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Abstract. Serpent is an SP Network block cipher submitted to the AES
competition and chosen as one of its five finalists. The security of Serpent
is widely acknowledged, especially as the best known attack so far is a
differential-linear attack on only 11 rounds out of the 32 rounds of the
cipher.
In this paper we introduce a more accurate analysis of the differential-
linear attack on 11-round Serpent. The analysis involves both theoretical
aspects as well as experimental results which suggest that previous at-
tacks had overestimated complexities. Following our findings we are able
to suggest an improved 11-round attack with a lower data complexity.
Using the new results, we are able to devise the first known attack on
12-round Serpent.

1 Introduction

Serpent [1] is one of the five block ciphers chosen as AES finalists. The cipher has
an SP Network structure repeating 32 rounds consisting of 4-bit to 4-bit S-boxes
and a linear transformation. The block size is 128 bits, and the supported key
size is of any length between 0 and 256 bits.

Since its introduction, Serpent was the target of extensive cryptanalytic ef-
forts [5–7, 9, 13]. Despite that, the best previously known attack is on 11-round
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Serpent. In [13] a 256-bit key variant of 9-round Serpent is attacked using the
amplified boomerang attack. The attack requires 2110 chosen plaintexts and its
time complexity is 2252 9-round Serpent encryptions.

In [5] the rectangle attack is applied to 256-bit key 10-round Serpent. The
attack uses 2126.8 chosen plaintexts and has a time complexity of 2217 memory
accesses.1 The 10-round rectangle attack is improved in [7] and the improved
attack requires 2126.3 chosen plaintexts with time complexity of 2173.8 memory
accesses. A similar boomerang attack which requires almost the entire code book
is also presented in [7].

In [6] a linear attack on 11-round Serpent is presented. The attack exploits a
9-round linear approximation with bias of 2−58. The attack requires data com-
plexity of 2118 known plaintexts and time complexity of 2214 memory accesses.

The linear approximation presented in [6] is combined with a differential
in [9] to construct a differential-linear attack on 11-round Serpent. The data
complexity of this attack is 2125.3 chosen plaintexts and the time complexity is
about 2139.2 11-round Serpent encryptions. The first attack on 10-round Serpent
with 128-bit keys is also presented in [9]. The 10-round attack requires 2107.2

chosen plaintexts and 2125.2 10-round Serpent encryptions.

We note that Serpent is also very common example in research about the
use of multiple linear approximations in linear cryptanalysis [11, 12]. This line of
research actually shows that the use of multiple linear approximations can give
a great advantage from the data complexity point of view, but not necessarily
from the time complexity point of view.

In this paper we present a more accurate analysis of the 11-round attack
from [9], showing that the attack requires less data than previously believed
(namely, 2121.8 chosen plaintexts). This leads to an immediate reduction in the
time complexity of the attack (to 2135.7 encryptions). We then switch the order
of the differential and the linear parts in the differential-linear approximation.
The new 9-round differential-linear approximation is used to construct a new
11-round attack that uses 2113.7 chosen ciphertexts and has a running time of
2137.7 memory accesses.

The reduced data and time complexities allow to extend the 11-round attack
from [9] by one extra round, and obtain the first 12-round attack on Serpent.
This attack requires 2123.5 chosen plaintexts and has a time complexity of 2249.4

encryptions.

Finally, we present a novel related-key attack applicable to a modified variant
of Serpent in which the round constants are removed from the key schedule
algorithm. We note that, while the removal of these constants changes the cipher
into a more symmetric structure, the repeated core, i.e., 8-round Serpent, is
still relatively secure. The (still) non-trivial key schedule and the strong keyed
permutation make most related-key attacks are quite likely to fail.

We organize this paper as follows: In Section 2 we present a short description
of Serpent. Section 3 describes the differential-linear technique. We present the

1 In [5] a different number is quoted, but in [7] this mistake is identified, and the
correct time complexity of the algorithm is presented.
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differential-linear attacks of this paper (the improved 11-round attack and the
new 12-round attack) in Section 4. Section 5 describes a related-key attack on a
modified variant of Serpent. We summarize our results and compare them with
previous results on Serpent in Section 6. The appendices contain the differentials
and the linear approximation used in the attacks.

2 A Description of Serpent

In [1] Anderson, Biham and Knudsen presented Serpent. Serpent has a block
size of 128 bits and it accepts 0–256 bit keys. Serpent is an SP Network block
cipher with 32 rounds. Each round is composed of key mixing, a layer of S-boxes
and a linear transformation. There is an equivalent bitsliced description which
is more efficient and easier to describe.

In our description we adopt the notations of [1] in the bitsliced version. The
intermediate value before round i is denoted by B̂i (a 128-bit value), where
the 32 rounds are numbered 0, 1, . . . , 31. Each B̂i is composed of four 32-bit
words X0, X1, X2, X3.

Serpent uses a set of eight 4-bit to 4-bit S-boxes. Each round function Ri uses
a single S-box applied 32 times in parallel. For example, R0 uses 32 copies of S0 in
parallel. The first copy of S0 takes the least significant bits from X0, X1, X2, X3

and returns the output to these bits. The set of eight S-boxes is used four times.
S0 is used in round 0, S1 is used in round 1, etc. After using S7 in round 7,
S0 is used again in round 8, then S1 in round 9, and so on. In the last round
(round 31) the linear transformation is omitted and another key is XORed.

The cipher may be formally described by the following equations:

B̂0 := P

B̂i+1 := Ri(B̂i) i = 0, . . . , 31

C := B̂32

where

Ri(X) = LT (Ŝi(X ⊕ K̂i)) For i = 0, . . . , 30

Ri(X) = Ŝi(X ⊕ K̂i) ⊕ K̂32 For i = 31

where Ŝi is the application of the S-box S(i mod 8) thirty two times in parallel,
and LT is the linear transformation of Serpent.

As our attack do not use explictly the properties of the linear transformation
or the key schedule algorithm, we omit their description and refer the interested
reader to [1].

3 Differential-Linear Cryptanalysis

Differential cryptanalysis [2] analyzes ciphers by studying the development of
differences through the encryption process. A differential attack is mostly con-
cerned with an input difference ΩP for which an output difference ΩT holds with
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high enough probability (even though there are variants which use the fact that
the probability is zero).

Linear cryptanalysis [16] analyzes the cipher by approximating the encryption
process in a linear manner. The attacker finds a linear approximation λP · P ⊕
λT · T which holds with probability 1/2 + q (q might be negative) and gathers
many plaintexts and ciphertexts. By checking whether the approximation holds,
one can deduce subkey information or distinguish the cipher from a random
permutation.

In 1994, Langford and Hellman [15] showed that both kinds of analysis can
be combined together in a technique called differential-linear cryptanalysis. The
attack uses a differential that induces a linear relation between two intermediate
encryption values with probability one. In [8, 14] this technique is extended to
the cases where the probability of the differential part is smaller than one.

We use notations based on [2, 4] for differential and linear cryptanalysis,
respectively. In our notations ΩP , ΩT are the input and output differences of
the differential characteristic, and λT , λC are the input and output subsets
(denoted by bit masks) of the linear approximation.

Let E be a block cipher described as a cascade of two sub-ciphers E0 and E1,
i.e., E = E1◦E0. Langford and Hellman suggested to use a truncated differential
ΩP → ΩT for E0 with probability 1. To this differential they concatenate a linear
approximation λT → λC for E1 with probability 1/2+q (or bias q). Their attack
requires that the bits masked in λT have a zero difference in ΩT .

If we take a pair of plaintexts P1 and P2 that satisfy P1⊕P2 = ΩP , then after
E0, λT ·E0(P1) = λT ·E0(P2). This follows from the fact that E0(P1) and E0(P2)
have a zero difference in the masked bits according to the output difference of
the differential.

Recall that the linear approximation predicts that λT · T = λC · E1(T ) with
probability 1/2+q. Hence, λT ·E0(P1) = λC ·E1(E0(P1)) with probability 1/2+q,
and λT · E0(P2) = λC · E1(E0(P2)) with probability 1/2 + q. As the differential
predicts that λT · E0(P1) = λT · E0(P2), then with probability 1/2 + 2q2, λC ·
C1 = λC · C2 where C1 and C2 are the ciphertexts corresponding to P1 and P2,
respectively, i.e., Ci = E1(E0(Pi)).

This fact allows to construct differential-linear distinguishers based on en-
crypting many plaintext pairs and checking whether the ciphertexts agree on
the parity of the output subset. The data complexity of the distinguishers is
O(q−4) chosen plaintexts. The exact number of plaintexts is a function of the
desired success rate, and of the number of possible subkeys.

In [8] Biham, Dunkelman and Keller proposed a way to deal with differentials
with probability p < 1. In case the differential is satisfied (probability p), the
above analysis remains valid. The assumption for the remaining 1 − p of the
pairs is that the input subset parities are distributed randomly. In that case, the
probability that a pair with input difference ΩP will satisfy λC ·C1 = λC ·C2 is
p(1/2 + 2q2) + (1 − p) · 1/2 = 1/2 + 2pq2.

Furthermore, in [8] it is shown that the attack can still be applicable if ΩT ·
λT = 1, i.e., the differential predicts that there is a difference in approximated
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bits. In this case, the analysis remains valid, but instead of looking for the
instances for which λT · C1 = λT · C2, we look for the cases when λT · C1 6=
λT · C2. As the analysis remains the same given a pair of plaintexts with the
input difference ΩP , the probability that the pair disagrees on the output subset
parity is 1/2 + 2pq2. Another interesting result is that the attack still applies
even when ΩT ·λT is unknown, as long as its value is fixed. The data complexity
of the enhanced differential-linear attack is O(p−2q−4).

4 Differential-Linear Attacks on Serpent

We first recall the 11-round attack from [9] which we use as a starting point of
our research. We then continue to improve the 11-round attack by reducing the
data complexity by a factor of about 28. Our main results follow from a small
change in the linear approximation, which takes into account the huge difference
between the number of active S-boxes and the number of pairs. Finally, we extend
the 11-round attack to 12 rounds.

4.1 The Previous Attack on 11-Round Serpent

The attack from [9] is a differential-linear attack using a 9-round differential-
linear approximation for rounds 2–10 composed of a 3-round differential and
a 6-round linear approximation. The input difference of the 3-round differen-
tial is ΩP = 0000 0000 0000 0000 0000 0000 4005 0000x which with prob-
ability 2−6 does not affect bits 1 and 117 at the entrance of round 5. The
6-round linear approximation starts with these bits, and the output mask is
λC = 0000 1000 0000 0000 5000 0100 0010 0001x. The bias of the approxima-
tion is 2−27, and thus the total bias of the differential-linear approximation is
2pq2 = 2·2−6·(2−27)2 = 2−59. We describe the differential and the approximation
in Appendices A and B, respectively.

There are 5 active S-boxes in the round before the differential-linear approx-
imation and 7 active S-boxes afterward. Thus, the attacker uses structures of
220 chosen plaintexts each (covering the five active S-boxes), thus resulting in
239 pairs (of which 219 are expected to have difference ΩP at the entrance to
round 1). After generating sufficiently many such structures, the attacker uses
the following algorithm: For each guess of the subkey in round 0 that enters the
5 active S-boxes, the attacker partially encrypts all the plaintexts, and finds all
the plaintext pairs with input difference ΩP . Then, for each of these pairs, and
for each guess of the subkey in round 10, the attacker checks whether the partial
decryption of the pair satisfies the approximation or not.

The last step is done in an optimized way using a table look-up. We note
that for each pair only 7 S-boxes are decrypted. Thus, there are 28 bits from
each of the two ciphertexts that are being decrypted (under a subkey guess
of 28 bits). Thus, instead of repeatedly decrypting the same values under the
same subkey guess, the attacker counts for each subkey guess of round 1 how
many times each of the 56-bit ciphertext values (the 28 bits from each of the
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two paired ciphertexts) appears. Then, by performing 228 trial encryptions for
each of these counters, the attacker is able to deduce how many pairs satisfy the
approximation.

In [9] the above attack is applied using 2125.3 plaintexts (which compose 2124.3

pairs). The time complexity is mostly dominated by the division into pairs, i.e.,
the partial encryption of 2125.3 values under 220 possible subkeys. Repeating the
analysis done in [9] and using the success probability formula establishedin [17]
we have found out that for 2122.3 pairs, the success probability of the attack is
expected to be about 84%. Thus, the actual data and time complexity of the
original 11-round attack is 2123.3 chosen plaintexts, and the time complexity is
2137.2 encryptions.

We have experimentally verified the differential-linear property with a 3-round
differential and the first round of the linear approximation. While the expected
bias for this shortened approximation is 2 · 2−6(·2−5)2 = 2−15, we found out
that the bias of the shortened differential-linear approximation is 2−13.75. We
performed 100 experiments, where in each experiment 236 pairs with input dif-
ference ΩP were encrypted, and the intermediate encryption values were checked
with respect to whether the parity of the output subset is the same or not. The
standard deviation of the bias was 2−18.87.

The difference between the expected value and the actual value follows the
fact that even when the differential is not satisfied, and a difference enters one
of the approximated S-boxes, the output mask is still biased. This means that
the assumption that for pairs which do not follow the differential, there is no
bias from 1/2 with respect to whether the approximations hold simultaneously
for the two intermediate values, does not hold.

By assuming the piling-up lemma [16] to hold for the remainder of the linear
approximation, we expect that the actual bias of the 9-round differential-linear
approximation is also 21.25 times higher than 2−59, i.e., the probability that two
pairs with input difference ΩP have the same parity in λC is 1/2+2−57.75. Taking
this into account shows that the actual data complexity required for the original
11-round attack is 2121.8 chosen plaintexts, and that the actual time complexity
is 2135.7 encryptions.

4.2 Further Improvements of the 11-Round Attack

We first note that the attack can be easily improved by using the optimization
ideas performed in the original attack also in the differential side of the distin-
guishers ,i.e., in round 1. For each subkey guess, we can build a list of the pairs
according to the value in the 20 bits which enter the five active S-boxes. Thus,
let P1 and P2 be a pair under some subkey guess, and flip a bit which does not
enter an active S-box in both plaintexts to obtain P ′

1 and P ′

2, respectively. It is
obvious that P ′

1 and P ′

2 are actually a pair, without any need to partially encrypt
them. Thus, it is possible to improve the attack from [9] to be 220 ·2121.8 = 2141.8

memory accesses rather than 2135.7 11-round encryptions.
The second improvement is based on the observation that the attacker has

to process 2121.8 plaintexts/ciphertexts, and thus, the time complexity of the
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partial decryption at round 11 (which is about 228 · 228 partial decryptions and
284 memory accesses for a subkey guess of round 1) can be increased without
affecting the time complexity of the attack. This can be achieved by inverting
the order of the differential and the linear approximation. If we use a 3-round
differential for rounds 11–13 (with probability 2−6) and the linear approximation
for rounds 5–10 as before (but in the decryption direction), then the linear ap-
proximation can be improved (increasing its bias by a factor of 2), thus reducing
the data complexity of the attack, and as a consequence the time complexity
as well. The change in the linear approximation is changing one of the approx-
imations in round 5 to activate more S-boxes in the round before in exchange
for a higher bias. The new 3-round differential for rounds 11–13 is presented in
Appendix A.

We experimentally verified that the bias in the number of pairs with cipher-
text difference ΩC having the same parity in the input of the differential is 2−7.
When we decrypted one more round, and applied the last round of the linear
approximation we expected a bias of 2pq2 = 2 · 2−6 · (2−6)2 = 2−17. However,
for 100 different keys, we have observed a bias of 2−14 (we used 236 pairs in each
experiment, and the mean value was 2−13.93 with standard deviation of 2−18.92).
Assuming that the remaining rounds behave independently, the expected bias
of the entire 9-round differential-linear approximation in the inverse direction is
2−54.

The difference between the expected and the computed values follows from
the correlation between the differential and the linear approximation. It appears2

that in about half of the pairs satisfying the differential, the input difference in at
least one of the five active S-boxes in the first round of the linear approximation is
zero. As a result, the bias of the differential-linear approximation for these pairs
is much higher, and this causes the higher bias of the overall differential-linear
approximation.

Thus, the improved 11-round attack is as follows:

1. Select N = 2113.7 ciphertexts, consisting of 289.7 structures, each is chosen
by selecting:
(a) A ciphertext C0.
(b) The ciphertexts C1,. . . ,C224

−1 which differ from C0 by all the 224 − 1
possible (non-empty) subsets of the twenty four bits which enter the 6
active S-boxes in round 14.

2. Decrypt these ciphertexts under the unknown key K.
3. For each value of the 24 bits of K14 entering these 6 S-boxes:

(a) Initialize an array of 272 counters to zeroes.
(b) Partially decrypt for each ciphertext the 6 active S-boxes in round 14

and find the pairs which satisfy the difference ΩC after round 13.
(c) Given those 2112.7 pairs, perform for each ciphertext pair: Let extract36

be the function that extracts the 36 bits which enter the 9 active S-boxes
in round 4, then for each pair P, P ′ increment the counter corresponding
to extract36(P )||extract36(P

′).

2 We have verified this claim experimentally.
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(d) For every 36-bit guess of the subkey entering these S-boxes, compute the
parity of the corresponding partial decrypted pairs, and store the most
biased guess for these 36 subkey bits (along with the guess of K14).

4. Output the subkey combination with the largest deviation from N/2.

The data complexity of the attack is 2113.7 chosen plaintexts. The time com-
plexity of the attack is dominated mainly by Step 3 which is repeated 224 times.
For each of these guesses the attacker first identifies the pairs (using tables) and
has to perform 2113.7 memory accesses to compute extract36 for all the pairs
(Step 3(c)) and about 2108 memory accesses in Step 3(d), which means that the
total time complexity of the attack is 2137.7 memory accesses. Again, using the
success formula found in [17], for 2113.7 chosen plaintexts, the probability that
the right key has the largest bias is about 93%.

The memory complexity of the attack is 224 · 272 = 296 counters. As the
attack is repeated 224 times (once for each guess of K14), we can either store all
the data, i.e., 2113.7 values, or store for each such guess the number of pairs. The
second way is more efficient, as it allows analyzing each structure independently
of others, and discarding it once the analysis is done. This approach has no
impact on the data complexity or the time complexity, but it reduces the memory
complexity to 296 counters, each of up to 64 bits, or a total of 299 bytes.

4.3 12-Round Differential-Linear Attack

We now present a differential-linear attack on 12-round Serpent. The attack is
based on the original 11-round attack (in the forward direction) and uses the
fact that a pair which satisfies the input difference of the differential has at most
28 active S-boxes in round 0. Thus, it is possible to change the attack algorithm
a bit and obtain a 12-round attack against Serpent with 256-bit keys.

We have tried all the possible input differences to round 1 that lead to the
difference LT−1(ΩP ) = 2000 0000 0000 01A0 0E00 4000 0000 0000x. This
difference is not affected by S-boxes 2, 3, 19, and 23, i.e., these S-boxes do
not affect the active bits of LT−1(ΩP ). Thus, we can construct structures of
plaintexts which take this fact into consideration and obtain a 12-round attack
on Serpent:

1. Select N = 2123.5 plaintexts, consisting of 211.5 structures, each is chosen by
selecting:
(a) Any plaintext P0.
(b) The plaintexts P1,. . . ,P2112

−1 which differ from P0 by all the 2112 − 1
possible (non-empty) subsets of the bits which enter all S-boxes besides
2, 3, 19, and 23 in round 0.

2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

3. For each value of the 112 bits of K0 entering these 28 S-boxes, partially
encrypt all the plaintexts the first round, and apply the original 11-round
attack.
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4. Each trial of the key gives us 112 + 20 + 28 = 160 bits of the subkeys (112
bits in round 0, 20 bits in round 1 and 28 bits in round 11), along with a
measure for correctness. The correct value of the 160 bits is expected to be
the most frequently suggested value (with more than 84% success rate).

5. The rest of the key bits are then recovered by auxiliary techniques.

The data complexity of the attack is 2123.5 chosen plaintexts. The time com-
plexity of the attack is 2123.5 · 2112 · 28

384 = 2231.7 encryptions for the partial
encryption in Step 3, and 2112 · 2137.4 = 2249.4 for the repeated trials of the
11-round attack.3

4.4 10-Round Differential-Linear Attack on Serpent with 128-bit

Keys

We can use the three improvements suggested earlier to improve the 10-round
attack on Serpent. We recall the three improvements:

– Better analysis of the bias of the differential-linear approximation,
– Better analysis of the success probability,
– Changing the output mask.

We shall start with changing the output mask of the approximation. In the
10-round attack in [9], the last round of the approximation is omitted, and the
new 8-round differential-linear approximation has a bias of 2·2−6·(2−22)2 = 2−49.
The last round of the approximation is optimized for reducing the number of
active S-boxes in the last round (to 5 S-boxes). However, as before, we may
activate a few more S-boxes, and almost have no effect on the time complexity
of the attack (by increasing the counters).

By changing the output mask of the last round (where S1 is used) from λ′

C =
0010 0001 0000 1000 0100 0000 0000 0000 to λ′

C = 0010 0001 0000 1000 0300 0000
0000 0000, we increase the bias of the linear approximation by a factor of 2, i.e.,
the differential-linear approximation has a bias of 2−47.

Taking into consideration the better transition between the differential and
the linear approximation, we obtain that the actual bias is 2−45.75. Using the
formula from [17], and taking into consideration that there are 5 active S-boxes
before the differential, and 9 active S-boxes after the linear approximation, we
need 296.2 pairs, i.e., 297.2 chosen plaintexts to achieve a success rate of 84%.

The time complexity of the attack is 2111.2 10-round encryptions (the time
complexity required for partial encryptions and locating all the pairs) and 2128

memory accesses for handling the tables.
We note that if the approximation is not changed, the data complexity of

the 10-round attack is 2101.2 chosen plaintexts, and the time complexity is 2115.2

encryptions.

3 We note that the time complexity of the 11-round attack is 2135.7 encryptions. As
the number of plaintexts is 21.7 times larger in this attack, the time complexity of
one iteration of the 11-round attack in this case is 21.7 times larger.
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5 A Related-Key Attack on a Modified Serpent

It is a well known fact that ciphers that iterate the exact same round function
over and over are susceptible to slide attacks and related-key attacks [3, 10]. In
Serpent the constants which modify the round function are found in two places:
the different S-boxes (which are used in a cycle of 8 rounds), and the constants
in the key schedule algorithm.

Removing the constants from the key schedule algorithm makes the cipher
susceptible to related-key attacks which treat the cipher as an iteration of the
same “round” function which is composed of 8 consecutive rounds. Even though
there are several attacks on 8-round Serpent, it is highly unlikely to elevate them
into attacks on the full Serpent, as 8-round Serpent is secure enough to prevent
easy detection of the related-key plaintext pairs.

We present a related-key relation that holds with probability of 2−124, and
can be used to distinguish this simplified variant of Serpent from a random per-
mutation (for 256-bit keys) with data complexity of about 2125 chosen plaintexts,
and a negligible time complexity. We then use this relation to retrieve partial
information about the keys.

Consider two related keys K and K ′ such that K = (w−8, . . . , w−1) and
K ′ = (w−8 ≪ 1, . . . , w−1 ≪ 1). For these two keys, all the corresponding
subkeys ki and k′

i respectively satisfy that ki = k′

i ≪ 1. Under these two keys we
consider the plaintexts P = (a, b, c, d) and P ′ = (a ≪ 1, b ≪ 1, c ≪ 1, d ≪ 1).
We denote such keys, plaintexts, or intermediate encryption values, i.e., two
values such that the second is a rotate to the left by one bit of each 32-bit word
independently, as satisfying the rotation property.

The rotation property is kept through the key addition, i.e., P ′ ⊕ K ′

1 is a
rotate left by one bit word-wise of P ⊕ K, and the S-boxes layer. The only
problem is the linear transformation which contains cyclic rotations and shifts.
The cyclic rotations do not affect the rotation property, so the only problem in
extending the property is the shift operation. However, the property can bypass
a shift with probability of 2−2. Let X be a 32-bit word, and let X ′ = X ≪ 1.
Then, if the least significant bit of X is zero, and the least significant bit of
X ′ ≪ m (the most significant bit of X ≪ m) is 0 as well, then X ≪ m and
X ′ ≪ m satisfy the rotation property. As in each linear transformation there are
two such shifts, the probability that the rotation property is maintained after
the linear transformation is 2−4.

Serpent has 31 linear transformations, and thus, the probability that the
rotation property remains from the plaintext till the ciphertext is 2−124, while
for two random permutations, one expects the probability of 2−128. This property
can be used to distinguish this variant of Serpent from a random permutation
using about 2125 plaintexts. Given the pair that satisfies the rotation property
it is also possible to deduce the equivalent of 4 bits of the key.
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6 Summary

In this paper we studied differential-linear cryptanalysis of Serpent. We showed
several improvements in the analysis of the previously best known results on
11-round Serpent, and suggested a new 11-round attack with a much lower
data complexity. Combining experimental results and the improved analysis,
we presented the first attack on 12-round Serpent. The attack uses 2123.5 chosen
plaintexts, and has a time complexity of 2249.4 encryptions.

Finally, we explored a related-key attack on a modified Serpent where the
round constants are removed from the key schedule, and showed that despite the
strong repeated cipher (8-round of Serpent), there are high probability related-
key properties that can be used both for distinguishing and key recovery.

We summarize our new attacks, and selected previously published attacks
against Serpent in Table 1.

Rounds Type of Attack Key Complexity
Size Data Time Memory

10 Rectangle [7] 192 & 256 2126.3 CP 2173.8 MA 2131.8 B
Boomerang [7] 192 & 256 2126.3 AC 2173.8 MA 289 B
Differential-Linear [9] all 2105.2 CP 2123.2 En 240 B
Differential-Linear (Sect. 4.4) all 2101.2 CP 2115.2 En 240 B
Differential-Linear (Sect. 4.4) all 297.2 CP 2128 MA 272 B

11 Differential-Linear [9] 192 & 256 2125.3CP 2172.4 En 230 B
Differential-Linear [9] 192 & 256 2125.3 CP 2139.2 En 260 B
Differential-Linear (Sect. 4.1) 192 & 256 2121.8 CP 2135.7 MA 276 B
Differential-Linear (Sect. 4.2) 192 & 256 2113.7 CC 2137.7 MA 299 B

12 Differential-Linear (Sect. 4.3) 256 2123.5 CP 2249.4 En 2128.5 B

En — Encryptions, MA — Memory Accesses, B — bytes, CP — Chosen Plaintexts
CC — Chosen Ciphertexts, AC — Adaptive Chosen Plaintexts and Ciphertexts

Table 1. Summary of Attacks on Serpent with Reduced Number of Rounds
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A The Differential Characteristic

A.1 The Original 3-Round Differential

The 3-round truncated differential used in the original 11-round attack is as
follows. The first round of the differential is round 2 (or any other round that
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uses S2) with probability 2−5:

ΩP = 0000 0000 0000 0000 0000 0000 4005 0000
S2→ Pr = 2−5

0000 0000 0000 0000 0000 0000 A004 0000
LT
→

0040 0000 0000 0000 0000 0000 0000 0000
S3→ Pr = 2−1

00X0 0000 0000 0000 0000 0000 0000 0000

where X ∈ {2, 4, 6, 8, Ax, Cx, Ex}. After the linear transformation, we get the
following truncated differential in S4:

0QT30 0T200 0T100 0000 000Y4 00Y30 W2Y20W1 Y10Z0
S4→

0??0 0?00 0?00 0000 000? 00?0 ??0? ?0?0 = ΩT ,

where ? is any possible difference and Yi ∈ {0, 1}, Z ∈ {0, 2}, Wi ∈ {0, 8}, Ti ∈
{0, 4}, Q ∈ {0, 2, 4, 6}.

A.2 The 3-Round Differential in the Improved 11-Round Attack

The 3-round differential used in the improved 11-round attack is in the backward
direction. The output difference is ΩC = 0000 0000 0000 0090 0000 0000 0000 0000x

which with probability of about 2−6 does not affect the bits in LT (λC). This
follows from the main following differential characteristic:

ΩC = 0000 0000 0000 0090 0000 0000 0000 0000
S

−1

5→ Pr = 2−2

0000 0000 0000 0040 0000 0000 0000 0000
LT−1

→

0000 A004 0000 0000 0000 0000 0000 0000
S

−1

4→ Pr = 2−3

0000 ?009 0000 0000 0000 0000 0000 0000
LT−1

→

0Z300 T2Y Z2R 0T14Z1 2080 0X200 10X10 01Q0 0W00
S

−1

3→ Pr = 1
0?00 ???? 0??? ?0?0 0?00 ?0?0 0??0 0?00 = ΩT

with probability 1, when W ∈ {0, 4}, Q ∈ {0, 2, 8, Ax}, Xi ∈ {0, 1}, Zi ∈ {0, 8}, Ti ∈
{8, Ax}, R ∈ {8, Cx}.

We note that despite the fact that the probability of this differential is 2−5,
when counting all possible output differences, the probability that there is a
difference in the bits covered by LT (λC), the bias was found to be 0.007773, i.e.,
1/128.7 ≈ 2−7.007. This follows mostly from the cases where the differential does
not follow the second round, i.e., the input difference to S-box 24 is not 9, as
then there is an active S-box which affects the approximation with relatively high
probability (with output difference 2). Thus, the “probability” of the differential
can be assumed to be p = 2−6.

B The Linear Approximation

The 6-round linear approximation used in the attack is as follows. It starts before
the linear transformation of round 4 with λT = 2006 0040 0000 0100 1000 0000
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0000 0000x. In round 5 the following approximation4 holds with bias −2−5:

LT (λT ) = 0020 0000 0000 0000 0000 0000 0000 0002
S5→ Pr = 1

2 − 2−5

0040 0000 0000 0000 0000 0000 0000 0008
LT
→

0000 0000 0000 0000 0000 0000 8000 0000
S6→ Pr = 1

2 − 2−3

0000 0000 0000 0000 0000 0000 1000 0000
LT
→

0000 00A0 0001 0000 0000 0000 0000 0000
S7→ Pr = 1

2 − 2−5

0000 0010 0001 0000 0000 0000 0000 0000
LT
→

0000 0000 0000 0000 0000 1000 0B00 00A0
S0→ Pr = 1

2 + 2−6

0000 0000 0000 0000 0000 1000 0100 0010
LT
→

0010 000B 0000 B000 0A00 0000 0000 0000
S1→ Pr = 1

2 − 2−7

0010 0001 0000 1000 0100 0000 0000 0000
LT
→

0000 A000 0000 0000 1000 0B00 00B0 000B
S2→ Pr = 1

2 − 2−6

0000 1000 0000 0000 5000 0100 0010 0001 = λC .

After the linear transformation of round 11, LT (λC) = 000B 0000 B000 0300 00B0
200E 0000 0010, i.e., there are seven active S-boxes: 1, 8, 11, 13, 18, 23 and 28.

4 For the improved attack we change the input bias in S-box 29 to Ex and the bias in
that case is 2−4.
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