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1 Introduction

Camellia [1] is a 128-bit Feistel block cipher with a user key length of 128,
192 or 256 bits, while MISTY1 [18] is a 64-bit Feistel block cipher with a 128-
bit user key. Both Camellia and MISTY1 were selected to be CRYPTREC [6]
e-government recommended ciphers in 2002 and NESSIE [19] block cipher se-
lections in 2003, and were adopted as ISO [9] international standards in 2005.
Since Camellia and MISTY1 are increasingly being used in many real-life cryp-
tographic applications, it is essential to continuing to investigate their security
against different cryptanalytic attack scenarios. For simplicity, we denote the
three versions of Camellia by Camellia-128/192/256, respectively.

Many cryptanalytic results on Camellia and MISTY1 have been published
[2,7,10,11,14,16,21,22,23,24,25,26]. In summary, the best cryptanalytic results
on Camellia without the FL functions are the truncated differential cryptanal-
ysis [12] on 8-round Camellia-128 [15], the impossible differential cryptanalysis
on 12-round Camellia-192 [25], and the linear [17] and impossible differential
cryptanalysis on 12-round Camellia-256 [21,25]; the best cryptanalytic result on
MISTY1 without the FL functions is the impossible differential cryptanalysis on
6-round MISTY1 [10].

Impossible differential cryptanalysis [3,13], as a special case of differential
cryptanalysis [5], uses one or more differentials with a zero probability, called
impossible differentials, which are usually built in a miss-in-the-middle man-
ner [4]. In the impossible differential attacks on Camellia and MISTY1 described
in [10,25], the general approach is to guess all the unknown required subkey bits
of a relevant round to partially decrypt (or encrypt) a candidate pair through the
round function; finally one checks whether the pair could produce the expected
difference just before (resp. after) the round.

In this paper, however, we observe that, due to the round structures of Camel-
lia and MISTY1, we can partially check whether a candidate pair could produce
the expected difference by guessing only a small fraction of the unknown re-
quired round subkey bits at a time, and do a series of partial checks by guessing
other fractions of the unknown required subkey bits, instead of guessing all the
unknown required subkey bits at once. Since some wrong pairs can be discarded
before the next guess for a different fraction of the required round subkey bits,
we can reduce the computational workload for an attack, and even more im-
portantly, we may break more rounds of a cipher. We call this the early abort
technique1. Taking advantage of the early abort technique, we improve the pre-
vious impossible differential attacks on 12-round Camellia-192 without the FL
functions and 6-round MISTY1 without the FL functions, and present impossi-
ble differential cryptanalysis of 11-round Camellia-128 without the FL functions
and 13-round Camellia-256 without the FL functions, following [10,25]. These are
the best published cryptanalytic results on Camellia and MISTY1. Table 1 com-
pares our new results with those previously known on Camellia and MISTY1,
where “none” means that the relevant block cipher has no FL function, “all”

1 Note that this name is also used for other attacks in some previous works.
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Table 1. Comparison of our new cryptanalytic results with those previously known on
Camellia and MISTY1

Cipher Type of Attack RoundsFL/FL−1 Data Time Source

Camellia-128 Square attack 6 none 211.7CP 2112 [8]
(18 rounds) Truncated differential 8 none 283.6CP 255.6 [15]

Impossible differential 7 none − − [22]
11 none 2120CP 283.4 Sect. 4

Camellia-192/256 Boomerang attack 9 all 2124ACPC2170 [21]
(24 rounds) Collision attack 9 none 213CP 2175.6 [24]

Square attack 10 none − 2186 [16]
Impossible differential 12 none 2120CP 2181 [25]

12 none 2119CP 2147.3 Sect. 4

Camellia-256 Square attack 9 all 260CP 2202 [26]
(24 rounds) Integral cryptanalysis 9 all 260.5CP 2202.2 [27]

Rectangle attack 10 all 2127CP 2241 [21]
Collision attack 10 none 214CP 2239.9 [24]
Differential 11 none 2104CP 2232 [21]
High-order differential 11 none 221CP 2255 [7]

11 all 293CP 2256 [7]
Square attack 11 none − 2250 [16]
Linear cryptanalysis 12 none 2119CP 2247 [21]
Impossible differential 13 none 2120CP 2211.7 Sect. 4

MISTY1 High-order differential 5 none 210.5CP 217 [23]
(8 rounds) Integral cryptanalysis 5 most 234CP 248 [14]

Slicing attack 4 all 222.25CP 245 [11]
Slicing attack+impossible4 all 227.2CP 281.6 [11]
Impossible differential 4 all 227.5CP 2116 [11]

6 none 254CP 261 [10]
6 none 239CP 2106 [10]
6 none 239CP 285 Sect. 5

CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and Ciphertexts
Time unit: Encryptions

means that it has all the FL functions, and “most” means that it has all the FL
functions except the ones in the final swap layer.

The rest of the paper is organised as follows. In the next section, we briefly
describe Camellia and MISTY1. In Section 3, we introduce the early abort tech-
nique in a general way. In Sections 4 and 5, we present our cryptanalytic results
on Camellia and MISTY1, respectively. Section 6 summaries this paper.

2 Preliminaries

Throughout the paper, we denote the bit-wise exclusive OR (XOR) operation
by ⊕, and bit string concatenation by ||.
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2.1 The Camellia Block Cipher

Camellia [1] takes a 128-bit plaintext P as input, and has a total of N rounds,
where N is 18 for Camellia-128, and 24 for Camellia-192/256. Its encryption
procedure is as follows.

1. L0||R0 = P ⊕ (KW1||KW2)
2. For i = 1 to N :

if i = 6 or 12 (or 18 for Camellia-192/256),
Li = FL(Li,KIi/3−1), Ri = FL−1(Ri,KIi/3);

else
Li = F(Li−1,Ki)⊕Ri−1, Ri = Li−1;

3. Ciphertext C = (RN ⊕KW3)||(LN ⊕KW4),

where KW , K and KI are 64-bit round subkeys, Li and Ri are 64 bits long,
and the F function comprises a XOR operation, then an application of 8 parallel
nonlinear 8×8-bit bijective S-boxes s1, s2, · · · , s8, and, finally, a linear P function.
As we consider the version of Camellia without the FL functions, we omit the
description of the two functions FL and FL−1; see [1] for their specifications.
The P function and its inverse P−1 are defined over GF (28)8 → GF (28)8, as
follows.

P =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




, P
−1 =




0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1




.

2.2 The MISTY1 Block Cipher

MISTY1 [18] takes a 64-bit plaintext P as input, and has a total of 8 rounds.
Its encryption procedure is as follows.

1. P = L0||R0, KL = KL1||KL2|| · · · ||KL10, KI = KI1||KI2|| · · · ||KI8,
KO = KO1||KL2|| · · · ||KO8.

2. For i = 1, 3, 5, 7:
Ri = FL(Li−1, KLi), Li = FL(Ri−1,KLi+1)⊕ FO(Ri, KOi,KIi),
Li+1 = Ri ⊕ FO(Li,KOi+1,KIi+1), Ri+1 = Li.

3. Ciphertext C = FL(R8,KL10)||FL(L8,KL9),

where KL, KI and KO are round subkeys, and the function FO takes as inputs
a 32-bit block X and two 32-bit subkeys KOi and KIi, and outputs a 32-bit
block Y , and is defined as follows (see [18] for details of the FL function).

1. X = XL0||XR0, KOi = KOi1||KOi2||KOi3||KOi4, KIi = KIi1||KIi2||KIi3.
2. For j = 1, 2, 3:

XRj = FI(XLj−1 ⊕KOij ,KIij)⊕XRj−1, XLj = XRj−1.
3. Y = (XL3 ⊕KOi4)||XR3.
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In the above description, the FI function takes a 16-bit block X and a subkey
KIij as inputs, and outputs a 16-bit block Y , computed as defined below.

1. X = XL0(9 bits)||XR0(7 bits), KIij = KIijL(7 bits)||KIijR(9 bits),
2. XL1 = XR0, XR1 = S9(XL0)⊕ Extnd(XR0),
3. XL2 = XR1 ⊕KIijR, XR2 = S7(XL1)⊕ Trunc(XR1)⊕KIijL,
4. XL3 = XR2, XR3 = S9(XL2)⊕ Extnd(XR2),
5. Y = XL3||XR3,

where S9 is a 9 × 9-bit bijective S-box, S7 is a 7 × 7-bit bijective S-box, the
function Extnd extends from 7 bits to 9 bits by concatenating two zeros on the
left side, and the function Trunc truncates two bits from the left side.

3 A General Description of the Early Abort Technique

Impossible differential cryptanalysis is based on one or more impossible differen-
tials, written α 9 β, and it usually treats a block cipher E : {0, 1}n×{0, 1}k →
{0, 1}n as a cascade of three sub-ciphers E = Ea ◦ E0 ◦ Eb, where E0 denotes
the rounds for which α 9 β holds, Eb denotes a few rounds before E0, and Ea

denotes a few rounds after E0. Given a guess for the subkeys used in Eb and Ea,
if a plaintext pair produces a difference of α just after Eb, and its corresponding
ciphertext pair produces a difference of β just before Ea, then this guess for the
subkey must be incorrect. Thus, given a sufficient number of matching plain-
text/ciphertext pairs, we can find the correct subkey by discarding the wrong
guesses.

When checking if a plaintext pair produces a difference of α just after Eb (or
its corresponding ciphertext pair produces a difference of β just before Ea), the
general approach is to guess all the unknown bits of the relevant round subkey
necessary to partially encrypt (resp. decrypt) the pair through the substitution
and diffusion layers; finally, one can check whether the pair could produce an
expected difference just after (resp. before) the round. To make matters more
specific, consider a general Feistel structure as in Camellia; as shown in Fig. 1,
we assume it has an nonlinear substitution consisting of m parallel S-boxes and
a linear diffusion function P. For simplicity, we assume the round in Fig. 1 is
just before E0; that is to say, the attacker is looking for a pair with difference
(∆Li+1||∆Ri+1) = α. According to previous attack procedures, due to the diffu-
sion of the P function, the attacker will guess all the required unknown subkey
bits (i.e. those corresponding to the active S-boxes) at a time, then encrypt the
left halves of the pair through the substitution layer to get the difference just
after the P function, and finally XOR it with the difference ∆Ri to check if it
has the difference α after the round.

However, we observe that the round structure can allow us to partially de-
termine whether a candidate pair could produce the expected difference α by
guessing only a small fraction of the required round subkey bits at a time, in-
stead of all of them simultaneously. More specifically, since we know the expected
difference α and the intermediate values of the pair just before the round, we
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∆Li ∆Ri

∆Li+1 ∆Ri+1

⊕

s1

s2

sm

P.
.
.

∆

k1 k2 km

⊕

· · ·

Fig. 1. A general Feistel structure

can compute the expected difference just before the P function, denoted by
∆(= P−1(∆Ri ⊕∆Li+1)), as the P function is usually linearly invertible. Only
if the expected difference ∆ appears after the substitution layer could the pair
produce the difference α after the round. Thus, in the following, we guess only
those of the required unknown subkey bits corresponding to one (or more) active
S-box, then encrypt the pair through the S-box, and finally check if it produces
the corresponding partial difference in ∆. If not, then the pair is not right, and
we can discard it immediately; otherwise, we guess another part of the required
round subkey bits corresponding to another active S-box, and check the pair
similarly. A pair is right only if it could produce the partial difference out of the
expected difference ∆ just before the P function, under every part of the required
round subkey bits. Some wrong pairs can be discarded before the next guess; by
this observation we can reduce the computational workload of an attack, and
even more significantly, we may break more rounds.

4 Impossible Differential Cryptanalysis of Reduced
Camellia

As Camellia is byte-oriented, we represent the 128 bits before (or after) a round
as 16 bytes, and denote the l-th byte of a subkey Ki by ki,l, (1 ≤ l ≤ 8).

Most recently, Wu et al. [25] presented an impossible differential cryptanaly-
sis of 12-round Camellia-192/256 without the FL functions, which is based on the
following 8-round impossible differentials: (0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0) 9
(h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where a and h are any two nonzero bytes.
See Fig. 2 for for details of these 8-round impossible differentials.

In this section, we present an impossible differential cryptanalysis on 13-
round Camellia-256, 12-round Camellia-192 and 11-round Camellia-128, follow-
ing the work described in [25]. These are the best published cryptanalytic results
on Camellia without the FL functions.
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P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

∆L6 = (h, 0, 0, 0, 0, 0, 0, 0)

∆L7 = (0, 0, 0, 0, 0, 0, 0, 0)

∆L0 = (0, 0, 0, 0, 0, 0, 0, 0)

∆L1 = (a, 0, 0, 0, 0, 0, 0, 0)

∆L2 = (b, b, b, 0, b, 0, 0, b)

∆L3 = (a⊕ c1, c2, c3, c4, c5, c6, c7, c8)

∆R0 = (a, 0, 0, 0, 0, 0, 0, 0)

K ◦ S

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕
∆L5 = (f, f, f, 0, f, 0, 0, f)

(b1, b2, b3, 0, b5, 0, 0, b8)

(c1, c2, c3, c4, c5, c6, c7, c8)

∆L8 = (h, 0, 0, 0, 0, 0, 0, 0) ∆R8 = (0, 0, 0, 0, 0, 0, 0, 0)

(e1, e2, e3, 0, e5, 0, 0, e8)

(d1, d2, d3, d4, d5, d6, d7, d8)

∆L4 = (h⊕ d1, d2, d3, d4, d5, d6, d7, d8)
P−1(X) = (b1 ⊕ f, b2 ⊕ a, b3 ⊕ a, a, b5 ⊕ a, 0, 0, b8 ⊕ a)

X = (c1 ⊕ a⊕ f, c2 ⊕ f, c3 ⊕ f, c4, c5 ⊕ f, c6, c7, c8 ⊕ f)

P−1(X)⇒ d6 = d7 = 0⇒ e2 = 0
contradiction!
←→ e2 6= 0

Fig. 2. 8-round impossible differentials of Camellia

4.1 Attacking 13-Round Camellia-256

We use the 8-round impossible differentials in Rounds 4 to 11. As every S-box has
a minimal nonzero probability of 2−7, an output difference (h, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0) of the 8-round impossible differentials propagates to at most 27

possible output differences (g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) after Round 12,
where g is nonzero. Then, every (g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) propagates
to at most (27)5 possible output differences after Round 13. Hence, there are at
most (28 − 1) · 27 · (27)5 ≈ 250 possible output differences after Round 13; we
denote them by the set ∆13.

We can use the early abort technique in the first two rounds and the last
round of the 13-round attack. Consider a plaintext pair (Pi = (L0

i , R
0
i ), Pj =

(L0
j , R

0
j )) with an output difference (∆L13,∆R13) belonging to ∆13. The dif-

ference just after the S-box substitution layer of Round 13 must have the form
(?, ?, ?, 0, ?, 0, 0, ?), where the question mark ? denotes an unknown byte differ-
ence (two bytes marked with ? may be different); and there must be a h such that
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P ⊕

K2 ◦ S P ⊕

K3 ◦ S P ⊕

K12 ◦ S P ⊕

K13 ◦ S P ⊕

8-round impossbile differentials

∆L11 = (h, 0, 0, 0, 0, 0, 0, 0) ∆R11 = (0, 0, 0, 0, 0, 0, 0, 0)

∆L12 = (g, g, g, 0, g, 0, 0, g)

∆13

δ13

i,j

∆L0 = P(?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0)

∆L1 = (u, u, u, 0, u, 0, 0, u)

∆L2 = (a, 0, 0, 0, 0, 0, 0, 0)

∆L3 = (0, 0, 0, 0, 0, 0, 0, 0)

∆R0 = (?, ?, ?, ?, ?, ?, ?, ?)

δ1

i,j

δ2

i,j

K1 ◦ S

Fig. 3. Impossible differential attack on 13-round Camellia-256

P−1(L13
i ⊕ L13

j ⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has the form (?, ?, ?, 0, ?, 0, 0, ?). h has 255
possible values, but only one of them satisfies the above condition. The reason
is as follows. If we assume there are two different values h1 and h2 that satisfy
the condition, then observe that P−1((h1, 0, 0, 0, 0, 0, 0, 0)⊕ (h2, 0, 0, 0, 0, 0, 0, 0))
also has the form (?, ?, ?, 0, ?, 0, 0, ?); note that the 4-th byte is 0; however,
by the P−1 function we know the 4-th byte should be h1 ⊕ h2 6= 0. This
gives a contradiction. On the other hand, P−1(R0

i ⊕ R0
j ⊕ (u, u, u, 0, u, 0, 0, u))

has a unique value in the first two bytes for every nonzero value of u, be-
cause, if we suppose that there are two values u1 and u2 such that P−1(R0

i ⊕
R0

j ⊕ (u1, u1, u1, 0, u1, 0, 0, u1)) ⊕ P−1(R0
i ⊕ R0

j ⊕ (u2, u2, u2, 0, u2, 0, 0, u2)) =
(0, 0, ?, ?, ?, ?, ?, ?), then we get P−1(u1⊕u2, u1⊕u2, u1⊕u2, 0, u1⊕u2, 0, 0, u1⊕
u2) = (0, 0, ?, ?, ?, ?, ?, ?); by the P−1 function we know that the first byte should
be u1 ⊕ u2, meaning that u1 = u2.

The above analysis enables us to give the following procedure for attacking
13-round Camellia-256. Fig. 3 illustrates the attack.

1. Choose 28 structures: a structure is a set of 2112 plaintexts Pi = (L0
i , R

0
i ),

with L0
i = P(x1, x2, x3, α4, x5, α6, α7, x8) ⊕ (x, β2, β3, β4, β5, β6, β7, β8) and

R0
i = (y1, y2, y3, y4, y5, y6, y7, y8), where x, xl and yl take all the possible

values in GF (28), and αl and βl are fixed to certain values in GF (28),
(i = 1, 2, · · · , 2112). In a chosen-plaintext attack scenario, obtain all their
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ciphertexts; we denote them by Ci = (L13
i , R13

i ), respectively. For different
values of (x1, x2, x3, x5, x8, x, y1, · · · , y8), the resultant 128-bit blocks are dif-
ferent; thus, there are 2112×2/2 = 2223 plaintext pairs (Pi, Pj) in a structure
(j = 1, 2, · · · , 2112), so the 28 structures yield a total of 2231 ciphertext pairs.
Keep only the pairs (Ci, Cj) with a difference belonging to ∆13. The expected
number of the remaining pairs is about 2231 · 250

2128 = 2153.
2. For every remaining ciphertext pair (Ci, Cj), compute P−1(L13

i ⊕ L13
j ⊕

(h, 0, 0, 0, 0, 0, 0, 0)) for all the 255 possible nonzero values of h. As discussed
earlier there is only one value of h such that P−1(L13

i ⊕L13
j ⊕(h, 0, 0, 0, 0, 0, 0, 0))

has the form (?, ?, ?, 0, ?, 0, 0, ?); we denote by δ13
i,j the value P−1(L13

i ⊕L13
j ⊕

(h, 0, 0, 0, 0, 0, 0, 0)) with the form (?, ?, ?, 0, ?, 0, 0, ?). Then, do as follows.
(a) For l = 1, 2, 3, 5, 8:

– Guess the byte k13,l of the subkey K13;
– For every remaining pair (Ci, Cj), partially decrypt the l-th byte of

(R13
i , R13

j ) through the sl S-box, and check if they have a difference
equal to the corresponding one-byte difference in δ13

i,j ; keep only the
qualified pairs. A proportion of about 1− 2−7 of the remaining pairs
will be discarded after every iteration.

(b) Guess the three bytes (k13,4, k13,6, k13,7) of the subkey K13, such that we
can get the intermediate values just after Round 12 for every remaining
pair.

3. Guess the byte k12,1 of the subkey K12. For every remaining ciphertext pair
(Ci, Cj), compute s1(R12

i,1⊕k12,1) and s1(R12
j,1⊕k12,1), and check if they have

a difference equal to L12
i,1⊕L12

j,1. Keep only the qualified pairs. The expected
number of the remaining pairs is about 2118 · 2−7 = 2111.

4. For every plaintext pair (Pi, Pj) corresponding to a remaining ciphertext pair
(Ci, Cj), compute P−1(R0

i ⊕R0
j⊕(u, u, u, 0, u, 0, 0, u)) for all the 255 possible

nonzero values of u; we denote the values by ∆1
i,j , respectively. Then, do as

follows.
(a) Guess the two bytes (k1,1, k1,2) of the subkey K1. For every plaintext

pair (Pi, Pj), partially encrypt the first two bytes of (L0
i , L

0
j ) through

the s1 and s2 S-boxes, and check if they have a difference equal to any
of the corresponding two-byte partial differences in ∆1

i,j . Keep only the
qualified pairs; as discussed earlier there is only one difference in ∆1

i,j

for a qualified pair, and we denote this difference from ∆1
i,j by δ1

i,j . As
there are 255 possible values in ∆1

i,j for every pair, the expected number
of the remaining pairs is about 2111 · 255

216 ≈ 2103.
(b) For l = 3 to 8:

– Guess the byte k1,l of K1;
– For every remaining pair (Pi, Pj), partially encrypt the l-th byte of

(L0
i , L

0
j ) through the sl S-box, and check if they have a difference

equal to the corresponding one-byte partial difference in δ1
i,j ; keep

only the qualified pairs. The difference δ1
i,j is already fixed in Step

4-(a), so it is expected that a proportion of about 1 − 2−8 of the
remaining pairs will be discarded after every iteration.



10

5. For every remaining plaintext pair (Pi, Pj), compute P−1(L0
i⊕L0

j⊕(a, 0, 0, 0,
0, 0, 0, 0)) for all the 255 possible nonzero values of a. Similarly, we know
there is only one value of a such that P−1(L0

i ⊕ L0
j ⊕ (a, 0, 0, 0, 0, 0, 0, 0))

has the form (?, ?, ?, 0, ?, 0, 0, ?); we denote by δ2
i,j the value P−1(L0

i ⊕ L0
j ⊕

(a, 0, 0, 0, 0, 0, 0, 0)) with the form (?, ?, ?, 0, ?, 0, 0, ?). Then, do as follows.
(a) For l = 1, 2, 3, 5, 8:

– Guess the byte k2,l of the subkey K2;
– For every remaining pair (Pi, Pj), partially encrypt the l-th byte of

(L1
i , L

1
j ) through the sl S-box, and check if they have a difference

equal to the corresponding one-byte partial difference in δ2
i,j ; keep

only the qualified pairs. Similarly, it is expected that a proportion
of about 1− 2−8 of the remaining pairs will be discarded after every
iteration.

(b) Guess the three bytes (k2,4, k2,6, k2,7) of K2, so that we can get the
intermediate values just after Round 2 of every remaining pair.

6. Guess the byte k3,1 of the subkey K3. For every plaintext pair (Pi, Pj),
partially encrypt the first bytes of (L2

i , L
2
j ) through the s1 S-box, and check

if they have a difference equal to L1
i,1 ⊕ L1

j,1. If there exists a plaintext
pair that passes this test, then discard this subkey guess, and try another;
otherwise, record the subkey guess. The expected number of the remaining
subkey guesses is about 2208 · (1− 2−8)2

15 ≈ 2208 · e−28 ≈ 224.
7. For every recorded subkey guess (K1,K2), exhaustively search for the re-

maining 128 key bits.

In Step 1, choosing the qualified pairs requires about 2120 · 120
32 = 2121.9

memory accesses if conducted on a 32-bit computer; actually, it can be done
more efficiently using computers of today. Step 2 has a time complexity of about∑4

i=0(2·2153−7·i·28·(i+1)· 1
13 · 18 )+2·2118·264· 1

13 · 38 ≈ 2177.9 decryptions. Step 3 has a
time complexity of about 2·2118 ·272 · 1

13 · 18 ≈ 2184.3 decryptions. Step 4 has a time
complexity of about 2·2111 ·288 · 1

13 · 28 +
∑5

i=0(2·2103−8·i ·288+8·(i+1) · 1
13 · 18 ) ≈ 2196.3

encryptions. Step 5 has a time complexity of about
∑4

i=0(2 ·255−8·i ·2136+8·(i+1) ·
1
13 · 1

8 ) + 2 · 215 · 2200 · 1
13 · 3

8 ≈ 2210.9 encryptions. Step 6 has a time complexity
of about 2 · 2208 · [1 + (1− 2−8) + · · ·+ (1− 2−8)2

15
] · 1

13 · 1
8 ≈ 2210.3 encryptions.

It is expected that Step 7 requires 224 · 2128 = 2152 trial encryptions to find the
correct 256 key bits. Therefore, the attack has a total time complexity of about
2211.7 13-round Camellia-256 computations.

4.2 Attacking 12-Round Camellia-192

The impossible differential cryptanalysis of 12-round Camellia-192 due to Wu et
al. [25] can be improved in the following several ways.

– Take 27 structures in Step 2 (of Wu et al.’s attack). Thus, the expected
number of the remaining plaintext pairs is about 2118. As a result, the time
complexity of Step 3 is about 2·2118 ·28 · 1

12 · 18 ≈ 2120.4 12-round Camellia-192
computations.
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– Use the early abort technique for Round 1 in Step 4, just as we do in Step
4 of the attack in Section 4.1. This Step has a time complexity of about
2 · 2110 · 224 · 1

12 · 2
8 +

∑5
i=0(2 · 2102−8·i · 224+8·(i+1) · 1

12 · 1
8 ) ≈ 2131.4 12-round

Camellia-192 computations.
– Use the early abort technique for Round 2 in Step 5, just as we do in Step

5 of the attack in Section 4.1. This Step has a time complexity of about∑4
i=0(2 · 254−8·i · 272+8·(i+1) · 1

12 · 1
8 ) + 2 · 214 · 2136 · 1

12 · 3
8 ≈ 2146 12-round

Camellia-192 computations.
– In Step 6, it is expected that about 2144 · (1 − 2−8)2

14 ≈ 252 guesses for
(K1,K2, k3,1, k12,1) remain. Then, for every remaining guess for (K1, K2),
exhaustively search for the remaining 64 key bits, which is expected to require
2116 trial encryptions to find the 192 key bits. This step has a time complexity
of about 2 · 2144 · [1 + (1− 2−8) + · · ·+ (1− 2−8)2

14
] · 1

12 · 1
8 + 2116) ≈ 2146.4

12-round Camellia-192 computations.

Therefore, the attack requires 2119 chosen plaintexts, and has a total time
complexity of about 2147.3 12-round Camellia-192 computations, dramatically
lower than the time complexity of 2181 for Wu et al.’s attack.

4.3 Attacking 11-Round Camellia-128

To attack 11-round Camellia-128, we use the 8-round impossible differentials in
Rounds 3 to 10, and use the early abort technique in the first round. The attack
requires 2120 chosen plaintexts, and has a time complexity of about 283.4(≈
2 · 271 · 215 · 1

11 · 3
8 + 2 · 280 · [1 + (1 − 2−8) + · · · + (1 − 2−8)2

14
] · 1

11 · 1
8 + 264)

11-round Camellia-128 computations.

5 Impossible Differential Cryptanalysis of 6-Round
MISTY1 without FL Functions

In 2001, Kühn [10] presented an impossible differential cryptanalysis on 6-round
MISTY1 (without the FL functions); the attack requires 239 plaintexts and has
a time complexity of 2106 6-round MISTY1 computations. Kühn also presented
another impossible differential cryptanalysis on 6-round MISTY1, which requires
more plaintexts but less computations. Both the attacks are based on the fol-
lowing generic 5-round impossible differentials for Feistel networks with bijective
round structures: (0, 0, αl, αr) 9 (0, 0, αl, αr), where (αl, αr) 6= (0, 0).

Kühn’s attacks use a round structure equivalent to the original one, which is
illustrated in Fig. 4; let [KI6j ]15−9 denote the bits from 9 to 15 of KI6j , [KI6k]8−0

denote the bits from 0 to 8 of KI6k, and KI ′6j = [KI6j ]15−9||00||[KI6j ]15−9, the
equivalent subkeys are as follows.

AKO6k = KO6k, k = 1, 2.

AKO63 = KO62 ⊕KO63 ⊕KI ′61.

AKO64 = KO62 ⊕KO64 ⊕KI ′61 ⊕KI ′62.
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AKO65 = KO62 ⊕KI ′61 ⊕KI ′62 ⊕KI ′63.

AKI6k = [KI6k]8−0, k = 1, 2, 3.

FI

⊕AKO61

AKI61

⊕

FI

⊕ AKO62

AKI62

⊕

FI

AKO63

AKI63

⊕

⊕AKO64

αrαl

βrβl

δ
i,i′

The FO function

⊕

⊕

⊕

The FI function

⊕ AKI6j

S9

S9

S7

Extnd

Extnd

Trunc

9 bits

9 bits

7 bits

7 bits

⊕

⊕ AKO65

Fig. 4. Impossible differential attack on 6-round MISTY1

MISTY1 has a modified Feistel structure, which is rather different from the
“regular” one. Nevertheless, the MISTY1 round structure also allows us to use
the early abort technique. As a result, we can improve the first attack due to
Kühn, as follows.

1. Choose 27 structures of 232 plaintexts Pi = (x, y, ai, bi) each, where x and y
are 16-bit fixed constants, and ai and bi take all the possible 216 values. Keep
only the pairs (Pi, Pi′) with an output difference (?, ?, αl, αr). The expected
number of the remaining ciphertext pairs is 27 · 232×2

2 ·2−32 = 238. (This step
is exactly the same as that in Kühn’s attack.)

2. Guess the 41 subkey bits (AKO61, AKI61,AKO62) in Round 6. For every
remaining ciphertext pair (Ci, Ci′), the 32-bit difference in the left side is
known, say (βl, βr), (βl and βr are 16-bit long), so we can compute the
difference just after the second FI in the FO by using (AKO61,AKI61); we
denote the difference by δi,i′ , (see Fig. 4). As a consequence, using δi,i′ we
can compute the difference just after the S7 S-box in the second FI by using
AKO62. On the other hand, we know the two inputs to this S7 S-box for the
pair, whose difference is the right 7 bits of αr. Finally, keep the pair if the
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inputs to the S7 produce the output difference obtained earlier. This imposes
a 7-bit filtering condition; thus about 238 · 2−7 = 231 pairs are expected to
remain for every subkey guess. This step has a time complexity of about
2 · 238 · 241 · 1

6 · 2
3 ≈ 277 6-round MISTY1 computations.

3. Guess the 9 subkey bits AKI62. For a remaining pair (Ci, Ci′), with δi,i′ we
can compute the output difference of the second S9 S-box in the second FI.
Keep the pairs which produce these output differences. The expected number
of the remaining pairs is 231 · 2−9 = 222. This step has a time complexity of
about 2 · 231 · 250 · 1

6 · 1
3 ≈ 278 6-round MISTY1 computations.

4. Guess the 16 subkey bits AKO63. For a remaining pair, with (βl, βr) we
can compute the difference just after the S7 S-box of the third FI by using
AKO63. Keep the pairs which produce these output differences. The expected
number of the remaining pairs is 222 · 2−7 = 215. This step has a time
complexity of about 2 · 222 · 266 · 1

6 · 1
3 ≈ 285 6-round MISTY1 computations.

5. Guess the 9 subkey bits AKI63, and check whether or not there is a pair such
that the difference just after the third FI is βl ⊕ βr. If there is such a pair,
the guess for (AKO61, AKI61, AKO62, AKI62, AKO63, AKI63) is impossible,
discard it, and guess another. The expected number of the remaining guesses
for the 75 subkey bits is 275 · (1− 2−9)2

15 ≈ 2−17; thus we can assume it is
the correct one. This step has a time complexity of about 2 · 275 · [1 + (1 −
2−9) + · · ·+ (1− 2−9)2

15
] · 1

6 · 1
3 ≈ 281 6-round MISTY1 computations.

Therefore, this attack has a total time complexity of about 285 6-round
MISTY1 computations, significantly lower than the complexity of 2106 for Kühn’s
attack.

6 Summary

In this paper, we observe that, when conducting an impossible differential crypt-
analysis on Camellia and MISTY1, their round structures allow us to partially
determine whether a candidate pair is right by guessing only a small fraction
of the unknown required subkey bits of a relevant round at a time, instead of
all of them. This can reduce the computation complexity of an attack, and may
allow us to break more rounds. In light of the early abort technique, we improve
the previous impossible differential attacks on 12-round Camellia-192 without
the FL functions and 6-round MISTY1 without the FL functions, and present
impossible differential cryptanalysis of 11-round Camellia-128 without the FL
functions and 13-round Camellia-256 without the FL functions, obtaining the
best published cryptanalytic results on Camellia and MISTY1.
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