞(Nd,m) embeds as a subgroup in H1
fl(Z, Nd,m). If

d 6= −3, then the latter group is a disjoint union of classes of integral quadratic binary forms

of discriminant ∆(qd,m) of all genera. This embedding holds for any twisted form of qd,m, hence

the quotient H1
fl(Z, Nd,m)/Cl∞(Nd,m) 'X1

Sr∪{∞}(Q, Nd,m) is in bijection with the set of proper

genera of qd,m. Thus there are 2|Sr|−1 such proper genera, as was initially proved by Gauss; see

also [Ono, §5, Example 2] and [Wat, Corollary 16].

A. Appendix: Some explicit presentations of group schemes

In this section we will write down equations cutting out the algebraic groups Õd,m and O+
d,m

and use them to provide an explicit proof of Proposition 5.1, which describes their quotient.

Lemma A.1. Let d 6= 0, 1 be square-free and m ∈ N, and define the ideal Id,m ⊂ Z[α, β, γ, δ, t] of

a polynomial ring in five variables as follows. In Case (I), set

Id,m = (α2+αβ+cd,mβ
2−1, 2αγ+αδ+βγ+2cd,mβδ−1, γ2+γδ+cd,mδ

2−cd,m, (αδ−βγ)t−1, u2−u),

where cd,m was defined in (4.1) and u = 1− αγ − βγ − cd,mβδ.

In Case (II), define Id,m = (α2−cd,mβ2−1, αγ−cd,mβδ, γ2−cd,mδ2 +cd,m, (αδ−βγ)t−1, t2−1).

Then Õd,m = SpecZ[α, β, γ, δ, t]/Id,m.

Proof. We first treat Case (II), in which qd,m(x, y) = x2 − cy2; we write c for cd,m for brevity.

Consider the matrix

A =

(
α β
γ δ

)
.
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The identity qd,m ◦A = qd,m amounts to

qd,m = (αx+ γy)2 − c(βx+ δy)2 = (α2 − cβ2)x2 + (2αγ − 2cβδ)xy + (γ2 − cδ2)y2.

Equating the coefficients of x2, xy, and y2, and noting that A must be invertible, we obtain

Od,m = SpecZ[α, β, γ, δ, t]/(α2 − cβ2 − 1, αγ − cβδ, γ2 − cδ2 + c, (αδ − βγ)t− 1).

Observe that the identity c((αδ − βγ)2 − 1) = 0 is satisfied in Od,m. This can be seen by taking

determinants in the matrix equation ABqd,mA
t = Bqd,m corresponding to the condition qd,m ◦ A =

qd,m; alternatively, we leave it as an exercise for the reader to deduce this identity from the equations

cutting out Od,m. Therefore, (αδ − βγ)2 − 1 = 0 (or, equivalently, t2 − 1 = 0), in Õd,m. One now

checks explicitly that the ring Z[α, β, γ, δ, t]/(α2−cβ2−1, αγ−cβδ, γ2−cδ2+c, (αδ−βγ)t−1, t2−1)

is torsion-free, and this implies the claim in Case (II).

Now suppose that we are in Case (I), i.e. that d ≡ 1 mod 4 andm is odd. Then qd,m = x2+xy+cy2.

In this case, the condition qd,m ◦A = qd,m gives

qd,m =(αx+ γy)2 + (αx+ γy)(βx+ δy) + c(βx+ δy)2 =

(α2 + αβ + cβ2)x2 + (2αγ + αδ + βγ + 2cβδ)xy + (γ2 + γδ + cδ2)y2.

Hence we obtain

Od,m = SpecZ[α, β, γ, δ, t]/(α2+αβ+cβ2−1, 2αγ+αδ+βγ+2cβδ−1, γ2+γδ+cδ2−c, (αδ−βγ)t−1).

By similar considerations to the previous case, the identity c((αδ − βγ)2 − 1) = 0 holds in Od,m.

Set u = 1 − αγ − βγ − cβδ. Then one of the equations cutting out Od,m may be written as

2u = αδ − βγ + 1. Hence c((2u− 1)2 − 1) = 4c(u2 − u) = 0 in Od,m, and thus u2 − u = 0 in Õd,m.

Since the ring Z[α, β, γ, δ, t]/Id,m is torsion-free, the claim follows. �

Corollary A.2. Let d 6= 0, 1 be square-free and m ∈ N. Maintaining the notation of Lemma A.1,

we have

O+
d,m =

{
SpecZ[α, β, γ, δ, t]/(Id, u− 1) : Case (I)

SpecZ[α, β, γ, δ, t]/(Id, t− 1) : Case (II).

Proof. In all cases, the identity t = 1 is immediate from the definition of O+
d,m. In Case (I), this

implies that the identity 2u − 1 = 1 holds in O+
d,m, and hence so does u = 1. We leave the

verification that these rings are torsion-free to the reader. �

Remark A.3. It is an instructive exercise to verify Lemma 4.5 for the bases Ωd,m by showing that

the map x 7→ α, y 7→ β is an explicit isomorphism of commutative rings between the coordinate

ring of Nd,m and that of O+
d,m.
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With the previous results in hand, we can give an explicit proof of Proposition 5.1.

Proposition. Let d 6= 0, 1 be square-free and m ∈ N. Then

Õd,m/O
+
d,m '

{
Z/2 : Case (I)

µ
2

: Case (II).

Proof. The claim follows straightforwardly from the explicit presentations obtained in Lemma A.1

and Corollary A.2. In the course of the proofs of those statements, we showed that the relation

(αδ − βγ)2 − 1 = 0 always holds in Õd,m. Hence the determinant induces a map det : Õd,m → µ2

corresponding to the ring homomorphism Z[t]/(t2 − 1)→ Z[α, β, γ, δ, t]/Id,m sending t to αδ− βγ.

Now suppose we are in Case (II). If R is a Z-algebra, then the sequence of groups

1→ O+
d,m(R)→ Õd,m(R)

det→ µ
2
(R)→ 1

is exact. Indeed, the only part of this statement not immediate from Lemma A.1 is the surjectivity

of the determinant, obtained by observing that if x ∈ µ
2
(R), then diag(x, 1) ∈ Õd,m(R).

In Case (I), on the other hand, the determinant need not be surjective. To see this, recall from

the proof of Lemma A.1 that if A ∈ Õd,m(R), then detA = 2u−1 for u = 1−αγ−βγ−cd,mβδ ∈ R,

following our usual notation for matrix elements. Now consider the Z-algebra R = Z[t]/(t2 − 1);

it is, in fact, faithfully flat over Z of finite presentation. Observe that t ∈ µ
2
(R), but there is no

u ∈ R such that 2u− 1 = t. Thus the determinant map Õd,m(R)→ µ
2
(R) is not surjective.

Instead, consider the map D : Õd,m → Z/2 corresponding to the ring homomorphism Z[t]/(t2 −

t) → Z[α, β, γ, δ, t]/Id,m sending t to 1 − αγ − βγ − cd,mβδ. This notation reflects that D is the

Dickson morphism Dqd,m ; cf. [Con2, (C.2.2)]. We claim that

1→ O+
d,m(R)→ Õd,m(R)

D→ Z/2(R)→ 1

is an exact sequence of groups for any Z-algebra R. Indeed, if x ∈ Z/2(R), then

Ax =

(
1 0

1− x 2x− 1

)
∈ Õd,m(R)

satisfies D(Ax) = x, so ψ is surjective. It follows from Corollary A.2 that kerD = O+
d,m(R). �
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