Number Theory for Computer Scientists 89-256 Question Sheet 2 Due April 5, 2011 // 1 Nisan 5771

Please feel free to e-mail me at mschein@math.biu.ac.il with any questions.

- (1) Let  $a, b \in \mathbb{Z}$ , and let g = (a, b). We would like to find a pair  $(x, y) \in \mathbb{Z} \times \mathbb{Z}$  satisfying the equation ax + by = g. Explain why we may assume, without loss of generality, that  $a \ge b \ge 0$ . Prove that the following algorithm always terminates in finite time and always outputs a correct answer.
  - Step 1: If a = b, then output (x, y) = (1, 0) and terminate.
  - Step 2: Define  $a_0 = a$ ,  $b_0 = b$ ,  $x_0 = 1$ ,  $y_0 = 0$ ,  $r_0 = 0$ ,  $s_0 = 1$ . Define n = 0.
  - Step 3: If  $b_n = 0$ , then output  $(x, y) = (x_n, y_n)$  and terminate.
  - Step 4: If  $b_n \neq 0$ , then use the Euclidean algorithm to write  $a_n = qb_n + r$ , where  $0 \leq r < b_n$ . Then define:  $a_{n+1} = b_n$ ,  $b_{n+1} = r$ ,  $x_{n+1} = r_n$ ,  $y_{n+1} = s_n$ ,  $r_{n+1} = x_n qr_n$ , and  $s_{n+1} = y_n qs_n$ . Increment *n* by one, and return to Step 3.
  - Hint: In Step 4, observe that  $r = a_n qb_n = (x_n qr_n)a + (y_n qs_n)b$ .
- (2) Use the algorithm from the previous exercise to find a pair (x, y) such that 19x + 25600y = 1.
- (3) Suppose that Alice uses RSA and publishes the public key (n, e) = (25957, 19). Find the private key d.
- (4) If Bob sends Alice the encrypted message E(m) = 8236. What was the original message m? Do not use anything more powerful than a typical pocket calculator.
- (5) Suppose that Bob is telling Alice what he bought at the shuk. He has written a word in Hebrew as the element  $m \in \mathbb{Z}/n\mathbb{Z}$  using the scheme discussed in class (alef = 1, bet = 2, etc.). What did Bob buy?