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Abstract. In this paper we examine the strength of AES against the
related-key impossible differential attack, following the work of Jakimoski
and Desmedt [12]. We use several additional observations to substantially
improve the data and time complexities of their attacks. Amongst our
results, we present a related-key attack on 7-round AES-192 with data
complexity of 256 chosen plaintexts (instead of 2111). Our attack on 8-
round AES-192 has data complexity of 268.5 chosen plaintexts (instead
of 288). The time complexities of our attacks is also substantially lower
than the time complexities of previous attacks.
Keywords: AES, related-key differentials, impossible differentials

1 Introduction

The Advanced Encryption Standard [9] is a 128-bit block cipher with variable key
length (128, 192, and 256-bit keys are allowed). Since its selection, AES gradually
became one of the most worldwide used block ciphers. Therefore, a constant eval-
uation of its security with respect to various cryptanalytic techniques is required.
AES was already analyzed in many papers, each using different attacks [5, 6, 8,
10–12].

Related-key attacks [1] consider the information that can be extracted from
two encryptions using related (but unknown) keys. In the attack, the attacker
uses weaknesses of the encryption function and of the key schedule algorithm
to derive information on the unknown keys. Related-key differential attacks [13]
study the development of differences in two encryptions under two related keys
and use them to derive the actual values of the keys. Usually the attacker exploits
differential relations that hold with a relatively high probability, like in ordinary
differential attacks [4]. However, differential relations holding with a very low
(or zero) probability can also be used [2, 3, 12]. In this case, the attack is called
related-key impossible differential attack.
? The research presented in this paper was supported by the Clore scholarship pro-
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Cipher Number of Complexity Number of Attack Type
Rounds Data Time Keys & Source

AES-192 7 292 CP 2186 1 Imp.Diff. [8]
(12 rounds) 7 19 · 232 CP 2155 1 SQUARE [10]

8 2128 − 2119 CP 2188 1 SQUARE [10]

7 2111 RK-CP 2116 2 RK Imp.Diff. [12]
8 288 RK-CP 2183 2 RK Imp.Diff. [12]
8 286.5 RK-CP 286.5 4 RK Rectangle [11]
9 286 RK-CP 2125 256 RK Rectangle [5]
7 256 RK-CP 294 32 RK Imp.Diff.;Sect. 3
8 2116 RK-CP 2134 32 RK Imp.Diff.;Sect. 4
8 292 RK-CP 2159 32 RK Imp.Diff.;Sect. 4
8 268.5 RK-CP 2184 32 RK Imp.Diff.;Sect. 4

RK – Related-key, CP – Chosen plaintext,
Time complexity is measured in encryption units

Table 1. Summary of the Previous Attacks and of Our New Attacks

In this paper we examine the security of AES against related-key impossible
differential attacks. We concentrate on the 192-bit key version of AES (AES-192)
since in this variant the diffusion of the key schedule is slower than in the other
versions and thus the potential vulnerability to related-key attacks is bigger.

The relatively weak key schedule of AES-192 has inspired much research:
In [12] Jakimoski and Desmedt presented a related-key differential attack appli-
cable up to a 6-round AES-192 (out of the 12 rounds). An improved version of
the attack (also presented in [12]) uses truncated differentials and is applicable
up to a 7-round version. In addition, Jakimoski and Desmedt [12] devised several
related-key impossible differential attacks that are applicable up to an 8-round
AES-192. In [11] Hong et al. presented a related-key rectangle attack applicable
up to an 8-round AES-192. The best known related-key attack on AES-192 was
devised by Biham et al. [5] and it is applicable to a 9-round variant of the cipher.

For comparison, the best attack on AES-192 not under the related-key model
is a SQUARE attack presented in [10]. It can attack up to 8 rounds of AES-192,
using almost the entire code book. The time complexity of this attack is 2188

encryptions.
In this paper we present several new related-key impossible differential at-

tacks. The attacks use the 5.5-round impossible differential suggested by Jaki-
moski and Desmedt [12]. However, by making additional observations on the
behavior of the key schedule, we can reduce the data complexity of our attacks
by a factor of 255 for the 7-round attack, and by a factor of 219.5 for the 8-round
attack. The time complexity is also reduced significantly. We summarize our
results along with previously known results in Table 1.

This paper is organized as follows: In Section 2 we give a brief description
of AES. In Section 3 we describe the new related-key attack on 7-round AES-
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192. In Section 4 we extend the 7-round attack to attacks on 8-round AES-192.
Finally, Section 5 summarizes this paper.

2 Description of AES

The advanced encryption standard [9] is an SP-network that supports key sizes
of 128, 192, and 256 bits. The 128-bit plaintexts are treated as byte matrices of
size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix:

– SubBytes (SB) – applying the same 8x8 S-box 16 times in parallel on each
byte of the state,

– ShiftRows (SR) – cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) – multiplication of each column by a constant 4x4 matrix
over the field GF (28), and

– AddRoundKey (ARK) – XORing the state and a 128-bit subkey.

The MixColumns operation is omitted in the last round, and an additional Ad-
dRoundKey operation is performed before the first round (using a whitening
key). As all other works on AES, we shall assume that reduced-round variants
also have the MixColumns operation omitted from the last round.

The number of rounds depends on the key length: 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are
numbered 0, . . . , Nr− 1, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
For sake of simplicity we shall denote AES with n-bit keys by AES-n, i.e., AES
with 192-bit keys (and thus with 12 rounds) is denoted by AES-192.

The key schedule of AES-192 takes a 192-bit key and transforms it into 13
subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 51], where
each word of W [·] consists of 32 bits. The first six words of W [·] are loaded with
the user supplied key. The remaining words of W [·] are updated according to
the following rule:

– For i = 6, . . . , 51 do
• If i ≡ 0 mod 6 then W [i] = W [i−6]⊕SB(W [i−1] �� 8)⊕RCON [i/6],
• else W [i] = W [i− 1]⊕W [i− 6].

where RCON [·] is an array of predetermined constants, and �� denotes rotation
of the word by 8 bits to the left.

The best known attack on AES-192 is a SQUARE attack on 8 rounds [10].
The attack requires almost the entire code book (2128 − 2119 chosen plaintexts)
and has a time complexity equivalent to 2188 encryptions. The SQUARE attack
applied to 7-round AES-192 requires 19 · 232 chosen plaintexts and has a time
complexity of 2155 encryptions.

The best impossible differential attack on AES-192 is on 7-round AES-192 [8].
Its data complexity is 292 chosen plaintexts and its time complexity is 2186

encryptions.
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There are several related-key attacks on AES-192. A related-key impossible
differential attack on an 8-round variant is presented in [12]. This attack requires
288 related-key chosen plaintexts and has a running time of 2183 encryptions. The
attack uses two related keys.

A related-key rectangle attack on 8-round AES-192 using four related keys is
presented in [11]. It requires 286.5 chosen plaintexts (encrypted under four keys)
and has a time complexity equivalent to 286.5 encryptions.

Another related-key rectangle attack on AES-192 is presented in [5]. This
attack can be applied up to nine rounds using 286 related-key chosen plaintexts
encrypted under 256 keys. Its time complexity is 2125 encryptions.

The related-key attacks exploit a weakness in the key schedule algorithm
of AES-192. Unlike AES-128 and AES-256, the key schedule algorithm of AES-
192 applies a nonlinear component (SubBytes) once every six key words (or once
every round and a half), instead of once every four key words (once every round).
This leads to the introduction of better and longer related-key differentials.

2.1 Notations Used in the Paper

In our attacks we use the following notations: xI
i denotes the input of round i,

while xS
i , xSh

i , xM
i , and xO

i denote the intermediate values after the application
of SubBytes, ShiftRows, MixColumns, and AddRoundKey operations of round
i, respectively. Of course, the relation xO

i−1 = xI
i holds.

We denote the subkey of round i by subscript ki, and the first (whitening) key
is k−1, i.e., the subkey of the first round is k0. In some cases, we are interested in
interchanging the order of the MixColumns operation and the subkey addition.
As these operations are linear they can be interchanged, by first XORing the data
with an equivalent key and only then applying the MixColumns operation. We
denote the equivalent subkey for the changed version by wi, i.e., wi = MC−1(ki).

We denote the z’th column of xi by xi,Col(z), i.e., w0,Col(0) = MC−1(k0,Col(0)).
We also denote the byte in the y’th row and the z’th column of the state matrix
x (of round i) by byte xi,y,z where y, z ∈ {0, 1, 2, 3}. For example, xM

2,0,3 denotes
the fourth byte in the first row of the intermediate value after the application of
the MixColumns transformation in round 2. Another notation for bytes of some
intermediate state xi is an enumeration {0, 1, 2, . . . , 15} where the byte xi,y,z

corresponds to byte 4z + y of xi.
In the paper we also use the notation xi= ((xi,Col(0)), (xi,Col(1)),(xi,Col(2)),

(xi,Col(3))). The column j of xi is represented as (xi,0,j , xi,1,j ,xi,2,j ,xi,3,j).

3 Related-Key Impossible Differential Attacks on
7-Round AES-192

3.1 A 5.5-round Related-key Impossible Differential of AES-192

First we recall the related-key impossible differential presented in [12] that we
use in our attacks. The impossible differential starts at the middle of round 2 and

4



Round (i) ∆ki,Col(0) ∆ki,Col(1) ∆ki,Col(2) ∆ki,Col(3)

-1 (0, 0, 0, f) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
0 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
1 (a, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0)
2 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
3 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
4 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
5 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
6 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, b) (0, 0, 0, b)
7 (a, 0, 0, b) (0, 0, 0, b) (a, 0, 0, b) (0, 0, 0, b)
8 (0, 0, c, b) (0, 0, c, 0) (a, 0, c, b) (a, 0, c, 0)
9 (0, 0, c, b) (0, 0, c, 0) (0, d, c, b) (0, d, 0, b)

a,b,c,d, and f are non-zero byte differences.

Table 2. Subkey Differences Required for the 5.5-Round Impossible Differential

ends just after round 7. Note that in [12] the differential was used in rounds 0–4
(including the whitening key).

Consider rounds 2–7 of AES-192. Throughout the attack we assume that
the subkey differences in these six rounds and the surrounding rounds are as
presented in Table 2. We shall address the conditions on the difference between
the keys to achieve these subkey differences later.

The related-key impossible differential is of 5.5 rounds, and is built in a miss-
in-the-middle manner [2]. A 4.5-round related-key differential with probability 1
is “concatenated” to a 1-round related-key differential with probability 1, in the
inverse direction, where the intermediate differences contradict one another. The
5.5-round related-key impossible differential is

∆xM
2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)) 6→

∆xO
7 = ((?, ?, ?, ?), (0, 0, 0, b), (?, ?, ?, ?), (?, ?, ?, ?)),

where ? denotes any value.
The first 4.5-round differential is obtained as follows: The input difference

∆xM
2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)) is canceled by the subkey

difference at the end of round 2. The zero difference ∆xI
3 = 0, is preserved

through all the operations until the AddRoundKey operation of round 4, and
hence ∆xM

4 = 0. The subkey difference in k4 becomes the data difference, i.e.,
∆xI

5 = ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)). This difference is in a single
byte, and thus, the difference after the first three operations of round 5 is in all
the four bytes of a column, i.e., ∆xM

5 = ((y, z, w, v), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))
where y, z, w, v are unknown non-zero byte values. After the subkey addition this
difference becomes ∆xO

5 = ((y, z, w, v), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0).
This difference evolves after the SubBytes and ShiftRows of round 5 into

∆xSh
6 = ((y′, 0, 0, 0), (0, 0, 0, v′), (a′, 0, w′, 0), (a′′, z′, 0, 0)), where y′, z′, w′, a′, and a′′

are unknown non-zero values. Hence, ∆xM
6 =((N,N, N,N), (N,N, N,N), (?, ?, ?, ?),

(?, ?, ?, ?)) where N denotes non-zero differences (possibly distinct). Finally, after
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Fig. 1. The 5.5-Round Impossible Differential Used in the Attack

the key addition this difference evolves to ∆xO
6 = ((?, N, N,N), (?, N, N,N), (?, ?, ?, ?),

(?, ?, ?, ?)).

Hence, the input difference ∆xM
2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0),(a, 0, 0, 0))

evolves with probability one into a non-zero difference in bytes 1,2,3,5,6, and 7
of xO

6 . The propagation of the differences is shown in Figure 1.

The second differential ends after round 7 with output difference ∆xO
7 =

((?, ?, ?, ?),(0, 0, 0, b),(?, ?, ?, ?),(?, ?, ?, ?)). When rolling back this difference through
the AddRoundKey operation, we get the difference ∆xM

7 = ((?, ?, ?, ?), (0, 0, 0, 0),
(?, ?, ?, ?),(?, ?, ?, ?)), which leads to a zero output difference of the MixColumns
operation in the second column. Hence, the input difference to round 7 is ∆xI

7 =
((?, ?, ?, 0),(0, ?, ?, ?),(?, 0, ?, ?),(?, ?, 0, ?)). This difference contradicts the first
differential as with probability one xO

6,3,0 = xI
7,3,0 has a non-zero difference while

the second differential predicts that this byte has a zero difference with proba-
bility 1. This contradiction is emphasized in Figure 1.
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3.2 A 7-round Related-Key Impossible Differential Attack

Using the above impossible differential we can attack a 7-round variant of AES-
192. We attack rounds 2–8 of the cipher, using a pair of related keys that has
the subkey differences described earlier. Our attack is based on the following two
observations:

1. If the input difference of the differential holds, then the plaintext difference
in eight of the 16 bytes is known, while in the other eight bytes almost any
difference can be used. Thus, our attack can use structures in order to bypass
round 2.

2. It is sufficient to guess only one subkey byte of the last round (k8,3,2) in
order to check out whether the output difference of the impossible differential
holds.

We note that due to the special structure of the key schedule, the best round to
start the attack with is round 2 of the original AES.

For sake of simplicity, we currently assume that the values of a, b, c and f
are known, i.e., we have two related keys K1 and K2 with the required subkey
differences. This does not hold, but we shall deal with this issue later.

In order to make the attack faster we first perform a precomputation: For all
the 264 possible pairs of values of the two last columns of xM

2 , i.e., xM
2,Col(2) and

xM
2,Col(3) with difference ((a, 0, 0, 0), (a, 0, 0, 0)), compute the values of the eight

bytes 1, 2, 6, 7, 8, 11, 12, and 13 of xI
2. Store the pairs of 8-byte values in a hash

table Hp indexed by the XOR difference in these bytes.
The algorithm of the attack is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such that for each plain-
text pair P1 ∈ S1 and P2 ∈ S2, P1⊕P2 = (?, 0, 0, ?),(?, ?, 0, 0),(a, ?, ?, 0),(0, 0, ?, ?),
where “?” denotes any byte value.

2. Ask for the encryption of the pool S1 under K1, and of the pool S2 under K2.
Denote the ciphertexts of the pool S1 by T1, and the encrypted ciphertexts
of the pool S2 by T2.

3. For all ciphertexts C2 ∈ T2 compute C∗
2 = C2⊕((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, b)

, (0, 0, c, 0)).
4. Insert all the ciphertexts C1 ∈ T1 and the values {C∗

2 |C2 ∈ T2} into a hash
table indexed by bytes 1,4, and 14.

5. Guess the value of the subkey byte k8,3,2 and perform the followings:
(a) Initialize a list A of the 264 possible values of the bytes 1, 2, 6, 7, 8, 11, 12,

and 13 of k1.
(b) Decrypt the byte x8,3,2 in all the ciphertexts to get the intermediate

values before the subkey addition at the end of round 7.
(c) For every pair C1, C

∗
2 in the same bin of the hash table, check whether

the corresponding intermediate values are equal. If no, discard the pair.
(d) For every remaining pair C1, C

∗
2 consider the corresponding plaintext

pair and compute P1 ⊕ P2 in the eight bytes 1, 2, 6, 7, 8, 11, 12, and 13.
Denote the resulting value by P ′.
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(e) Access the bin P ′ in Hp, and for each pair (x, y) in that bin remove from
the list A the values P1 ⊕ x and P1 ⊕ y, where P1 is restricted to eight
bytes (plaintext bytes 1, 2, 6, 7, 8, 11, 12, and 13).1

(f) If A is not empty, output the values in A along with the guess of k8,3,2

The total amount of possible pairs C1, C
∗
2 is m2. The filtering in Step 4 is

done using a 24-bit condition, thus, we expect about 2−24m2 pairs in every bin of
the hash table. In Step 5 we have an additional 8-bit filtering (for every possible
value of k8,3,2 separately) and therefore about 2−32m2 pairs remain for a given
subkey guess of k8,3,2. Each pair deletes 1 subkey candidate on average out of
the 264 candidates. Hence, after m′ = 2−32m2 pairs the expected number of
remaining subkeys is 264(1 − 1/264)m′

. For m′ = 270 the expected number is
about e−20 and we can expect that only the right subkey remains. Moreover, for
wrong guesses of k8,3,2 no subkey is expected to remain. Hence, we get the value
of 72 subkey bits. In order to get m′ = 270 we need m = 251 chosen plaintexts
in each of the two pools.

The time complexity of the attack is dominated by Step 5(e). In this step
m′ pairs are analyzed, leading to one memory access on average to Hp, and one
memory access to A. This step is repeated 28 times (once for any guess of k8,3,2).
Therefore, the time complexity is 279 memory accesses, which are equivalent to
about 273 encryptions. The precomputation requires about 262 encryptions and
the required memory is about 269 bytes. The data complexity of the attack is
252 chosen plaintexts.

Note that in the attack we assumed that the values of a, b, c, and f are known.
We deal with these values and add the required corrections in the attack in the
next subsection.

3.3 Overcoming the Nonlinearity of the Key Schedule Algorithm

Our attack uses a pair of related keys such that the subkey differences between
them are presented in Table 2. However, due to the nonlinearity of the key
schedule there is no key difference that can assure these subkey differences. In
particular, while the value a can be chosen by the attacker, the values b and c
that are results of application of SubBytes transformation are unknown given
the initial key difference. This problem was already dealt in [12]. The solution
we present in Section 4 is similar to the one presented in [12].

In our attack we have an additional problem: Since we have a round before
the differential (instead of adding the round after the differential, as was done
in [12]), we cannot choose ∆k2 = ((0, 0, 0, 0),(0, 0, 0, 0),(a, 0, 0, 0),(a, 0, 0, 0)) to
be the first four columns of the key difference.

The key difference is ∆k = ((0, 0, 0, f),(0, 0, 0, 0),(a, 0, 0, 0),(a, 0, 0, 0),(a, 0, 0, 0),
(a, 0, 0, 0)), and as noted before, the value f is unknown. In comparison, in [12]
there are no unknown bytes in the key difference since the attack starts in round 0
1 Not all entries contain values. It is expected that only 36% of these entries suggest

values to discard. However, once an entry of Hp is non-empty, it suggests at least
two values to discard.
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of AES. Due to the differential properties of the SubBytes transformation, f can
assume 127 values with approximately the same probability.

The values of b and c are unknown but since the both of them are results
of application of the SubBytes transformation, we know that given a, there are
only 127 possible values of b, and given b there are only 127 possible values of c.
Hence, we can repeat the attack for all the values of b and for every value of b,
for all the values of c. The expected number of remaining wrong suggestions in
the original attack (about e−20) assures that for wrong guesses of b and c, with
high probability no subkey will be suggested.

Therefore, the total time complexity of the attack is multiplied by 221 since
we repeat the attack for all the possible values of f, b, c. The data and memory
requirements remain unchanged.

However, if we just try all the possible values of f , we need to encrypt the
plaintexts under 128 related keys since changing the value of f changes the key
difference. We can partially solve this problem by using structures of keys. We
take two structures of 16 keys each such that the difference between two keys in
different structures is ∆k = ((0, 0, 0, ?), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0),
(a, 0, 0, 0)), for a random value ?. Such structures are achieved by fixing all the
bytes except for one in all the keys and choosing the value of this byte randomly.
The structures induce 256 pairs of keys, and for each pair of keys, we perform
the attack described above. Since the differences in the byte marked by ? are
random, the probability that after the SubBytes transformation the difference
will be a for at least one pair is approximately 1−(1−1/256)256 = 1−1/e = 0.63.
Hence, with probability 0.63 we will get the required subkey differences for at
least one pair of keys and for this pair the attack succeeds.

We can improve the time complexity by a factor of 2 by performing the attack
only for those pairs of keys for which the difference in the marked byte can be
transformed to the difference a by the SubBytes transformation. There are 127
such differences and thus the attack is expected to be performed only 127 times.

The total complexity of the attack is therefore the following: The data com-
plexity is 252 plaintexts encrypted under 16 keys each, or a total of 256 chosen
plaintexts, the time complexity is 294 encryptions and the required memory is
269 bytes.

4 Three 8-round Impossible Differential Attacks

In this section we present three attacks on 8-round AES-192. All the three attacks
are based on the 7-round attack and the main difference between them is a time-
data trade-off.

Consider an 8-round version of AES-192 starting with round 2. In all the
8-round attacks we guess part of the last round subkey (k9), peel off the last
round and apply the 7-round attack. For the description of the attacks it is
more convenient to change the order of the MixColumns and the AddRoundKey
operations at the end of round 8. As mentioned earlier this is done by replacing
the subkey k8 with an equivalent subkey w8. Note that since the subkey difference
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∆k8 is known, the difference between the corresponding equivalent subkeys ∆w8

is also known.
In the 7-round attack we have to check whether the difference in three bytes

in the beginning of round 8 is zero and whether the difference in one specific byte
is b. A zero difference at the beginning of round 8 remains such a difference until
the end of the round (up to the MixColumns operation), and thus we have to
check whether the difference in the corresponding three bytes in the beginning
of the last round is zero. For the fourth byte, we compute its difference of the
pair at the beginning of round 8.

4.1 The 8-Round Attacks

The attack can be performed in one out of three possible ways:

1. Guess 12 bytes of the last round subkey (k9) and partially decrypt these bytes
in the last round. The difference in the remaining four bytes is unknown. To
know this difference without guessing more subkey material, we treat only
ciphertext pairs that have zero difference in these bytes. This condition allows
us to use only 2−32 of the possible ciphertext pairs, but this price is well
worth it. As the difference ∆xO

8 is known, we check whether the difference
in bytes 1,4, and 14 is zero. Then, we guess one subkey byte (w8,3,2) and
continue partial decryption to find out whether the difference b holds. If all
the required differences hold then this ciphertext pair can be used to discard
wrong subkey guesses like in the 7-round attack.
In this variant of the attack, we guess a total of 168 subkey bits. This leads
to a very high time complexity, but to a relatively low data complexity.

2. Guess eight bytes of k9 and use only the pairs for which the difference in the
eight ciphertext bytes which are XORed with an unguessed subkey is zero.
Again, after partially decrypting the ciphertexts, we guess the byte w8,3,2

and then we are able to check the differences in the four required bytes.
In this variant, we guess 136 subkey bits, but only a portion of 2−64 of the
pairs can be used in the attack and thus the data complexity is higher.

3. Guess only four bytes of k9 and use only the pairs for which the difference in
the 12 ciphertext bytes that are XORed with an unguessed subkey is zero.
After the partial decryption, we guess the key byte w8,3,2 in order to check
whether the impossible differential can be “satisfied”.
In this variant of the attack, we guess only 104 subkey bits, leading to a
substantially lower time and memory requirements. On the other hand, we
use a portion of only 2−96 of the possible pairs, which increases the data
complexity.

Since the attacks are similar, we present in detail only the first attack. The
complexities of all the three attacks are summarized in Table 1.

Just like before, we assume that the values a, b, c, d and f are known. We
shall address this issue after the attack.

In the first version of the attack we guess the values of bytes 0,2,3,5,6,7,8,9,10,
12,13, and 15 of k9 and byte w8,3,2. The values of these subkey bytes allow us to
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partially decrypt the last round in Columns 0, 2, and 3 where byte xO
8,3,2 is also

partially decrypted through round 8.2 Then, we can perform the 7-round attack
for every guess. Note that we can also choose other three columns to guess as
long as Column 2 is included. Our choice is optimal when the values of b, c, d are
not known.

The attack algorithm is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such that for each plain-
text pair P1 ∈ S1 and P2 ∈ S2, P1 ⊕ P2 = (?, 0, 0, ?), (?, ?, 0, 0), (a, ?, ?, 0),
(0, 0, ?, ?).

2. Ask for the encryption of the pool S1 under K1, and of the pool S2 under K2.
Denote the ciphertexts of the pool S1 by T1, and similarly the ciphertexts
of the pool S2 by T2.

3. For all ciphertexts C2 ∈ T2 compute C∗
2 = C2⊕((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, b),

(0, 0, 0, 0)).
4. Insert all the ciphertexts C1 ∈ T1 and the values {C∗

2 |C2 ∈ T2} into a hash
table indexed by bytes 1,4, and 14.

5. For every guess of the 12 bytes 0,2,3,5,6,7,8,9,10,12,13, and 15 of k9 and
w8,3,2 do:
(a) Initialize a list A of the 264 possible values of the bytes 1, 2, 6, 7, 8, 11, 12,

and 13 of the subkey k1.
(b) Partially decrypt the last two rounds in all of the ciphertexts to obtain

xI
9,1,0, x

I
9,2,3 and xI

8,3,1. For all the ciphertexts of T2, XOR the value of
the byte xI

8,3,1 with b.
(c) For all the pairs C1 ∈ T1, C2 ∈ T2, such that C1 and C∗

2 collide in the
hash table check whether the difference in the three computed bytes
equals zero. Otherwise, discard the pair.

(d) For every remaining pair, consider the corresponding pair of plaintexts
and compute P1⊕P2 restricted to the eight bytes 1, 2, 6, 7, 8, 11, 12, and
13.

(e) Access Hp in the entry P1 ⊕ P2 (restricted to the eight bytes) and for
every pair (x, y) in the same bin compute the values P1 ⊕ x and P1 ⊕ y.
Delete these values from the list A.

(f) If A is not empty, output the guess for the 13 bytes and the list A.

4.2 Analysis of the Attack

The analysis of the attack is similar to the analysis of the 7-round attack. We
start with m = 263.5 plaintexts in each pool. The plaintexts compose 2127 possi-
ble pairs. After the initial filtering 295 pairs remain. For every guess of the 104
bits in the last rounds, about 271 pairs remain after the second filtering. Each pair
discards one possible value for the subkey of round 1 on average. Therefore, the
probability that some wrong subkey guess remains is at most 264e−128 = 2−120.

2 Since we analyze only pairs for which the difference in bytes 1,4,11, and 14 of the
ciphertexts is zero, we know also the difference in xO

8,Col(1).
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Therefore, the expected number of subkey suggestions (for the 168 subkey bits)
is approximately 2−1202104 = 2−16. Hence, with a high probability only the
right value remains. The remaining subkey bits can be found using auxiliary
techniques.

The time complexity of the attack is dominated by the time complexity of
Steps 5(d) and 5(e). For every guess of the 104 bits, we try the 271 possible
pairs and for each of these pairs we perform two memory accesses on average.
Thus, the time complexity of this stage is about 2176 memory accesses, which
are equivalent to about 2170 encryptions.

Hence, the data complexity of the attack (if b, c, d, and f are known) is 264.5

chosen plaintexts, the time complexity is about 2170 encryptions and the required
memory is about 269 bytes.

However, the values of b, c, d and f are unknown and if we repeat the attack
for all the possible guesses, the complexity will be more than the complexity of
exhaustive key search.

Here we can use again the differential properties of the key schedule algo-
rithm. We observe that the value of d is determined by the value k9,2,1 and the
value c is determined by k7,3,3 = k9,3,0 ⊕ k9,3,1. All of these subkey bytes are
guessed in the beginning of the attack. Hence, for every guess of the 104 bits we
have to repeat the attack only for all the possible values of b and f . As in the
7-round attack, the values of f are obtained by using structures of keys. Note
that due to the low expected number of remaining subkey candidates for a single
application of the attack (2−16), we expect that when the attack is applied 214

times, only a few subkey candidates remain.
Hence, the total complexity of the attack is as follows: The data complexity

is 263.5 chosen plaintexts encrypted under 32 keys each (or a total of 268.5 chosen
plaintexts), the time complexity is 2184 encryptions and the memory complexity
is about 269 bytes.

As mentioned before, we can perform the attack when discarding more pairs
in exchange for guessing less subkey material in round 9. By considering only
the ciphertext pairs with zero difference in two columns (instead of only one),
we reduce the time complexity of the attack to 2159. On the other hand the data
complexity is increased to 292 chosen plaintexts. Another possible trade-off is to
consider only ciphertext pairs with zero difference in three columns. This leads
to an attack that requires a total of 2116 chosen plaintexts and has a running
time equivalent to 2134 encryptions. The complexity of the attacks can be found
in Table 1.

5 Summary and Conclusions

In this paper we have presented several new related-key impossible differential
attacks on 7-round and 8-round AES-192. The data and time complexities are
summarized in Table 1. Our attacks significantly improve the attacks presented
in [12], but use different properties of the key schedule of AES-192. Hence, if
one could combine the attacks together, then an attack on 9-round AES-192
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faster than exhaustive search may be found. However, we could not find such
combination at this stage.

In our attack we perform the key recovery in the round before the differential,
whereas in [12] only the rounds after the differential are attacked. As a result,
our attack has to overcome the nonlinearity of the key schedule. This is achieved
by using 32 keys from two structures of keys based on the differential properties
of the key schedule algorithm.

We conclude that our paper joins a series of papers identifying problems
in the key schedule algorithm of AES, and more precisely, in the key schedule
algorithm of AES-192. This may be of a concern for the long term security of
AES, even though at the moment none of the attacks succeeds in retrieving the
key of the full AES-192 better than exhaustive key search.
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