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Abstract

The relation between positivity of principal minors, sign symmetry and stability of matrices
is studied. It is shown that for sign symmetric matrices, having positive principal minors is
equivalent to stability, to D-stability, and to having a positive scaling into a stable matrix. The
relation between spectra of matrices some of whose powers have positive principal minors and
matrices whose corresponding powers have positive sums of principal minors of each order
is studied as well. It is shown that for matrices of order less than 4 these two classes share
the same spectra. The relation of these classes and stability is studied, in particular for sign
symmetric matrices and for anti-sign symmetric matrices.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

This paper deals with the relation between positive stability, positivity of principal
minors and sign symmetry for matrices with real principal minors.

Positive stable [semistable] matrices are matrices all of whose eigenvalues lie in
the open [closed] right half-plane. Positive stability, as well as other types of stability,
play important role in various applications and thus have been intensively investigated
in the last two centuries, see, e.g., the survey paper [9]. Further in the paper we use
the term “stability” for positive stability.

∗ Corresponding author. Tel./fax: +972-4829-4282.
E-mail address: hershkow@techunix.technion.ac.il (D. Hershkowitz).

0024-3795/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.
doi:10.1016/S0024-3795(02)00547-5



106 D. Hershkowitz, N. Keller / Linear Algebra and its Applications 364 (2003) 105–124

P -matrices [P0-matrices] are matrices all of whose principal minors are positive
[nonnegative]. P -matrices, first introduced in [5], arose as a common generalization
of some known classes of matrices such as nonsingular M-matrices, totally positive
matrices and positive definite matrices, and appear in various applications, see e.g.,
[1] for applications in physics, [16] for applications in economics, etc.

Q-matrices [Q0-matrices] are matrices whose sums of principal minors of the
same order are all positive [nonnegative]. Obviously, the property of being a Q-ma-
trix depends only on the spectrum of the matrix. P+

0 -matrices are Q-matrices which
are also P0-matrices, that is, matrices all of whose principal minors are nonnegative,
with at least one positive principal minor of each order. These matrices appear in the
research of various types of stability such as D-stability (see Definition 2.7).

For a finite or infinite set S of positive integers, a square matrix A is said to be
a PS-matrix [QS-matrix] if Ak is a P -matrix [Q-matrix] for all k ∈ S. Since in our
discussion we put some emphasis on P {1,2}-matrices and Q{1,2}-matrices, we call
these matrices P 2-matrices and Q2-matrices. A matrix is said to be a PM-matrix
[QM-matrix] if all its powers are P -matrices [Q-matrices].

For subsets α and β of {1, . . . , n} we denote by A(α|β) the submatrix of A with
rows indexed by α and columns indexed by β. If |α| = |β| then we denote by A[α, β]
the corresponding minor. We denote A(α) = A(α|α) and A[α] = A[α|α]. A matrix
A is called sign symmetric if A[α|β]A[β|α] � 0 for all α, β ⊂ {1, . . . , n} such that
|α| = |β|. A matrix A is called weakly sign symmetric if A[α|β]A[β|α] � 0 for all
α, β ⊂ {1, . . . , n} such that |α| = |β| = |α ∩ β| + 1, that is, if the products of sym-
metrically located (with respect to the main diagonal) almost principal minors are
nonnegative.

The research of the relationship between stability, positivity of principal minors
and sign symmetry was motivated by a research problem by Taussky [17] calling for
investigation of the common properties of totally positive matrices, nonsingular M-
matrices and positive definite matrices. Stability, positivity of principal minors and
weak sign symmetry are amongst those common properties. In particular, there has
been some focus on the question to what extent positivity of principal minors and
(weak) sign symmetry imply stability. In this context, Carlson [3] conjectured that a
weakly sign symmetric P -matrix is necessarily stable. The conjecture was disproved
by Holtz [12]. Carlson did prove a weaker version of his conjecture, that is

Theorem 1.1. A sign symmetric P-matrix is stable.

We remark that sign symmetry is shared by totally positive and positive definite
matrices but not by nonsingular M-matrices (see e.g., [8]).

In Section 2 we deal with the inverse direction of Theorem 1.1. Obviously, a stable
P -matrix is not necessarily sign symmetric. This can be illustrated by the matrix

A =
[

1 ε

−ε 1

]
,
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where ε is a real number. Thus, the only possible opposite direction of Theorem 1.1
is the question whether a sign symmetric stable matrix is necessarily a P -matrix.
In the following section we prove this claim. It thus follows that for the class of
sign symmetric matrices, positivity of principal minors and stability are equivalent.
Furthermore, we show that these properties are equivalent also to D-stability and
to having a positive scaling into a stable matrix. The possibility of generalizing our
results to the class of Q-matrices and related questions is discussed in Section 3.

Next we deal with the relation between PS- and QS-matrices and sign symmetry.
The proof of Theorem 1.1 uses the fact that for a sign symmetric P -matrix A and
a positive diagonal matrix D, the matrix (DA)2 is a P -matrix. That proof does not
really need that (DA)2 is a P -matrix for every positive scaling D, but rather the
weaker condition that (DA)2 has no nonpositive real eigenvalues. For the latter it is
enough to require that (DA)2 is a Q-matrix for every positive scaling D. In Section 4
we study matrices satisfying this and related conditions. We first show that the prop-
erty that the square of every positive scaling of a matrix is a P0-matrix characterizes
sign symmetric matrices. We then discuss the P -matrix version of this result, and as
a consequence we restate Theorem 1.1 to claim that matrices all of whose positive
scalings are P 2-matrices are necessarily stable. We then study matrices all of whose
positive scalings are Q2-matrices, and show that anti-sign symmetric P -matrices
whose square is a P+

0 -matrix are stable.
These results raise the natural question as to how far is a P -matrix A from being

stable. This question is answered by Kellogg [13] in terms of the width of a wedge
around the negative x-axis which is free from eigenvalues of A. First, Kellogg proved
the following:

Theorem 1.2 [13, Theorem 4]. A set of numbers is the spectrum of some P-matrix
if and only if it is the spectrum of some Q-matrix, that is, if and only if all the
elementary functions of these numbers are positive.

Then he proved

Theorem 1.3 [13, Corollary 1]
(i) Let A be an n × n Q0-matrix. Then all nonzero eigenvalues λ of A satisfy

| arg(λ)| � � − �

n
. (1.1)

(ii) Let A be an n × n Q-matrix. Then all eigenvalues λ of A satisfy

| arg(λ)| < � − �

n
. (1.2)

Furthermore, the bound � − (�/n) in (1.1) and in (1.2) is sharp.

Since, by Theorem 1.3, P -matrices of order greater than 2 are not necessarily sta-
ble, it is of interest to check a seemingly more restricted class, that is, matrices some
of whose powers are P -matrices. In view of Theorem 1.2 it would be interesting to
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investigate also the relation between spectral properties of such matrices and matri-
ces whose corresponding powers are Q-matrices. In this context, Hershkowitz and
Johnson [10] asked whether PM-matrices and QM-matrices share the same spectra.
In Section 5 we discuss the more general version of this question, referring to PS-
and QS-matrices, where S is a set of positive integers. In particular, we show that in-
deed for matrices of order less than 4, PS- and QS-matrices share the same spectra.

Section 6 is devoted to the study of stability of P 2- and Q2-matrices. While such
matrices of order less than 4 are stable, we show that 4 × 4 Q2-matrices are not
necessarily stable. In fact, we show that for every finite set S of positive integers,
4 × 4 QS-matrices are not necessarily stable. The question concerning PS-matrices
remains open.

2. Sign symmetric P -matrices

The matrices we discuss are all assumed to have real principal minors. In this
section we show that for sign symmetric matrices positivity of principal minors and
stability are equivalent. In order to prove this result we need a few lemmas.

Lemma 2.1. Let A be a sign symmetric matrix. Then A2 is a P0-matrix. Further-
more, if A has at least one nonzero principal minor of each order then A2 is a
P+

0 -matrix.

Proof. Let A be a sign symmetric n × n matrix. By the Cauchy–Binet formula (see
e.g., [6, p. 9]) it follows that for every subset α of {1, . . . , n} we have

A2[α] =
∑

β⊂{1,...,n}, |β|=|α|
A[α|β]A[β|α] � 0 (2.1)

proving that A2 is a P0-matrix. Furthermore, note that if A[α] /= 0 then we have a
strict inequality in (2.1), implying that if A has at least one nonzero principal minor
of each order then A2 is a P+

0 -matrix. �

Lemma 2.2. Let A be a sign symmetric matrix. Then A has no nonzero eigenvalues
on the imaginary axis.

Proof. Let A be a sign symmetric matrix. By Lemma 2.1, the matrix A2 is a P0-
matrix and thus, by Theorem 1.3, the matrix A2 has no negative real eigenvalues. It
follows that A has no nonzero eigenvalues on the imaginary axis. �

Notation 2.3. For a square matrix A we denote by σ(A) the spectrum of A.

Lemma 2.4. Let A be a stable sign symmetric n × n matrix. Then all principal
submatrices of A are semistable. Furthermore, at least one principal submatrix of A
of each order is stable.
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Proof. We first prove that all principal submatrices of A are semistable. Let α be
a subset of {1, . . . , n} of cardinality k and let σ(A(α)) = {δ1, . . . , δk}. Let D be the
diagonal matrix diag(d1, . . . , dn) defined by

dj =
{

1, j ∈ α,

0, j /∈ α.

We have

σ(DA) = {δ1, . . . , δk, 0, 0, . . . , 0}.
Denote

Dt = (1 − t)In + tD, 0 � 1 � t.

Then D0 = I and D1 = D, and so D0A = A and D1A = DA. Note that the matrix
DtA is a sign symmetric matrix (with real principal minors) for all t , 0 � t � 1,
and thus, by Lemma 2.2, DtA has no nonzero eigenvalues on the imaginary axis.
The matrix A is stable and thus nonsingular. It follows that for all t , 0 � t < 1, the
matrix DtA is nonsingular. Therefore, DtA has no eigenvalues on the imaginary
axis for all t , 0 � t < 1. Since σ(D0A) is contained in the open right half-plane, and
since σ(DtA) depends continuously on t , it follows that σ(D1A) is contained in the
closed right half-plane. Since

σ(DA) = {δ1, . . . , δk, 0, 0, . . . , 0},
it follows that A(α) is semistable. Now, consider all principal submatrices of A of
some order k. If all are singular then the sum of the principal minors of order k is
0, contradicting the assumption that A is stable (and hence a Q-matrix). Thus, at
least one principal submatrix A(α) of A of order k is nonsingular. Since, as is proven
above, A(α) is semistable, it follows by Lemma 2.2 that A(α) is stable. �

Next, we quote a theorem of Koteljanskij [14].

Theorem 2.5. Let A be a weakly sign symmetric matrix having positive leading
principal minors. Then A is a P -matrix.

We are now able to prove the main theorem of this section.

Theorem 2.6. Let A be a sign symmetric n × n matrix. The following are equiva-
lent:

(i) The matrix A is stable.
(ii) The matrix A has positive leading principal minors.

(iii) The matrix A is a P -matrix.

Proof. (i) ⇒ (ii). We prove this implication by induction on n. The case n = 2
is trivial. Let A be a sign symmetric stable n × n matrix. By Lemma 2.4, the
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matrix A has a principal submatrix of order n − 1 which is stable. This submatrix
is also a sign symmetric matrix and thus, by the induction assumption, it has pos-
itive leading principal minors. Without loss of generality we may assume that this
submatrix is A({1, . . . , n − 1}). Since A is stable (with a real characteristic polyno-
mial), we have det(A) > 0, and it thus follows that A has positive leading principal
minors.

(ii) ⇒ (iii) follows by Theorem 2.5.
(iii) ⇒ (i) is given in Theorem 1.1. �

Definition 2.7. A matrix A is D-stable if for every positive diagonal matrix D, the
matrix DA is stable.

D-stable matrices appear in various applications such as chemical networks and
economics (see e.g., [15]). D-stability has been studied extensively (see [9] for refer-
ences). D-stability is usually a property which is far stronger than stability. Theorem
2.6 allows us to show that for the class of sign symmetric matrices these properties
are equivalent. Furthermore, we show that these properties are equivalent to having
a positive scaling into a stable matrix.

Theorem 2.8. Let A be a sign symmetric matrix. The following are equivalent:

(i) The matrix A is stable.
(ii) The matrix A has positive leading principal minors.

(iii) The matrix A is a P -matrix.
(iv) The matrix A is D-stable.
(v) There exists a positive diagonal matrix D such that the matrix DA is stable.

Proof. (i) ⇔ (ii) ⇔ (iii) is proven in Theorem 2.6.
(iii) ⇒ (iv). Let A be a sign symmetric P -matrix, and let D be a positive diago-

nal matrix. Note that DA too is a sign symmetric P -matrix. Our claim follows by
Theorem 1.1.

(iv) ⇒ (v) is trivial.
(v) ⇒ (iii). If there exists a positive diagonal matrix D such that the matrix DA

is stable then, by Theorem 2.6, the matrix DA is a P -matrix. Since D is a positive
diagonal matrix, it follows that the matrix A is a P -matrix. �

We conclude this section with a few open problems, motivated by the discus-
sion.

Problem 2.9. It is easy to see that our method of proving Theorem 2.6 does not
work for weakly sign symmetric matrices, since it is based on the fact that A2 is
a P -matrix, which does not necessarily hold for weakly sign symmetric matrices.
Therefore, we ask:
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Let A be a weakly sign symmetric stable matrix. Is A necessarily a P-matrix?

This question can be asked both in the general case, in which Carlson’s conjec-
ture does not hold [12] and in the case of matrices of order 4, for which Carlson’s
conjecture holds [8].

Problem 2.10. One can also ask whether our results can be generalized to P0-ma-
trices and semistability. While it is easy to show that sign symmetric 2 × 2 matrices
are semistable if and only if they are P0-matrices, the matrix

A =
[

0 1 0
0 0 1
1 0 0

]

shows that matrices of order n � 3 which are sign symmetric P0-matrices are not
necessarily semistable. Therefore, Theorem 1.1 cannot be generalized to P0-matrices
of order n � 3. One can ask whether Theorem 2.6 can be generalized, that is:

Let A be a sign symmetric semistable matrix. Is A necessarily a P0-matrix?

In the case of matrices of order 2 the claim does hold. To see this let

A =
[
a b
c d

]

be a sign symmetric matrix. It is easy to check that the eigenvalues of A are real num-
bers. If A is semistable then either A is stable, in which case by Theorem 2.6 A is a
P -matrix, or 0 is an eigenvalue of A. In the latter case we have det(A) = 0 and thus

ad = bc. (2.2)

Since A is semistable it is a Q0-matrix, and hence

trace(A) = a + d � 0. (2.3)

Assume that A is not a P0-matrix. Then either a < 0 or d < 0. In either case, it
follows from (2.3) that a and d are nonzero numbers having opposite signs. It follows
that ad < 0, and by (2.2) we have bc < 0, in contradiction to the sign symmetry of
A. Therefore, our assumption that A is not a P0-matrix is false.

3. Sign symmetric Q-matrices

In view of Theorem 1.2, it is only natural to try to generalize the results of the
previous section by replacing the property of having all principal minors positive
by the weaker property of having positive sums of principal minors of the same
order. For 3 × 3 matrices we have Theorem 3.3 below, which is a stronger version of
Theorem 2.6 . In order to prove it we first prove
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Proposition 3.1. Let A be a 3 × 3 Q-matrix such that A2 is a Q0-matrix. Then A is
stable.

Proof. Let λ be an eigenvalue of A. Since A is a 3 × 3 Q-matrix, it follows, by
Theorem 1.3, that

λ /= 0 and | arg(λ)| < 2�

3
. (3.1)

Since A2 is a Q0-matrix it follows, by Theorem 1.3 applied to A2, that | arg(λ2)| �
2�/3, implying that

| arg(λ)| � �

3
or | arg(λ)| � 2�

3
. (3.2)

It follows from (3.1) and (3.2) that | arg(λ)| � �/3 and hence A is stable. �

Corollary 3.2. Let A be a sign symmetric 3 × 3 Q-matrix. Then A is stable.

Proof. Since A is sign symmetric it follows, by Lemma 2.1, that A2 is a P0-matrix.
Our claim now follows from Proposition 3.1. �

Theorem 3.3. Let A be a 3 × 3 sign symmetric matrix. The following are equiva-
lent:

(i) The matrix A is a P -matrix.
(ii) The matrix A is stable.

(iii) The matrix A is a Q-matrix.

Proof. (i) ⇔ (ii) is proven in Theorem 2.6.
(i) ⇒ (iii) is trivial.
(iii) ⇒ (ii) is proven in Corollary 3.2. �

Theorem 3.3 does not hold in general for matrices of any order n. In fact, even if
we replace the condition that the matrix is a Q-matrix by the stronger condition that
the matrix is a P+

0 -matrix, we do not necessarily get stability, as is demonstrated by
the following example.

Example 3.4. Let

A =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0


 .

The matrix A is a sign symmetric P+
0 -matrix. However, we have σ(A) = {e±(2�/3)i,

1, 1, 1}, and so A is not stable.
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Remark 3.5. Observe that all powers of the matrix A in Example 3.4 are sign sym-
metric P+

0 -matrices. Thus, that example establishes the claim that there exists an
unstable matrix all of whose powers are sign symmetric P+

0 -matrices.

Problem 3.6. While Theorem 3.3 asserts that sign symmetric 3 × 3 Q-matrices are
stable, Example 3.4 demonstrates that for n > 4 sign symmetric n × nQ-matrices
are not necessarily stable. We have no such example of 4 × 4 matrices, and so we
pose the following two problem:

Let A be a 4 × 4 sign symmetric Q-matrix. Is A necessarily stable?
Let A be a 4 × 4 weakly sign symmetric Q-matrix. Is A necessarily stable?

Ballantine [2] proved that for every matrix A with positive leading principal mi-
nors, there exists a positive diagonal matrix D such that AD (or, equivalently, DA) is
stable. It is natural to ask whether we can replace the requirement that A has positive
leading principal minors by the requirement that A is a P+

0 -matrix. Another moti-
vation for this question is a theorem due to Cross [4], stating that a D-stable matrix
is necessarily a P+

0 -matrix. In some sense, the opposite direction of this question is
the question whether for every P+

0 -matrix there exists a positive diagonal matrix D

such that DA is a stable matrix. Our results allow us to answer both questions in the
negative. The matrix A in Example 3.4 is a sign symmetric P+

0 -matrix which is not
stable. By Theorem 2.8, it follows that there exists no positive diagonal matrix D

such that DA is a stable matrix.

4. Matrices whose scalings have P0-matrix squares

The proof in [3] of Theorem 1.1 uses the fact that for a sign symmetric P -matrix
A and a positive diagonal matrix D, the matrix (AD)2 (or, equivalently, (DA)2)
is a P -matrix. That proof does not really need that (DA)2 is a P -matrix for every
positive scaling D. It uses only the weaker condition that (DA)2 has no nonpositive
real eigenvalues. For the latter it is enough to require that (DA)2 is a Q-matrix for
every positive scaling D. In this section we study matrices satisfying this and related
conditions. We first show that the property that the square of every positive scaling
of a matrix is a P0-matrix characterizes sign symmetric matrices.

Theorem 4.1. Let A be a square matrix. The following are equivalent:

(i) The matrix A is sign symmetric.
(ii) For every positive diagonal matrix D the matrix (DA)2 is a P0-matrix.

Proof. (i) ⇒ (ii). Let A be a sign symmetric n × n matrix and let D be a positive di-
agonal n × n matrix. Note that DA is sign symmetric as well. By the Cauchy–Binet
formula (see e.g., [6, p. 9]) it follows that for every subset α of {1, . . . , n} we have
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(DA)2[α] =
∑

β⊂{1,...,n}, |β|=|α|
(DA)[α|β](DA)[β|α] � 0. (4.1)

(ii) ⇒ (i). Let A be a matrix which is not sign symmetric. Then there exist subsets
α0 and β0 of {1, . . . , n}, |α0| = |β0|, such that

A[α0|β0]A[β0|α0] < 0.

For ε > 0 let Dε be the positive diagonal matrix defined by

(Dε)jj =
{

1, j ∈ α0,

ε, j /∈ α0.

By the Cauchy–Binet formula we have

(DεA)2[β0] =
∑

α⊂{1,...,n}, |α|=|β0|
(DεA)[β0|α](DεA)[α|β0]

=
∑

α⊂{1,...,n}, |α|=|β0|
ε|β0\α0|+|α\α0|A[β0|α]A[α|β0]. (4.2)

Note that the coefficient of the lowest power ε|β0\α0| of ε in (4.2) is the negative
product A[α0|β0]A[β0|α0]. It thus follows that for ε sufficiently small we have
(DεA)2[β0] < 0, and so for the positive diagonal matrix Dε the matrix (DεA)2 is
not a P0-matrix. �

The P -matrix version of Theorem 4.1 is the following:

Theorem 4.2. Let A be a square matrix with all principal minors nonzero. The
following are equivalent:

(i) The matrix A is sign symmetric.
(ii) For every positive diagonal matrix D the matrix (DA)2 is a P -matrix.

Proof. (i) ⇒ (ii). This implication follows exactly as the corresponding implica-
tion in Theorem 4.1, noting that the right-hand side of (4.1) includes the positive
summand ((DA)[α])2.

(ii) ⇒ (i) is proven in Theorem 4.1. �

Since a matrix is a P -matrix if and only if every positive scaling of it is a P -
matrix, in view of Theorem 4.2, Theorem 1.1 can be restated as

Theorem 4.3. Let A be a square matrix such that all positive scalings of A are
P 2-matrices. Then A is stable.
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We now study the property that the square of every positive scaling of a matrix is
a Q-matrix. We start with a necessary condition.

Proposition 4.4. Let A be a square matrix. If for every positive diagonal matrix D

the matrix (DA)2 is a Q-matrix then A2 is a P+
0 -matrix.

Proof. Let A be an n × n matrix. Since A2 is a Q-matrix it follows that A is non-
singular and so det(A2) > 0. Assume that A2 is not a P+

0 -matrix. Since A2 is a Q-
matrix, it follows that for some proper subset α of {1, . . . , n} we have A2[α] < 0. Let
|α| = k. Similarly to the proof of Theorem 4.1, for ε � 0 let Dε be the nonnegative
diagonal matrix defined by

(Dε)jj =
{

1, j ∈ α,

ε, j /∈ α.

It is easy to verify that the only nonzero minor of (D0A)2 of order k is the nega-
tive minor (D0A)2[α] = A2[α]. Therefore, (D0A)2 has a negative sum of principal
minors of order k, and by continuity, for positive ε sufficiently small the matrix
(DεA)2 has a negative sum of principal minors of order k, in contradiction to the
proposition’s condition. Therefore, our assumption that A2 is not a P+

0 -matrix is
false. �

The converse of Proposition 4.4 does not hold in general for matrices of order grea-
ter than 2, even if we replace the requirement that A2 is a P+

0 -matrix by the stronger
requirement that A is a P 2-matrix, as is demonstrated by the following example.

Example 4.5. The matrix

A =

 9 −100 10

1 10 10
10 10 300




is a P 2-matrix. Nevertheless, for the positive diagonal matrix D = diag{1, 1, 0.01}
we have

(DA)2 =

−18 −1899 −880

20 1 140
1.3 −8.7 11


 .

Note that (DA)2 is not a Q-matrix since it has a negative trace.

The converse of Proposition 4.4 does hold for 2 × 2 matrices.

Proposition 4.6. Let A be a 2 × 2 matrix. The following are equivalent:

(i) For every positive diagonal matrix D the matrix (DA)2 is a Q-matrix.
(ii) The matrix A2 is a P+

0 -matrix.
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Proof. (i) ⇒ (ii) is proven in Proposition 4.4.
(ii) ⇒ (i). Let

A =
[
a11 a12
a21 a22

]

be such that A2 is a P+
0 -matrix and let D = diag{d1, d2} be a positive diagonal ma-

trix. Since

det((DA)2) = det(D)2 det(A)2 > 0,

all we have to prove is that

trace((DA)2) > 0. (4.3)

We have

trace((DA)2) = d2
1a

2
11 + 2d1d2a12a21 + d2

2a
2
22.

If a12a21 � 0 then, since d2
1a

2
11 > 0 and d2

2a
2
22 > 0, the inequality (4.3) holds. Note

that this is also the case that A is sign symmetric and hence, by Theorem 4.2, the
matrix (DA)2 is a P -matrix. So, assume that a12a21 < 0. Since A2 is a P+

0 -matrix,
we have

(A2)11 = a2
11 + a12a21 � 0 (4.4)

and
(A2)22 = a12a21 + a2

22 � 0, (4.5)

with at least one of the two inequalities (4.4) and (4.5) strict. By multiplying (4.4)
by d2

1 and (4.5) by d2
2 and adding the two resulting inequalities we obtain

d2
1a

2
11 + d2

2a
2
22 + a12a21(d

2
1 + d2

2 ) > 0. (4.6)

Since d2
1 + d2

2 � 2d1d2 and a12a21 < 0, it now follows from (4.6) that

0 < d2
1a

2
11 + d2

2a
2
22 + (d2

1 + d2
2 )a12a21 � d2

1a
2
11 + d2

2a
2
22 + 2d1d2a12a21,

proving (4.3). �

The two statements of Proposition 4.6 are equivalent in general for a certain class
of matrices whose definition follows.

Definition 4.7. An n × n matrix A is said to be anti-sign symmetric if A[α|β] ×
A[β|α] � 0 for all α, β ⊂ {1, . . . , n}, α /= β, such that |α| = |β|.
Theorem 4.8. Let A be an anti-sign symmetric matrix. Then the following are
equivalent:

(i) For every positive diagonal matrix D the matrix (DA)2 is a Q-matrix.
(ii) The matrix A2 is a P+

0 -matrix.
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Proof. (i) ⇒ (ii) is proven in Proposition 4.4.

(ii) ⇒ (i). Let A be an anti-sign symmetric n × n matrix such that the matrix A2

is a P+
0 -matrix and let D = diag{d1, . . . , dn} be a positive diagonal matrix. Since A2

is a P+
0 -matrix and since D is a positive diagonal matrix it follows that:

(D[α])2A2[α] � 0, ∀α ⊂ {1, . . . , n}, (4.7)

with strict inequality for at least one set α of each order k, 1 � k � n. Using the
Cauchy–Binet formula and summing over all subsets α of {1, . . . , n} of cardinality
k, we obtain∑

α⊂{1,...,n}
|α|=k

(D[α])2
∑

β⊂{1,...,n}
|β|=|α|

A[α|β]A[β|α] > 0,

or ∑
α,β⊂{1,...,n}
|α|=|β|=k

α�β

dαβA[α|β]A[β|α] > 0, (4.8)

where “�” denotes the lexicographic order relation, and where

dαβ =
{
(D[α])2, α = β,

(D[α])2 + (D[β])2, α /= β.

In order to prove that (DA)2 is a Q-matrix we have to show that for every positive
integer k, 1 � k � n we have∑

α⊂{1,...,n}
|α|=k

(DA)2[α] > 0. (4.9)

Using the Cauchy–Binet formula, we can write (4.9) as∑
α⊂{1,...,n}

|α|=k

∑
β⊂{1,...,n}

|β|=|α|

D[α]D[β]A[α|β]A[β|α] > 0,

or ∑
α,β⊂{1,...,n}
|α|=|β|=k

α�β

d̂αβA[α|β]A[β|α] > 0, (4.10)

where

d̂αβ =
{
(D[α])2, α = β,

2D[α]D[β], α /= β.
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Since (D[α])2 + (D[β])2 � 2D[α]D[β] > 0, and since by the anti-sign symmetry
of A we have A[α|β]A[β|α] � 0 whenever α /= β, inequality (4.10) follows from
inequality (4.8). �

As a corollary of Theorem 4.8 we obtain

Corollary 4.9. Let A be an anti-sign symmetric P -matrix such that A2 is a P+
0 -

matrix. Then A is stable.

Proof. The proof is essentially the same as the proof in [3] of Theorem 1.1. The
only difference is that there the sign symmetry of a matrix A is used to prove that
the square of every positive scaling DA is a P -matrix and thus has no negative
eigenvalues, while here it follows by Theorem 4.8 that (DA)2 is a Q-matrix and
thus has no negative eigenvalues. �

5. On the relation between the spectra of P S-matrices and QS-matrices

Since, by Theorem 1.3, P -matrices of order greater than 2 are not necessarily
stable, and since in the proof of Theorem 1.1 the fact that A2 is a P -matrix plays
a crucial role, it is of interest to check a seemingly more restricted class, that is,
matrices some of whose powers are P -matrices. In view of Theorem 1.2 it would
be interesting to investigate also the relation between spectral properties of such
matrices and matrices whose corresponding powers are Q-matrices. In this context,
Hershkowitz and Johnson [10] posed the following question.

Question 5.1. Are the spectra of PM-matrices the same as those of QM-matrices?

It is shown in [10] that the answer to Question 5.1 is affirmative for matrices of
order less than 5.

A more general version of Question 5.1 is the following.

Question 5.2. Let S be a (finite or infinite) set of positive integers. Are the spectra
of PS-matrices the same as those of QS-matrices?

In this section we shall answer this question affirmatively for matrices of order
less than 4.

Definition 5.3
(i) A set � of complex numbers that serves as the spectrum of some P -matrix is

said to be a P -set.
(ii) For a positive integer k we denote by �k the set which consists of the kth powers

of the elements of �. For a set S of positive integers, the set � is said to be a
PS-set if �k is a P -set for all k ∈ S.
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Remark 5.4. Let � be a set of complex numbers and let S be a set of positive
integers. Note that � is a PS-set if and only if it is the spectrum of some QS-matrix.
Furthermore, every matrix with spectrum � is a QS-matrix.

In answering Question 5.2 for 2 × 2 matrices we shall use the following three
lemmas.

Lemma 5.5. A matrix A of the form[
x y

−y x

]
(5.1)

is a P -matrix if and only if it is a Q-matrix.

Proof. The assertion follows since the diagonal elements of A are all equal, and so
their sum is positive if and only if each one is positive. �

It is easy to check that

Lemma 5.6. A product of two matrices of the form (5.1) is of the same form.

Finally,

Lemma 5.7. For any complex number λ there exists a real matrix A of the form
(5.1) with spectrum {λ, λ}.

Proof. The matrix is

[
Re(λ) Im(λ)

−Im(λ) Re(λ)

]
. �

We can now answer Question 5.2 for 2 × 2 matrices.

Theorem 5.8. Let � be a set of two complex numbers and let S be a set of positive
integers. The following are equivalent:

(i) The set � is the spectrum of some 2 × 2PS-matrix.
(ii) The set � is the spectrum of some 2 × 2 QS-matrix.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (i). Let � = {λ1, λ2} be the spectrum of some 2 × 2 QS-matrix. Clearly,

either λ1, λ2 ∈ R or λ1 = λ2. If λ1, λ2 ∈ R then we choose the QS-matrix A =
diag(λ1, λ2). Since, by Theorem 1.3, a real diagonal matrix is a Q-matrix if and only
if it is a positive diagonal matrix and thus a P -matrix, it follows that A is a PS-matrix
with spectrum �. If λ1 = λ2 then, by Lemma 5.7, there exists a matrix A of the form
(5.1) with spectrum �. As is noted in Remark 5.4, since � is the spectrum of some
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QS-matrix it follows that A is a QS-matrix. Since, by Lemma 5.6, all powers of A

are of the form (5.1), it follows by Lemma 5.5 that A is a PS-matrix. �

We use a similar approach for 3 × 3 matrices.

Lemma 5.9. A 3 × 3 circulant matrix A, that is, a matrix A of the form
x y z

z x y

y z x


 (5.2)

is a P -matrix if and only if it is a Q-matrix.

Proof. Since A has all equal diagonal elements and all equal 2 × 2 principal minors,
it follows that the sums of principal minors of each order are positive if and only if
every principal minor is positive. �

Here too it is easy to check that

Lemma 5.10. A product of two circulant matrices is again a circulant matrix.

Finally,

Lemma 5.11. For any real number r and a complex number λ there exists a real
3 × 3 circulant matrix A with spectrum {r, λ, λ}.

Proof. The matrix A of the form (5.2) for which

x = r + 2Re(λ)

3
, y = r − Re(λ) − √

3Im(λ)

3
,

z = r − Re(λ) + √
3Im(λ)

3
is the required matrix. �

The affirmative answer for Question 5.2 for 3 × 3 matrices follows:

Theorem 5.12. Let � be a set of three complex numbers and let S be a set of positive
integers. The following are equivalent:

(i) The set � is the spectrum of some 3 × 3 PS-matrix.
(ii) The set � is the spectrum of some 3 × 3 QS-matrix.

Proof. The proof is exactly the same as the proof of Theorem 5.8, where for the set
� = {λ1, λ2, λ3} we have either λ1, λ2, λ3 ∈ R or λ1 ∈ R and λ2 = λ3, where the
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form (5.2) replaces (5.1) and where Lemmas (5.9)–(5.11) replace Lemmas (5.5)–
(5.7) correspondingly. �

It would be natural to try to generalize the above approach for real 4 × 4 circulant
matrices, that is, real matrices of the form


x y z w

w x y z

z w x y

y z w x


 . (5.3)

Unfortunately, such a generalization does not hold. First, notice that in this case we
do not have the analog of Lemmas 5.5 and 5.9 since not all 2 × 2 principal minors
of a matrix of form (5.3) are equal. Furthermore, on one hand we have

Proposition 5.13. All P -matrices of the form (5.3) are stable.

Proof. The eigenvalues of a matrix A given by (5.3) are

x + y + z + w, x − y + z − w, x − z ± i(−y + w).

By Theorem 1.3, the two real eigenvalues of A are positive. Due to the positivity of
the trace of A we have x > 0. Since all principal minors of A are positive and since
A[{1, 3}] = x2 − z2, we have x > z. It now follows that the real parts of the complex
eigenvalues are positive, and so the matrix is stable. �

On the other hand, in the sequel we shall show (Corollary 6.9) that for every
finite set S of positive integers there exists an unstable PS-set of cardinality 4. It
thus follows that there exist PS-sets � of cardinality 4 for which there exists no real
matrix A of the form (5.3) with spectrum �.

6. QS-matrices and stability

Another question, which was suggested by Friedland (private communication)
and formally posed in [10], is

Question 6.1. Let A be PM-matrix. Are all the eigenvalues of A positive real num-
bers?

It is shown in [10] that the answer to Question 6.1 is affirmative for matrices of
order less than 5. Example 3.4 shows that for n � 5 QM-matrices are not neces-
sarily stable. It thus follows that not both Questions 5.1 and 6.1 can have affirmative
answers. In this section we refer to the relation between PS-matrices or QS-matrices
and stability, concentrating on P 2-matrices.
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Motivated by Theorem 4.3, we pose the question what happens if we replace the
requirement that “all positive scalings of A are P 2-matrices” by the weaker require-
ment that “A is a P 2-matrix”. In particular, we ask

Question 6.2. Are P 2-matrices stable?

or even

Question 6.3. Are Q2-matrices stable?

Remark 6.4. Another motivation to study Questions 6.2 and 6.3 is their relation to
Question 6.1. Indeed, assume that there is an eigenvalue λ of a PM-matrix which is
not a positive real number. Then there exists a power λn of λ which is not in the right
half-plane. Note that λn is an eigenvalue of An which is a P 2-matrix, and thus we
get a P 2-matrix which is not stable.

Clearly, a 1 × 1 Q-matrix has a positive eigenvalue. We answer Questions 6.2 and
6.3 positively also for 2 × 2 and 3 × 3 matrices using Theorem 1.3. By that theorem
it immediately follows that for 2 × 2 we do not even need that A2 is a Q-matrix.

Proposition 6.5. Let A be a 2 × 2 Q-matrix. Then A is stable.

Remark 6.6. It is easy to check that a set � = {λ1, λ2} is the spectrum of some
2 × 2Q2-matrix if and only if either λ1, λ2 > 0 or λ1 = λ2 and | arg(λ)| < �/4. By
Theorem 5.8, such a set is also the spectrum of some P 2-matrix.

The stability of 3 × 3 Q2-matrices is asserted in Proposition 3.1. The answer to
Question 6.3 is negative for 4 × 4 matrices. In fact, we shall show that for every
finite set S of positive integers there exists an unstable PS-set of cardinality 4.

Lemma 6.7. The set � = {e(2�i/3), e−(2�i/3), a, b}, a, b ∈ R, is a P -set if and only
if a + b > 1 and either 0 < a, b < 1 or a, b > 1 and (a − 1)(b − 1) < 1.

Proof. The set � is a P -set if and only if all its elementary symmetric functions
σk(�) are positive, that is

σ1(�) = −1 + a + b > 0, (6.1)

σ2(�) = 1 + ab − a − b = (1 − a)(1 − b) > 0, (6.2)

σ3(�) = a + b − ab = 1 − (a − 1)(b − 1) > 0, (6.3)

and

σ4(�) = ab > 0. (6.4)
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Note that (6.1) and (6.4) hold if and only if a + b > 1 and a, b > 0. It thus follows
that (6.2) holds if and only if either a, b < 1 or a, b > 1. Clearly, (6.3) holds if and
only if

(a − 1)(b − 1) < 1. (6.5)

Finally, note that if 0 < a, b < 1 then (6.5) holds. �

As a consequence we obtain

Theorem 6.8. Let S be a set of positive integers. The following are equivalent:

(i) There exists a PS-set of the type {e(2�i/3), e−(2�i/3), a, b}, a, b ∈ R.

(ii) The set S contains a finite number of integers that are not multiples of 3.

Proof. Let S be a set of positive integers, let S1 be the set of all elements of S which
are multiples of 3, let S2 = S \ S1, and let � = {e(2�i/3), e−(2�i/3), a, b}. The proof
of the equivalence follows.

(i) ⇒ (ii). Note that for every k ∈ S2 we have �k = {e(2�i/3), e−(2�i/3), ak, bk}. If
S2 is infinite then, since if 0 < a, b < 1 then for k ∈ S2 sufficiently large we have
ak + bk � 1andifa, b > 1thenfork ∈ S2 sufficiently largewehave(ak − 1)(bk − 1)
� 1, it follows by Lemma 6.7 that � is not a PS2 -set and thus not a PS-set.

(ii) ⇒ (i). Assume that S2 is finite. Note that for every k ∈ S1 we have �k =
{1, 1, ak, bk}, which is a P -set if and only if ak, bk > 0. Therefore, if a, b > 0 then
� is a PS1 -set. Now, let n be the largest element of the finite set S2, and choose a

and b such that n
√

1/2 < a, b < 1. Since 0 < ak, bk < 1 and ak + bk > 1 whenever
k � n, it follows from Lemma 6.7 that � is a PS2 -set. Since � is also PS1 -set, it
follows that � is a PS-set. �

Since e±(2�i/3) has a negative real part, it now follows that:

Corollary 6.9. Let S be a finite set of positive integers. There exists an unstable
PS-set of cardinality 4.

Theorem 6.8 can be used to provide an alternative elementary affirmative answer
for Questions 5.1 and 6.1 for 4 × 4 matrices, originally answered in [10]. In our
proof we use the following lemma, which is also used in [10].

Lemma 6.10 [10, Lemma 1]. Let λ be an eigenvalue of an n × n QM-matrix. Then
arg(λ) is a rational multiple of 2�. Furthermore, if this multiple has denominator d

in reduced form then d is odd and d < n.

Theorem 6.11. Let S be a PM-set of order 4. Then all the elements of S are positive
real numbers.
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Proof. By Lemma 6.10, the elements of S can be positive numbers or complex num-
bers of the form re±(2�i/3). If all four elements of S are of the latter type then they
all have negative real parts, implying that their sum is negative and so S is not even
a P -set. By Theorem 6.8 the set S cannot be of the form {re(2�i/3), re−(2�i/3), a, b},
a, b ∈ R. Our claim follows. �

Motivated by Corollary 6.9 and Theorem 6.11, we conclude our paper with the
following open problem.

Problem 6.12. While by Theorem 6.11, 4 × 4 QM-matrices are stable, Corollary
6.9 asserts that for any finite set S of positive integers, 4 × 4 QS-matrices are not
necessarily stable. Thus, one can ask

For which infinite sequences S of positive integers, all 4 × 4 QS-matrices are stable?

Note that Example 3.4 shows that for n > 4 even a sign symmetric QM-matrix is
not necessarily stable. For a related discussion see [7,11].
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