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Abstract Biryukov (The Design of a Stream Cipher LEX, Proceedings of Selected Areas
in Cryptography, 2006 Springer, pp 67–75, 2007) presented a new methodology of stream
cipher design called leak extraction. The stream cipher LEX, based on this methodology
and on the AES block cipher, was selected to round 3 of the eSTREAM competition. The
suggested methodology seemed promising, and LEX, due to its elegance, simplicity, and per-
formance, was expected to be selected to the eSTREAM portfolio. In this article we present
a key recovery attack on LEX. The attack requires about 240 bytes of key-stream produced
by the same key (possibly under many different IVs), and retrieves the secret key in time
of about 2100 AES encryptions. Following a preliminary version of our attack, LEX was
discarded from the final portfolio of eSTREAM.
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A preliminary version of the paper, in which the time complexity of the attack is 2110.3 encryptions, was
presented at Asiacrypt 2008 [15]. The improved attack presented in Sect. 5 is novel. Another new result in
this article is the improved analysis of the sampling resistance of LEX presented in Sect. 6.
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1 Introduction

The design of stream ciphers, and more generally, pseudo-random number generators
(PRNGs), has been the subject of intensive study over the last decades. One of the well-
known methods to construct a PRNG is to base it on a keyed pseudo-random permutation. A
provably secure construction of this class is given by Goldreich and Levin [20]. An instanti-
ation of this approach (even though an earlier one) is the Blum and Micali [9] construction,
based on the hardness of RSA. A more efficiency-oriented construction is the BMGL stream
cipher [23], based on the Rijndael block cipher. However, these constructions are relatively
slow, and hence are not used in practical applications.

In [4], Biryukov presented a new methodology for constructing PRNGs of this class,
called leak extraction. In this methodology, the output key stream of the stream cipher is
based on parts of the internal state of a block cipher at certain rounds (possibly after passing
an additional filtering function). Of course, in such a case, the “leaked” parts of the internal
state have to be chosen carefully such that the security of the resulted stream cipher will be
comparable to the security of the original block cipher.

As an example of the leak extraction methodology, Biryukov presented in [4] the stream
cipher LEX, in which the underlying block cipher is AES. The key stream of LEX is gener-
ated by applying AES in the OFB (Output Feedback Block) mode of operation and extracting
32 bits of the intermediate state after the application of each full AES round.

LEX was submitted to the eSTREAM competition (see [5]). Due to its high speed (2.5
times faster than AES), fast key initialization phase (a single AES encryption), and expected
security (based on the security of AES), LEX was considered a very promising candidate
and selected to the third (and final) round of evaluation.

During the eSTREAM competition, LEX attracted a great deal of attention from cryptan-
alysts due to its simple structure, but nevertheless, only two prior attacks on the cipher were
reported: A slide attack [24] requiring 261 different IVs (each producing 20,000 keystream
bytes), and a generic attack [18] requiring 265.7 re-synchronizations. Both attacks are appli-
cable only against the original version of LEX presented in [4], but not against the tweaked
version submitted to the second round of eSTREAM [6]. In the tweaked version, the number
of IVs used with a single key is bounded by 232, and hence both attacks require too much
data and are not applicable to the tweaked version.

In this article we present a new attack on LEX. The attack requires about 240 bytes of key
stream produced by the same key, possibly under different IVs. The time complexity of the
attack is 2100.3 AES encryptions.1 Following a preliminary version of our attack, LEX was
discarded from the final portfolio of eSTREAM.2

Our attack is composed of four steps:

1. Identification of a special state: We focus our attention on pairs of AES states which
satisfy a certain difference pattern. While the probability of occurrence of the special
pattern is 2−64, the pattern can be observed by a 32-bit condition on the output stream. In
order to detect such a state, the adversary considers about 237.8 bytes of LEX key stream
obtained under the same key (possibly with different IVs),3 which correspond to 232.5

1 We note that checking whether a key candidate is the right key of LEX requires about one 10-round AES
encryption. Thus, using AES encryptions as our measuring unit enables to compare the time complexity of
our attack with exhaustive key search whose complexity is about 2128 AES encryptions.
2 After the preliminary version of this article was submitted, Bouillaguet et al. [11] have rediscovered our
attack using an automatic tool, thus verifying its complexity.
3 The exact data complexity of the attack is slightly lower due to some optimizations described later, see
Sect. 4.1.
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AES encryptions, and thus are expected to contain one pair of AES states that satisfies
the special difference pattern. About 232 of the 264 pairs of AES states satisfy the 32-bit
condition on the output stream, and the next steps of the attack are repeated for all of
them.

2. Extracting information on the special state: By using the special difference pattern of
the pair of intermediate values, and guessing the values of eight additional state/subkey
bytes, the adversary can retrieve the value of 12 additional subkey bytes.

3. Key ranking: By using a slightly larger data set which is expected to contain several
pairs satisfying the special difference pattern, the adversary can use key ranking tech-
niques to find the most likely values of the 12 subkey bytes suggested in the second step.
This allows to filter most of the key candidates while increasing the data complexity by
only a small factor.4

4. Guess-and-determine attack on the remaining unknown bytes: For the remaining
key candidates, the adversary can mount a guess-and-determine attack that retrieves the
key with time complexity of 2100.3 encryptions.

The attack uses several observations on the structure of the AES round function and key
schedule algorithm.5 One of them is the following novel observation:

Proposition 1 Denote the 128-bit subkey used in the r-th round of AES-128 by kr , and denote
the bytes of this subkey by an 4-by-4 array {kr (i, j)}3

i, j=0. Then for every 0 ≤ i ≤ 3 and r,

kr (i, 1) = kr+2(i, 1) ⊕ SB(kr+1(i + 1, 3)) ⊕ RC O Nr+2(i),

where SB denotes the SubBytes operation, RC O Nr+2 denotes the round constant used in
the generation of the subkey kr+2, and i + 1 is replaced by 0 for i = 3.

It is possible that the observations on the structure of AES presented in this paper can be
used not only in attacks on LEX, but also in attacks on AES itself.6

This article is organized as follows: In Sect. 2 we briefly describe the structures of AES
and LEX, and present the observations on AES used in our attack. In Sect. 3 we show that
a specific difference pattern in the internal state can be partially detected by observing the
output stream, and can be used (along with an additional 8-byte guess) to retrieve the actual
value of 16 bytes of the internal state (in both encryptions). In Sect. 4 we present a basic key
recovery attack based on the above procedure which requires about 2110.3 trial encryptions.
In Sect. 5 we present an enhanced attack using a key ranking technique, which allows to
reduce the time complexity to about 2100.3 trial encryptions. We also discuss the sampling
resistance of LEX in Sect. 6. We conclude the article in Sect. 7.

2 Preliminaries

In this section we describe the structures of AES and LEX, and present the observations on
AES used in our attack.

4 This step is performed in an optimized way in order to minimize its memory requirements.
5 We note that in [4] it was remarked that the relatively simple key schedule of AES may affect the security of
LEX, and it was suggested to replace the AES subkeys by 1,280 random bits. Our attack, which relies heavily
on some properties of the AES key schedule, would fail if such replacement was performed. However, some
of our observations can be used in this case as well.
6 We note that after the first version of the article was published, these observations were further generalized
and used in [16] to improve the best known attack on 8-round AES with 192-bit keys as well as in [10] to
attack reduced-round AES variants with a low data complexity.
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Fig. 1 An AES round

2.1 Description of AES

The advanced encryption standard [12,13] is an SP-network that supports key sizes of 128,
192, and 256 bits. As this article deals with LEX which is based on AES-128, we shall con-
centrate the description on this variant and refer the reader to [22] for a complete detailed
description of AES.

A 128-bit plaintext is treated as a byte matrix of size 4 × 4, where each byte represents a
value in G F(28). An AES round applies four operations to the state matrix:

– SubBytes (SB): applying the same 8-bit to 8-bit invertible S-box 16 times in parallel on
each byte of the state,

– ShiftRows (SR): cyclic shift of each row (the i’th row is shifted by i bytes to the left),
– MixColumns (MC): multiplication of each column by a constant 4 × 4 matrix over the

field G F(28), and
– AddRoundKey (ARK): XORing the state with a 128-bit subkey.

We outline an AES round in Fig. 1. Throughout the paper we allow ourselves the abuse of
notation SB(x) to denote the application of the S-box to x (whether it is one S-box when
x is an 8-bit value, or 4 times when x is a 32-bit value). In the first round, an additional
AddRoundKey operation (using a whitening key) is applied, and in the last round the Mix-
Columns operation is omitted. We note that in LEX these changes to the first and last round
are not applied.

AES-128, i.e., AES with 128-bit keys, has 10 rounds. For this variant, 11 subkeys of 128
bits each are derived from the key. The subkey array is denoted by W [0, . . . , 43], where
each word of W [·] consists of 32 bits. The first four words of W [·] are loaded with the user
supplied key. The remaining words of W [·] are updated according to the following rule:

– For i = 4, . . . , 43, do

– If i ≡ 0 mod 4 then W [i] = W [i − 4] ⊕ SB(W [i − 1] ≪ 8) ⊕ RC O N [i/4],
– Otherwise W [i] = W [i − 1] ⊕ W [i − 4],

where RC O N [·] is an array of predetermined constants, and ≪ denotes rotation of the word
by 8 bits to the left.

2.2 Description of LEX

For the ease of description, we describe only the tweaked version of LEX submitted to the
second round of eSTREAM [6]. The original version of LEX can be found in [4]. We note
that our attacks can be easily adapted to the original version as well.
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Fig. 2 Odd and even rounds of LEX. The gray bytes are the output bytes

In the initialization step, the publicly known IV is encrypted by AES7 under the secret key
K to obtain S = AE SK (I V ). Then, S is repeatedly encrypted in the OFB mode of operation
under K , where during the execution of each encryption, 32 bits of the internal state are
leaked in each round. These state bits compose the key stream of LEX. The state bytes used
in the key stream are shown in Fig. 2. After 500 encryptions, another IV is chosen, and the
process is repeated. After 232 different IVs, the secret key is replaced. 8

Encryption in LEX is done by XORing the generated key stream with the plaintext.
Decryption is done by XORing the ciphertext with the same key stream.

2.3 Notations used in the article

As in [4], the bytes of each internal state during AES encryption, as well as the bytes of the
subkeys, are denoted by a 4-by-4 array {bi, j }3

i, j=0, where bi, j is the j-th byte in the i-th row.
For example, the output bytes in the even rounds are b0,1, b0,3, b2,1, b2,3.

2.4 Observations on AES used in our attack

Throughout the article we use several observations concerning AES.

Observation 1 For every non-zero input difference to the SubBytes operation, there are 126
possible output differences with probability 2−7 each (i.e., only a single input pair with the
given difference leads to the specified output difference), and a single output difference with
probability 2−6.

As a result, for a randomly chosen pair of input/output differences of the SubBytes oper-
ation, with probability 126/256 there is exactly one unordered pair of values satisfying these
differences. With probability 1/256 there are two such pairs, and with probability 129/256,
there are no such pairs.

We note that while each ordered pair of input/output differences suggests one pair of actual
values on average, it actually never suggests exactly one pair. In about half of the cases, two
(or more) ordered pairs are suggested, and in the rest of the cases, no pairs are suggested. In
the cases where two (or more) pairs are suggested, the analysis has to be repeated for each of
the pairs. On the other hand, if no pairs are suggested, then the input/output differences pair
is discarded as a wrong pair and the analysis is not performed at all. Hence, when factoring
both events, it is reasonable to assume that each input/output differences pair suggests one
pair of actual values.

7 Actually, LEX uses a tweaked version of AES where the AddRoundKey before the first round is omitted,
and the MixColumns operation of the last round is present. We allow ourselves the slight abuse of notations,
for sake of clarity.
8 We note that in the original version of LEX, the number of different IVs used with a single key was not
bounded. Following the slide attack presented in [24], the number of IVs used with each key was restricted.
This restriction also prevents the attack suggested later in [18] which requires 265.7 re-synchronizations.
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Our attack uses this observation in situations where the adversary knows the input and
output differences to some SubBytes operation. In such cases, using the observation she
can deduce the actual values of the input and the output (for both encryptions). This can
be done efficiently by preparing the difference distribution table of the SubBytes operation,
along with the actual values of the input pairs satisfying each input/output difference relation
(rather than only the number of such pairs). In the actual attack, given the input and output
differences of the SubBytes operation, the adversary can retrieve the corresponding actual
values using a simple table lookup.

Observation 2 Since the MixColumns operation is an MDS matrix, if the values (or the
differences) in any four out of its eight input/output bytes are known, then the values (or
the differences, respectively) in the other four bytes are uniquely determined, and can be
computed efficiently.

The following two observations are concerned with the key schedule of AES. While the
first of them is known (see [19]), it appears that the second is new.

Observation 3 For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relations:

kr+2(i, 0) ⊕ kr+2(i, 2) = kr (i, 2).

kr+2(i, 1) ⊕ kr+2(i, 3) = kr (i, 3).

Proof Recall that by the key schedule, for all 0 ≤ i ≤ 3 and for all 0 ≤ j ≤ 2, we have
kr+2(i, j) ⊕ kr+2(i, j + 1) = kr+1(i, j + 1). Hence,

kr+2(i, 0) ⊕ kr+2(i, 2) = kr+2(i, 0) ⊕ kr+2(i, 1) ⊕ kr+2(i, 1) ⊕ kr+2(i, 2)

=
(

kr+2(i, 0) ⊕ kr+2(i, 1)
)

⊕
(

kr+2(i, 1) ⊕ kr+2(i, 2)
)

= kr+1(i, 1) ⊕ kr+1(i, 2) = kr (i, 2),

and the second claim follows similarly. ��

Observation 4 For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relation:

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RC O Nr+2(i) = kr (i, 1),

Proof In addition to the relation used in the proof of the previous observation, we use the
relation

kr+2(i, 0) = kr+1(i, 0) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RC O Nr+2(i).

Thus,

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RC O Nr+2(i)

=
(

kr+2(i, 1) ⊕ kr+2(i, 0)
)

⊕
(

kr+2(i, 0) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RC O Nr+2(i)
)

= kr+1(i, 1) ⊕ kr+1(i, 0)

= kr (i, 1). ��

123

Author's personal copy



Cryptanalysis of the Stream Cipher LEX

These two observations allow the adversary to use the knowledge of bytes of kr+2 (and
the last column of kr+1) to get the knowledge of bytes in kr , while “skipping” (some of) the
values of kr+1.

3 Chessboard difference pattern in LEX

In this section we describe the special difference pattern used in our attacks. The probability
of occurrence of the pattern is 2−64, and hence, it is expected to be found within 232.5 AES
states, which in turn, are included in 237.8 bytes of the LEX key stream produced by the same
key. We note that by the specification of LEX, after every 500 AES encryptions, a new IV is
chosen, and thus, at least 223.5 different IVs are used in the key stream we examine. However,
we emphasize that this has no effect on our attacks.

Our attacks are applicable when the special difference pattern starts either in odd rounds
or in even rounds. For sake of simplicity of the description, we present the results assuming
the difference pattern occurs in the odd rounds, and give in Appendix A the modified attack
applicable when the difference pattern occurs in even rounds.

3.1 Detecting the difference pattern

Consider two AES encryptions under the same secret key, K . The special difference pattern
corresponds to the following event: The difference between the intermediate values at the
end of the (r + 1)-th round is non-zero only in bytes b0,0, b0,2, b1,1, b1,3, b2,0, b2,2, b3,1,

and b3,3. The probability of this event is 2−64. The pattern, along with the evolution of the
differences in rounds r, r + 1, r + 2, and r + 3, is presented in Fig. 3.

The difference pattern can be partially observed by a 32-bit condition on the output
key stream: If the pattern holds, then all the four output bytes in round r + 2 (bytes
b0,1, b0,3, b2,1, b2,3) have zero difference.

Therefore, it is expected that amongst 264 pairs of AES states encrypted under the same
key, one of the pairs satisfies the difference pattern, and about 232 pairs satisfy the filtering
condition. Thus, the following attack steps have to be repeated 232 times on average (once
for each candidate pair).

Fig. 3 The special difference pattern (for odd rounds). Gray cells denote bytes whose value is known from
the output key stream. Empty cells denote zero difference
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Fig. 4 Deducing the actual value of b0,0 in the end of round r

It is easy to detect these pairs by either using hash tables or even by storing the data and com-
paring all pairs. The time complexity of this step is negligible (236.3 memory accesses using
a hash table,9 or 264 memory accesses when comparing all pairs). This also determines the
memory complexity, which is the amount of memory needed to store the data, i.e., 236.3 bytes.

We note that if the special difference pattern is satisfied, then by the linearity of the Mix-
Columns operation, there are only 2552 possible values for the difference in each of the
columns before the MixColumns operation of round r + 1 (denoted by βi and ε j in Fig. 3),

and in each of the columns after the MixColumns operation of round r + 2 (denoted by t j
i in

Fig. 3). This property is used in the second step of the attack to retrieve the actual values of
several state bytes.

3.2 Using the difference pattern to retrieve actual values of 16 intermediate state bytes

In this section we show how the adversary can use the special difference pattern, along with
a guess of the difference in eight additional bytes, in order to recover the actual values of
16 intermediate state bytes in both encryptions. We show in detail how the adversary can
retrieve the actual value of byte b0,0 of the state at the end of round r using the guess of the
two difference bytes denoted by ν1 and ν7.10 The derivation of 15 additional bytes, which is
performed in a similar way, is described briefly below.

The derivation of the actual value of byte b0,0 of the state at the end of round r is composed
of several steps (described also in Fig. 4):

1. The adversary finds the difference in Column 0 before the MixColumns operation of
round r + 1, i.e., (β0, β1, β2, β3) = MC−1(α0, 0, α2, 0). This is possible as the differ-
ences α0 and α2 are known from the output stream.

2. The adversary guesses the differences ν1, ν7 and applies the following steps for each
such guess.

3. Given the differences ν1 and ν7, there are 2552 possible differences after the MixCol-
umns of round r in the leftmost column. Using the output bytes b0,0, b2,2 of round
r − 1, the adversary knows the difference in two bytes of the same column before the

9 One can store the key stream in a hash table indexed by the value of the key stream in the FOUR bytes
produced in round r + 2. Once a collision in the hash table is found, a candidate pair of streams is identified.
To cover all possible starting positions, 8 such tables are used.
10 Note that while retrieving one byte by guessing two is inefficient, since the guessed bytes can be used in
retrieving other bytes as well, the overall gain is positive.
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Fig. 5 The first phase of the guess-and-determine attack on LEX (for odd rounds). Gray cells are known bytes.
Bytes (cells) marked with i , are bytes which are computed in step i . Transition 9 is based on Observation 3

MixColumns operation. Hence, using Observation 2 (the linearity of the MixColumns
operation), the adversary retrieves the difference in the whole column, both before and
after the MixColumns operation, including the difference γ0.

4. At this point, the adversary knows the input difference (γ0) and the output difference
(β0) to the SubBytes operation in byte b0,0 of round r + 1. Hence, using Observation
1 (the property of the SubBytes operation), the adversary finds the actual values of this
byte using a single table look-up. In particular, the adversary retrieves the actual value
of byte b0,0 at the end of round r .

The additional 15 bytes are retrieved in the following way:

1. The value of byte b2,2 at the end of round r is obtained in the same way using bytes
b0,2, b2,0 of the output of round r − 1 (instead of bytes b0,0, b2,2) and examining the
third column (instead of the first one).

2. The value of bytes b0,2 and b2,0 at the end of round r is found by examining α4, α6

(instead of α0, α2), guessing the differences ν3, ν5 (instead of ν1, ν7), and repeating the
process used in the derivation of bytes b0,0, b2,2.

3. In a similar way, by guessing the differences x1, x3, x5, x7 and using the output bytes of
round r + 3, the adversary can retrieve the actual values of bytes b0,0, b0,2, b2,0 and b2,2

in the output of round r + 2.
4. Using the output of round r and Observation 2, the adversary can obtain the differences

α1, α3, α5, α7. Then, she can use the guessed differences x1, x3, x5, x7 and Observation
1 to obtain the actual values of bytes b1,1, b1,3, b3,1 and b3,3 at the end of round r + 1.

5. Finally, using again the output of round r and Observation 2, the adversary can obtain the
differences ε1, ε3, ε5, ε7. Then, using the guessed differences ν1, ν3, ν5, ν7 and Obser-
vation 1, the adversary can obtain the actual values of bytes b1,0, b1,2, b3,0, and b3,2 at
the end of round r .

The bytes whose actual values are known to the adversary at this stage (which are 8 bytes
at round r , 4 in round r + 1, and 4 in round r + 2) are presented in Fig. 5 marked in gray.

We note that this process takes 264 time for each candidate states (or streams), as we
guess the eight values ν1, ν3, ν5, ν7, ε1, ε3, ε5, and ε7 for each candidate. As we start with
232 candidate pairs (after identifying the candidates pairs which agree on 32-bit of the output
stream), this step takes about 296 operations.
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4 The basic attack on LEX

In this section we present our basic attack. The attack takes 236.3 keystream bytes produced
by the same key (under different IVs) and finds the key in time equivalent to 2110.3 AES
encryptions. The adversary finds in the keystream one pair of states that satisfies the differ-
ence described in Sect. 3. Using a guess-and-determine procedure, the attack deduces the
full key given the 16 bytes obtained by the process described in Sect. 3, and based on Obser-
vations 2 and 3 presented in Sect. 2 (properties of the MixColumns operation and of the key
schedule algorithm of AES-128).

The first step of the attack is to identify a pair of states whose difference is indeed the
chessboard difference pattern depicted in Fig. 3. As the analysis of Sect. 4.1 shows, the 236.3

keystream bytes can be used to generate 264 pairs of states, and it is expected that one of them
satisfies the chessboard difference pattern. Luckily, we do not need to try all 264 possible
pairs of states, as a pair of states that satisfies the required difference, necessarily has a zero
difference in 32 keystream bits, which means that we need to consider only 232 pairs of states.

For each such candidate pair of states, we try all the 8 bytes needed for the procedure
described in Sect. 3. Once these bytes are guessed, and the adversary computes all the bytes
whose value can be determined, an additional guess-and-determine phase is executed. This
deduction is composed of two phases. The first phase is presented in Fig. 5, where gray bytes
denote bytes whose values is known before the phase starts (either from the output or from
the process described in Sect. 3) and a cell containing a number i , is deduced as the i th step
of this phase. We note that no additional key material is guessed in this phase. There are
several types of deduction:

– Application of the AES operations on known values (steps 1, 2, 6, 8, 10, 16, 19).
– Deducing subkey bytes by knowing the input/output of the AddRoundKey operation

(steps 3, 4, 12, 18).
– Deducing subkey material using 1-round key relations (steps 5, 13, 14, 15).
– Completing the values of a column given 4 input/output bytes of the MixColumns oper-

ation (steps 7, 11, 17).
– Deducing subkey material using Observation 3 (step 9).

This phase of the attack is applied to each candidate pair, where each series of analysis
steps are very efficient (most operations are XORs or multiplication over G F(28) by a fixed
matrix).

At the beginning of the second phase, presented in Fig. 6, the adversary guesses the value
of two additional subkey bytes, which are marked by black. As before, we use gray bytes
to mark bytes which are known at the beginning of this phase and a cell with the number i ,
refers to a byte which is computed in the i th step of the deduction sequence.

As before, there are several types of deduction steps:

– Application of the AES operations on known values (steps 2, 4, 5, 6, 8, 12, 13, 15, 17).
– Deducing subkey bytes by knowing the input/output of the AddRoundKey operation

(steps 9, 18).
– Deducing subkey material using 1-round key relations (steps 1, 10, 11, 14).
– Completing the values of a column given 4 input/output bytes of the MixColumns oper-

ation (steps 3, 7, 16).

As these steps are done for each guess of the two bytes, the time complexity of this step is
216 operations for each candidate pair (or a total of 2112 operations), at the end of which, the
adversary obtains a complete internal state of LEX. At this point, it is possible to “run” LEX
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Fig. 6 The second phase of the guess-and-determine attack on LEX (for odd rounds). Gray cells are known
bytes. Black cells are the two bytes guessed in this phase. Bytes (cells) marked with i , are bytes which are
computed in step i

on the given internal state, and see whether the output produced by the retrieved state and
the output stream agrees. Once a disagreement is found, the combination of candidate pair
and guesses is discarded.

Summarizing the attack, the adversary guesses 10 bytes of information (8 bytes of dif-
ferences guessed in the process of Sect. 3 of the attack, and 2 subkey bytes guessed in this
step of the attack), and retrieves the full secret key. Therefore, the time complexity of this
procedure is 280 guesses for each candidate pair of streams, which is repeated for the 232

candidate streams, with a total time complexity of 232 ·280 operations. Since the time required
for each application of retrieval phase is less than a 3-round AES encryption, the total time
complexity of the attack is less than 2112 · 2−1.7 = 2110.3 10-round AES encryptions.

Since the most time-consuming step of the attack is a guess-and-determine procedure, it
is very easy to parallelize the attack, and obtain a speed up equivalent to the number of used
CPUs. Also, the simplicity of the attack enables the use of other implementation techniques,
such as SIMD instructions and bitslicing.

4.1 Data complexity of the basic attack

The attack is based on examining special difference patterns. Since the probability of occur-
rence of a special pattern is 2−64, it is expected that 232.5 states of encryptions under the same
key yield a single pair of states satisfying the special pattern.

However, we note that the attack can be applied to several values of the starting round of
the difference pattern. The attack presented above is applicable if r is equal to 1, 3, 5, or 7,
and a slightly modified version of the attack (presented in Appendix A) is applicable if r is
equal to 0, 2, 4, or 6.11 Hence, 264/8 = 261 pairs of encryptions are sufficient to supply a pair
satisfying one of the eight possible difference patterns. These 261 pairs can be obtained from
231 full AES encryptions, or equivalently, 236.3 bytes of output key stream generated by the

11 We note that while the attack considers five rounds of encryption (rounds r −1 to r +3), it is not necessary
that all the five rounds are contained in a single AES encryption. For example, if r = 7 then round r + 3
considered in our attack is actually round 0 of the next encryption. The only part of the attack which requires
the rounds to be consecutive rounds of the same encryption is the key schedule considerations. However, in
these considerations only three rounds (rounds r to r + 2) are examined.
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same key. According to LEX’ specification, the IV is changed every 500 AES encryptions,
and the data examined in the attack is generated under at least 222 different IVs. However, the
attack procedure does not assume anything on the IV, which means that the use of different
IVs does not affect the analysis.

5 An improved attack

In this section we present an improved variant of the attack that allows to reduce the time
complexity to 2100.3 encryptions, at the expense of enlarging the data complexity by a factor
of 16. We start with the general idea of the attack, and then present some technical adjustments
required in order to obtain optimal time and memory complexities.

5.1 The general outline of the attack

The main observation behind the improved attack is noting that after the first phase of the basic
attack, the adversary already obtains the equivalent of 12 key bytes. (In Fig. 5, these are ten
bytes of the subkey kr and bytes b1,1, b3,1 of the subkey kr+1. These 12 bytes are independent
since by guessing four more bytes (bytes b0,2, b1,0, b2,2, b3,0 of kr+1), one can immediately
retrieve the full subkey kr by the key schedule algorithm. The other bytes obtained at that
stage depend on these 12 bytes).

Assume that the initial number of pairs of states examined in the attack is enlarged by
a factor of C (i.e., C · 264 pairs of states), so that it is expected that the data contains C
pairs satisfying the special difference pattern. In this case, the first two phases of the attack
are performed C · 232 · 264 times (once for each pair remaining after the initial filtering and
for each guess of the additional eight bytes of difference). The adversary can perform a key
ranking procedure considering the number of suggestions of each value of the 12 key bytes
described above. Since there are 296 possible values, each of them is suggested C times on
average.

At the same time, we claim that the correct key guess is expected to be suggested 2C
times. Indeed, the correct value is suggested by each of the C pairs satisfying the special
difference pattern (along with the correct guess of the eight additional byte differences). In
addition, by a reasonable randomness assumption, for each pair that does not satisfy the spe-
cial pattern, and for any guess of the difference in the additional eight bytes, the probability
that the correct key value is suggested is 2−96. Since there are approximately C · 296 pairs of
this form in the data, the correct value is expected to be suggested C more times.12

The number of times a specific key is suggested follows a Poisson distribution. Hence,
the wrong guesses are distributed according to Poi(C), and those of the correct guess have
distribution Poi(2C). Thus, for C = 32, the probability that the correct key value is amongst
the 285 highest values is at least 92.8%. At this stage, the adversary can perform the second
phase of the guess and determine phase of the attack only for the remaining 285 values. We
note that this phase does not require any additional memory.

12 This randomness assumption is founded on the reasonable assumption that a wrong pair (i.e., a pair that
does not satisfy the special pattern), along with an incorrect guess of the eight additional difference bytes,
offers a random value as the attack procedure is very far from approximating the “real” encryption procedure.
However, since such assumptions are very delicate, it is very important to check their validity in each con-
crete case of study. Unfortunately, in our case, it is impossible to verify this assumption due to the high time
complexity of such check.
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Hence, the attack requires 269 pairs of AES states, which are expected to contain 32 pairs
of states with the required difference. We note that unlike the basic attack, the adversary
cannot use different starting rounds simultaneously, and thus the data complexity is 235 AES
encryptions, or 240.3 bytes of key-stream. The time complexity of the improved attack is
237 · 264 = 2101 deductions for the first phase of analysis, and the same amount of work
for the second phase.13 Since the time complexity of each deduction is smaller than 3 AES
rounds, the total time complexity is at most 2100.3 10-round AES encryptions.

5.2 Reducing the memory requirements

While the attack procedure described above reduces the time complexity of the attack con-
siderably, it requires a large amount of memory. Indeed, the key ranking procedure requires
an array of almost 296 bytes to store the number of times each 12-byte key value is suggested.

In order to reduce the memory requirements, we suggest to alter the second phase of the
attack, such that four of the eight additional guessed bytes are key bytes rather than state
difference bytes. In the discussion below we refer to Fig. 3. We allow ourselves a slight abuse
of notation, and use the notations of the differences in the cells to denote also the actual
values of the respective cells in both states.

Claim Instead of guessing the eight additional difference bytes, it is sufficient to guess the
actual values in both states of the bytes denoted by α1, α3, α5, α7 (either before or after the
addition of kr+1), and bytes b1,1, b1,3, b3,1, b3,3 of the subkey kr+1. Moreover, guessing four
bytes is sufficient to get the actual values of the bytes denoted by α1, α3, α5, α7 in both states.

Proof Recall that the eight additional guessed difference bytes are those denoted by
ν1, ν3, ν5, ν7 and x1, x3, x5, x7 in Fig. 3. Assume that the adversary knows the actual val-
ues in both states of the bytes denoted by α1, α3, α5, α7 before the addition of kr+1, and
bytes b1,1, b1,3, b3,1, b3,3 of kr+1. Clearly, this allows to retrieve also the actual values of the
bytes denoted by α1, α3, α5, α7 after the addition of kr+1. The differences ν1, ν3, ν5, ν7 and
x1, x3, x5, x7 can be then obtained by the following steps:

1. The knowledge of the actual values in the bytes marked by α1, α3, α5, α7 before the
addition of kr+1, along with the actual values of the cells ε0, ε2, ε4, ε6 (which are known
from the key-stream) allows to apply Observation 2 to the MixColumns operation of
round r + 1, and get the actual values in the cells denoted by ε1, ε3, ε5, ε7.

2. The actual values of the cells denoted by ε1, ε3, ε5, ε7 yield the actual values of the cells
denoted by ν1, ν3, ν5, ν7, by performing Shi f t Rows−1 and SubBytes−1 operations.

3. The actual values in the cells denoted by ν1, ν3, ν5, ν7 yield the differences ν1, ν3, ν5, ν7.
4. The actual values in the cells denoted by α1, α3, α5, α7 after the addition of kr+1 yield

immediately the actual values in the cells denoted by x1, x3, x5, x7 by performing the
SubBytes and MixColumns operations of round r + 2.

5. The actual values in the cells denoted by x1, x3, x5, x7 yield the differences x1, x3,

x5, x7.

In order to show that guessing four bytes is sufficient to get the actual values of the bytes
denoted by α1, α3, α5, α7 in both encryptions, we observe that the difference in these bytes
is known to the adversary. Indeed, note that the differences ε0, ε2, ε4, ε6 are known from

13 We note that there is no need to use trial encryption in order to check the subkeys suggested in the last
phase of the attack. Instead, the adversary can perform key ranking on the two last retrieved subkey bytes,
using the fact that the correct value is suggested by all 32 pairs satisfying the special difference pattern.
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the key-stream, and the differences in bytes b0,1, b0,3, b2,1, b2,3 after the MixColumns of
round r + 1 are known to be zero. Thus, the adversary can apply Observation 2 to the Mix-
Columns operation of round r + 1 (with respect to the differences) and get the differences
α1, α3, α5, α7, as desired. Thus, it is sufficient to guess the actual values of bytesα1, α3, α5, α7

in one of the encryptions, and the values in the other encryption can be retrieved using the
known difference. ��

Using the suggested change to phase 2 of the attack, the memory requirement can be
reduced to less than 264 bytes of memory. In order to achieve this improvement, the attack
is performed for each guess of bytes b1,1, b1,3, b3,1, b3,3 of the subkey kr+1 independently.
In each single attack, the adversary considers 235 states, out of which 269 pairs are passed to
the second phase of the analysis. This phase is performed for each of the 232 possible actual
values in bytes α1, α3, α5, α7, and the key ranking is performed on the eight deduced key
bytes.

We note that as the attack is the same as in the previous section, the analysis of its time
complexity or success rate remains. Hence, setting C = 32, with 92.8% probability, the right
value of the key will ranked in the top 285 keys passed for further analysis in phase 2.

The data complexity of the attack is 240.3 bytes of output stream, that can be produced by
about 230 different IVs with a single fixed key. The time complexity of the attack is 2100.3

trial encryptions, and the memory complexity is 264 bytes.

6 Sampling resistance of LEX

One of the main advantages of LEX, according to the designers (see [4], Sect. 1), is the small
size of its internal state allowing for a very fast key initialization (a single AES encryption).
It is stated that the size of the internal state (256 bits) is the minimal size assuring resistance
to time-memory-data tradeoff attacks.

Time-memory-data tradeoff (TMDTO) attacks [2,7,8,14,21] are considered a serious
security threat to stream ciphers, and resistance to this class of attacks is a mandatory in the
design of stream ciphers (see, for example, [17]). A cipher with an n-bit key is considered
(certificationally) secure against TMDTO attacks if any TMDTO attack on the cipher has
either data, memory, or time complexity of at least 2n .

In order to ensure security against conventional TMDTO attacks trying to invert the func-
tion (State → Key Stream), it is sufficient that the size of the internal state is at least twice
the size of the key [8]. LEX satisfies this criterion (the key size is 128 bits and the size of the
internal state is 256 bits). As a result, as claimed by the designers (see [4], Sects. 3.2 and 5),
the cipher is secure with respect to TMDTO attacks.

However, as observed in [1], having the size of the internal state exactly twice larger than
the key length is not sufficient if the cipher has a low sampling resistance. Roughly speaking,
a cipher has a sampling resistance of 2−t , if it is possible to enumerate all internal states
which lead to some t-bit output string efficiently. In other words, if it is possible to find a
(possibly special) string of t bits, whose “predecessor” states are easily computed, then the
cipher has sampling resistance of at most 2−t .

It is clear that LEX has sampling resistance of at most 2−32, as out of the 256 bits of
internal state, 32 bits are exposed every round. However, it turns out that LEX’s sampling
resistance is actually at most 2−64. For example, assume that we would like to enumerate the
states for which the output in two consecutive rounds is 0 (i.e., 8 bytes are set to 0). As the
256-bit state, we consider the 128-bit AES state before the key addition of the second round
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and the 128-bit key. The condition that the output of the second round is zero is translated
to equality between four bytes of the state to the four corresponding bytes of the key. The
condition that the output of the first round is zero is translated to two 16-bit conditions on
two columns of the state, which can be easily computed by partially decrypting through the
second round. Thus, the 2192 states satisfying these conditions can be easily and efficiently
enumerated. Moreover, it is trivial to adopt this algorithm to any desired 64-bit output string.

As a result, using the attack algorithm presented in [8], it is possible to mount a TMDTO
attack on LEX with time, data, and memory complexities of (2128)4/5 = 2102.4. Hence, LEX
provides only 102-bit security with respect to TMDTO attacks.14

7 Summary and conclusions

In this article we presented a new attack on the LEX stream cipher. We showed that there
are special difference patterns that can be easily observed in the output key stream, and that
these patterns can be used to mount a key recovery attack.

We offered two variants of the attack. The first takes 236.3 bytes of stream, 236.3 bytes of
memory, and 2110.3 time. The second takes 240.3 bytes of stream, 264 bytes of memory, and
2100.3 time.

Our results show that for constructions based on the Goldreich-Levin approach (i.e.,
PRNGs based on pseudo-random permutations), the pseudo-randomness of the underlying
permutation is crucial to the security of the resulting stream cipher. In particular, a small
number of rounds of a (possibly strong) block cipher cannot be considered random in this
sense, at least when a non-negligible part of the internal state is extracted.
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Appendix A: Special difference pattern starting with an even round

In this section we present the modified version of the attack that can be applied if the special
difference pattern occurs in the even rounds. The first two steps of the attack (observing
the difference pattern and deducing the actual values of 16 additional bytes of the state)
are similar to the first two steps of the attack presented in Sect. 3. The known byte val-
ues after these steps are presented in Fig. 7, marked in gray. The third step of the attack is
slightly different due to the asymmetry of the key schedule, and Observation 4 is used in this
step along with Observations 2 and 3. The two phases of this step are presented in Figs. 7

14 We note that in TMDTO attacks exploiting low sampling resistance, the tradeoff curve is N 2 = T M2 D2

like in ordinary TMDTO attacks, and the low sampling resistance is used only to increase the value of D for
which the curve can be applied. Thus, the optimal possible attack of this kind is obtained for D = M = T ,
which accounts to n4/5 when n is the size of the key and 2n is the size of the state. Since in the case of LEX
this value can already be obtained, this implies that even if the sampling resistance of LEX was lower, this
would not improve the complexity of the best possible TMDTO attack on the cipher.
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Fig. 7 The first phase of the guess-and-determine attack on LEX (in even rounds). Gray cells are known
bytes. Bytes (cells) marked with i , are bytes which are computed in step i . Transition 5 based on Observation
3, and transition 11 is based on Observation 4

Fig. 8 The second phase of the guess-and-determine attack on LEX (in even rounds). Gray cells are known
bytes. Black cells are the two bytes guessed in this phase. Bytes (cells) marked with i , are bytes which are
computed in step i

and 8. The overall time complexity of the attack is 2110.3 encryptions, like in the case of a
difference pattern in the odd rounds (in the basic attack). One can also apply the attack of
Sect. 5 with a slightly increased data complexity in exchange for a significantly lower time
complexity.
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