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Related-Key Boomerang and Rectangle Attacks:
Theory and Experimental Analysis
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Abstract—The related-key differential attack and the
boomerang attack are two of the classical techniques in crytp
analysis of block ciphers. In 2004, we introduced the relag:
key boomerang and related-key rectangle attacks, which alw
to enjoy the benefits of these two techniques simultaneousiyhe
new techniques proved to be very powerful, and were used to
devise the best known attacks against numerous block ciphgr
culminating with the first attack on the full AES presented in
2009 and a practical-time attack on KASUMI (the cipher used
in GSM and 3G telephony) presented in 2010.

While the claimed applications of the related-key
boomerang/rectangle technique are significant, most of
them have a major drawback: due to the extremely high
complexity of the attacks, their validity cannot be verified
experimentally. Together with the lack of rigorous justification
of the probabilistic assumptions underlying the techniqueit was
claimed that these assumptions cannot be relied upon, and tis,
attacks using the related-key boomerang/rectangle techgue
are not legitimate. These claims were formalized in a recent
paper by Murphy [32] who presented scenarios in which the
probabilistic assumptions fail, and questioned their valdlity.

In this paper we present a rigorous treatment of the
related-key boomerang/rectangle technique. In the first pe
of the paper, we devise optimal algorithms for the related-
key boomerang/rectangle distinguishers using the Logaritmic
Likelihood Ratio statistics. We study the exact independece

Eli Biham, Orr i@man, and Nathan Keller

thus, related-key boomerang/rectangle attacks on block phers
are valid in general. On the other hand, due to the dependencef
the probabilities on the key, it is important to verify the validity of
the attack experimentally whenever possible in order to mesure
its success probability.

Index Terms— Related-key Boomerang Attack, Related-Key
Rectangle Attack, Experimental Analysis, KASUMI.

I. INTRODUCTION

HE related-key differentiahttack, introduced by Kelsey

et al. [23] in 1996, is an extension of differential crypt-
analysis [5] in which it is assumed that the adversary has
control over the key difference, along with the control over
the plaintext/ciphertext differences. Since its intraitue, the
related-key differential attack was used to break reduoeatd
variants of various block ciphers, including a practicale
attack on 10-round AES-256 [15]. Moreover, although an
attack model in which the adversary has control over the
key difference may seem unrealistic, a related-key diffead
attack on the block cipher TEA [42] was used to devise a
practical attack on Microsoft's Xbox architecture [43].

assumptions the attacks rely upon, and compute the success The boomerangattack, introduced by Wagner [40] in 1999,

probability of the attacks under these independence assuntipns.

is a differential-based attack in which the block ciptieris

In the second part of the paper, we address the claims against treated as a cascade: = E; o Ey, and differentials ofE,

the validity of the related-key boomerang/rectangle techigue by
an extensive experimental analysis. We consider a specifiase
— the block cipher KASUMI — and perform an experimental
verifications (with more than 2*® encryptions) of a related-key
boomerang distinguisher against it. The analysis shows tlian
all attacks, the overall probability of the distinguisher (when
averaged over different choices of plaintexts and keys) islase
to the theoretically predicted probability. However, it seems that
the probability depends on the key, such that for some portin
of the keys, the distinguisher holds with a higher probabilty
than expected, while for the rest of the keys, the distingutser
fails completely. We conclude that the probability assumpbns
underlying the technique make sense in real-life ciphers, rad
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and E; are combined into a distinguisher for the entire cipher
E in an adaptive chosen plaintext and ciphertext process.
The boomerang attack shows that bounding (from above) the
probability of differential characteristics throudh does not
assure immunity ofF to differential-type attacks, and the
boomerang technique was indeed used to devise practical-
time attacks against ciphers which are provably immune to
conventional differential attacks, e.g., COCONUT98.

The adaptive chosen plaintext/ciphertext nature of the
boomerang attack makes it less realistic in practical siemna
As a partial remedy of this issue, the attack was transformed
into a chosen plaintext variant named the amplified boongeran
attack [25] and later renamed as the rectangle attack [g. Th
transformation is done by a birthday-paradox argumentchwhi
leads to an increase in the data complexity of the attack.

In 2004, Kim et al. [26], and independently, Biham et al. [9],
introduced therelated-key boomeran¢gRK-boomerang) and
related-key rectangléRK-rectangle) attacks — a combination

1in the Xbox architecture, the block cipher TEA was used in ai@a
Meyer mode as a compression function. In such cases, theiffesedce in
the block cipher is transformed into the message differefitke compression
function, which indeed can be controlled by the adversargdneral, almost
any related-key attack on a block cipher can be convertedl @anthosen
message attack on a compression function based on it.
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of the boomerang technique with related-key differenfidis A. Our Contributions — Theoretical Results
turns out that the combination allows to enjoy the strendth 0 |, he first part of this paper we present the first rigorous

the re_lated-k_ey model twice, b_y using high-probapilit)atetj— treatment of the (related-key) boomerang and rectangle dis
key differentials in both subcipherdjy and £,. This makes y,q ishers. We devise the optimal distinguishing aldmris
the RK-boomerang/rectangle techniques much more efteCtiyging the Logarithmic Likelihood Ratio metric, and compute

than other combined techniques, such as the related-key fsir sy ccess rate. We obtain and prove the following theore
possible differential [22] and the related-key differaiinear Theorem 1: Let B = E; o Ey : {0,1}" — {0,1}" be a

[11] attacks. block cipher. Consider encryptions under a secret Kegnd

Since its introduction, the RK-boomerang/rectangle techs|ated-keys whose differences are chosen by the adversary
nique was used to attack reduced-round variants of varigus;

block ciphers (e.g., IDEA, MISTY1, SHACAL-1, SHACAL-
2, and XTEA), and even full versions of widely used bloc% —  max \/Z (Pr [Eo,x(P) ® Eo,keak,(P®a) =[] )2
P El ) 0 Y

g

ciphers such as AES [14] and KASUMI [19]. a£0,AKqy
In parallel with the increasing popularity of the RK-
boomerang/rectangle technique, several researchess ics- . 1 1 _ 2
cerns about its theoretical validity. The main concern &t th? = 50 Xk, Z (%r [El,K(O) DB koar, (C®0) = 7} )
the technique relies on randomness assumptions which are K
much stronger than the assumptions relied upon in standard 2
differential attacks (i.e., that the cipher is Markoviaee 46]), = 5#1(1)1%( \/Z (I;r [B1,x(X) @ B koar, (X ©7) = 6])
and thus they can be inappropriate in real block ciphers. "~ Vo
Indeed, while the “Markovity” assumption was treated rigynere Eo.x(P)

o . , , denotes the partial encryption éf through
orously and verified experimentally in many practical CaSeF under the keyk and B (C) denotes the partial decryp-

the exact randomness assumptions underlying the boomerggg o through &, under the keyk. Let0 < ¢ < 1. Under

attack and the RK-boomerang/rectangle attack were neéYgftain independence assumptions between the diffelentia
treated rigorously, and in most practical cases, there was fi,+ will be discussed below given either

possibility to verify them experimentally, due to the high FURTI . . .
complexity of the attacks. o 4c¢/(pg)* unigue adaptively chosen plaintexts and cipher-

texts, or

These concerns are supported by a paper of Wang et al. [41] N U .
published in 2008, that showed that all previously publishe Ve 2"2 /g unique chosen plaintexts,
boomerang and related-key boomerang attacks on SHACAGRCTypted —under  four  related-keys 0f5 the form
1 fail, due to a failure of the randomness assumptions fo K © AKo, K @ AKl’K_@ AKo © AKy, _th_e R_K'
the specific case of SHACAL-1. In that case, the attacks faPemerang/rectangle technique allows to distinguigh
because ofocal inconsistencywhile the attacks assume thafl®m @ random permutation. The probability of success of
differential characteristics for different rounds areépéndent the distinguisher is approximately — e=/2 (when pg is
and the probability of their concatenation is the product ufficiently high).
their probabilities, it appeared that some charactesistied in
subsequent rounds contradict each other, and thus, they nev We state explicitly the randomness assumptions required fo
co-occur Theorem 1 to hold, and examine their soundness in various

In a recent paper [32], Murphy presented several exampR&Enarios. _ _ _
based on a 4-round variant of DES [33] and a 2-round variantAfter the theoretical treatment, we consider several im@ro
of AES [34], in which such local inconsistencies occur ifnents of the related-key boomerang and rectangle attacks:
the transition between the two sub-ciphdfs and E;. He 1) The Use of Structures of Keys:We use structures
concluded that there is no reason to assume that the random- of keys to overcome a wider range of key schedule
ness assumptions underlying the boomerang attack hol@in re  algorithms. In ciphers with a nonlinear key schedule,
ciphers, and thus, any boomerang (or RK-boomerang) attack a given key difference may cause many subkey differ-
should be viewed extremely skeptically, unless it is vetlifie ences, thus interfering with the construction of related-
experimentally* key differentials. Structures of keys can be used to

reduce the effects of this event on the differentials.

2We note that this paper is written jointly by the two reseagebups who ~ 2) The Use of Other Relations between the Keyswhile
independently introduced the related-key boomerangingte technique. This XOR relations are common and inherent to the majority
explains the term “we” which is used in the abstract whenrrigfg to the of differential-based related-key attacks, in some cases
inventors of the technique. . . "

SWe note that actually, the flaw detected in [41] is not a speeiature ther.e are more suitable key re!atlons (elther (_jue .tO the
of the boomerang attack but rather a failure of the Markoaigumption for environment of the attack or in order to gain higher
the specific type of differential characteristics used ia #ttacks. However, probabilities). We show that the proposed attacks are

it still demonstrates the possibility of failure of the ramdness assumptions . .
underlying the attack. P g P applicable when the XOR relations between the keys

“We note that the claims of [32] are addressed not only to RK-
boomerang/rectangle attacks, but also to the boomerangthendectangle 5In some casedA Ko = AK;. In these cases, there are small changes in
attacks in the single-key model. the analysis, most notably the use of only two related keys.
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are replaced with different kinds of relations and discuss Then we choose the differentials carefully, such that we
which relations induce feasible attacks. cannot detect any more inconsistencies, and perform an ex-
We then compare the RK-boomerang/rectangle attacks witariment checking 215 random quartets of keys, witH
previously proposed related-key techniques. We exploee t@ncrypted plaintexts under each Keye find out that the
advantages of the new attacks, and show that in many caeesrall probability of the distinguisher, when averagerov
the RK-boomerang/rectangle attacks are significantly moa# the 2487 (plaintexts,keys) choices, is very close to the
effective than other related-key techniques, even if in tilBeoretical probability. On the other hand, it appears that
single-key scenario the boomerang and the rectangle attapkobability depends very much on the key, such that for about
are inferior to the respective non-related-key techniques 5/6 of the keys, the distinguisher fails completely, while for
1/6 of the keys, it holds with an increased probability.

B. Our Contributions — Experimental Results We conclude that in cases where the probabilities of the

In the second part of this paper, we examine experimentafjijferentials are not very low, it seems reasonable to assum
the validity of the randomness assumptions underlying tke Rthat the RK-boomerang/rectangle distinguisher holds #ith

boomerang/rectangle attack, in a specific case of a widdfgoretically predicted probability. In cases where sorfnihe

used block cipher. As stated above, most of the existirggﬁ()babi“ties are low, one has to make his best to check lgat t
RK-boomerang/rectangle attacks (incll,Jding all the asagk distinguisher does not have local inconsistencies, antlithe

reduced-round AES, e.g., [9], [13], [14], [27]) cannot béeasonable to assume that it does hold, at least for a sigmific
verified experimentally due to their high data complexityeE portion of the keys. However, it is clearly desirable to dhec

reduced-round variants of these attacks in which the numﬁ@?_ atFack e_xperlmentally n each specific case, n _order to
of rounds is not very small, have too high complexity foverify its validity and to compute its success probability.

being verified. On the other hand, variants with a very small L
number of rounds, such as the examples studied in [32], &re The Organization of the Paper
non-representative, since it is clear that the rate of ramiss ~ The paper is organized as follows: In Section Il we present
of variants with a very small number of rounds is much small&e related-key boomerang and rectangle attacks and discus
than that of the entire ciphers. them theoretically. In Section Il we present the experitabn

In order to obtain representative experimental results, wesults on reduced-round variants of KASUMI. Finally, Sec-
choose the block cipher KASUMI [38], used in GSM andion IV summarizes the paper.
3G telephony, and examine various RK-boomerang/rectangle
on it. We start with verifying a RK-boomerang distinguisher - THE RELATED-KEY BOOMERANG AND RECTANGLE
on 6-round KASUMI (out of the total 8 rounds) in which ATTACKS
the probabilities of both differentials are relatively hig In this section we introduce the RK-boomerang and the
This choice follows the intuition that the precision of thdRK-rectangle attacks. We start with a brief description of
randomness assumptions is better when the probability tbe boomerang and the rectangle attacks in the single key
the differentials is not very low. As we expected, amongiodel. We then introduce and analyze rigorously the RK-
the 10,000 random keys we sample, the probability of tH®womerang and RK-rectangle attacks. We follow and examine
distinguisher is remarkably close to the probability petetl the randomness assumptions used in the attacks. We conclude
by Theorem 1. this section with several generalizations and compari$dimeo

Then, we experimentally verify our RK-boomerang distinnewly proposed attacks with other techniques.
guisher on 7-round KASUMI, which include the distinguisher
used in the attacks on the full KASUMI presented in [10]A. Boomerang and Amplified Boomerang (Rectangle) Attacks

[19]. Among these distinguishers, we check those in whieh th The main idea behind the boomerang attack [40] is to use

probability of one of the differentials in the transitionurd  two short differentials with high probabilities instead afie

is as low as the probability of a random differential througlbyng differential with a low probability. We assume that a

that rounc® By the intuition stated above, these are the casggck cipherE:{0,1}"x{0,1}*— {0,1}" can be described

where the validity of the randomness assumptions can be mgeea cascad® = E, o Ey, such that forE, there exists a

problematic. differential o« — S with probability p, and for E; there exists
First, we check theoretically, whether there existoeal 5 gifferentialy — & with probability ¢.°

inconsistencyn the transition between the differentials (I|ke The distinguisher is based on the fo”owing boomerang
the inconsistencies presented in [32]). We found that iddegyrocess:

for many choices of the differentials such inconsisteneidst 1) Ask for the encryption of a pair of plaintexts;, P;)
and lead to failure of the attack. such thatP, @ P, = o and denote the corresponding

6We note that in [19], the probability of the distinguisher @rround ciphertexts by(C, C2).
KASUMI was verified experimentally, and the results wereyvetose to
the theoretical prediction. This gives additional evidena the claim that the  8We note that the number of plaintexts for each quartet of keysiot be
randomness assumptions are sound, at least in the casestiva@robabilities smaller, since the theoretical probability of the distiistyer is2—39.
of the differentials are high, like in the distinguisher cked in [19]. SWe note that in the attack, the differentials are used botthénforward
"We note that this dependence issue was overlooked in [1@]jrateed, (i.e., encryption), and in the backward (i.e., decryptiatifections. As the
the probability of the distinguisher used in [10] is far frafme theoretical considered differentials are not truncated differentidie direction does not
value used in that paper. affect the probability of the differentials.
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2) CalculateC3; = C; ® 6 andCy = Cy @ 0, and ask The probability of a quartet to be a right quartet is a lower
for the decryption of the pai(Cs,C4). Denote the bound on the probability of the event

corresponding plaintexts byPs, Py). CLaCs=0=ChCy )

3) Check whethelP’s & P, = «.
; : : The usual assumption is that each of the above conditions
The b ttack the first diff f
@ boomerang attack uses the first differentia-¢ ) for is independent of the rest, and hence the probability that a

E, with respect to the pair§éP;, P;) and (Ps, P,), and the ™ : : %
second differential{ — 6) for E; with respect to the pairs 9'_V€[‘1 quglrtet.((Pl,Pg), (Ps, 1)) is a right quartet isp” -
2—"=1 . ¢%. Since for a random permutation, the probability

(C1, C3) and (Cs, C). : . gf Condition (1) is2~>", the rectangle process can be used
For a random permutation the probability that the Ia?O distinguishE from a random permutation jig > 2/

condition is satisfied i ", wheren is the block sizé® For (like in the boomerang distinguisher)

E, the probability that the pait/y, ) is a right pair with ., " complexity of the distinguisher@2"/2(pq) 1),

respect to the first differential (i.e., the probability thae L . .

intermediate difference aftdt, equalss, as predicted by the W.h'f:h 'S much hlgh.er than the comple_xny of the boomerang
' distinguisher. The higher data complexity follows from faet

differential) isp. The probability that both pair&”;, Cs) and that the evento(P,) ® Eo(Ps) — ~ occurs with a “random”

Cy,Cy) are right pairs with respect to the second differential " A - .
i(s ;2. Ii)all thege a?e right pairs ptheEfl(Cg)@Efl(Q) _ probability of 2 (actually, this is the birthday-paradox

B = Bo(P3)@ Eo(Py). Thus, with probability, Ps® Py — a. argumen_t used in the constructlon). Th(_e identification gffitri
. : : guartets is also more complicated than in the boomerang case
Hence, the total probability of this quartet of plaintextsla : . ", .
. i o . as instead of checking a condition on pairs, the adversay ha
ciphertexts to satisfy the conditioR; ® Py, = « is at least . .
(pq)? to go over all the possible quartets. At the same time, the

. .. chosen plaintext nature allows using stronger key recovery
.The attack can be mounted for all possﬂﬁ@ and 's techniques. An optimized method of finding the right rectang
simultaneously (as long a$ # ~). Therefore, a right quartet

. . . o _ Quartets is presented in [8].
I/(\jr:efe'ls encountered with probability not less thépg)”, Like the boomerang attack, the rectangle attack can use all

the possibles’s and~’s simultaneously. This reduces the data

. . complexity of the attack ta>(2"/2(pg)~"), wherep and ¢
p= W/ZPrQ[O‘ = Bl and = UZPrQh 3l are as defined above. The complete analysis of the rectangle
p ’ attack is given in [7], [8].

Using the boomerang process described above, the cipher.

E can be distinguished from a random permutation given The Related-Key Boomerang Attack

O((p§)~2) adaptively chosen plaintexts and ciphertexts, pro- We now present the RK-boomerang distinguisher, and deter-

vided thatpg > 2-"/2, The complete analysis is given in [7],mine the conditions required for the distinguisher to sedce

[8], [40]. We omit the analysis here since it is essentiallyollowing a rigorous treatment, we compute the optimal galu

included in the analysis of the related-key boomerang latta@f the threshold used in the distinguisher using the Lobyari¢

presented in Section II-B. Likelihood Ratio (LLR) method. Then we compute the success
As the boomerang distinguisher requires adaptively chos@te ©of the distinguisher using a Poisson approximation. In

plaintexts and ciphertexts, it cannot be combined with majder to keep this section readable, we refrain from presgnt

of the standard techniques for using distinguishers in kéydetailed analysis of the key-recovery attack algorithime T

recovery attacks. This led to the introduction of a chosdfader is referred to [8] for a generic key-recovery attack

plaintext variant of the boomerang attack called aneplified &/gorithm exploiting the boomerang distinguisher (which i

boomerang attack25], and later renamed as thectangle €asily adapted to the related-key model). .

attack [7]. The transformation of the boomerang attack inth"'St: we recall the definition of related-key differensiaind

a chosen plaintext attack relies on standard birthdayejoara introduce a shorthand used throughout this paper to denote

arguments. The key idea behind the transformation is {em:

encrypt many plaintext pairs with input differenece and _ _ ) .
to look for quartets (i.e., pairs of pairs) that conform te th Definition 1: We say that a related-key differential — /3
requirements of the boomerang process. with key differenceA K holds for £ with probability p, if

In the rectangle distinguisher, the adversary considess-qu [Ex(P) ® Exgarx (P ®a) =] = p,
tets of plaintexts of the forni(Py, P> = P1 ® «), (Ps, Py = . .
P;@a)). A quartet is called a “right quartet” if the following Where E () denotes encryption througy’ with the key

Pr
PK

conditions are satisfied: K. For the ease of exposition, we denote this event by
1) Eo(Py) @ Eo(Py) = B8 = Eo(Ps) @ Eo(Py). Pr (a ~ ﬂ) = p. For sake of simplicity, we shall denote

2) Ey(P1) © Eo(P3) = v (which leads t0Eo(P) ©  the related-key differential b(a £, ﬂ).
Ey(Py) = ~ if previous condition holds as well). AK
3) CiroC3=0=Cyd Cy4. . . .
In order to present the independence assumption used in the

10For the analysis ofE we rely on some independence assumption@aper’ we need another definition:
addressed in Section II-D.
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Definition 2: For each related-key differentiébz LK> ﬁ), Fig. 1. A Related-Key Boomerang Quartet
we denote the set of right pairs with respect to the difféagént
(for the given keyK) by Gk (a % 6). Formally, for a
block cipherE and a given keyk,

G (a e 5) - {P’EK(P) @ Exoax(P ®a) = 5} :
Similarly, we define the set of good ciphertexts:
i (020 9) = {ominfpec o 200))
—{c|Ez' )@ Bhax(C@B) = a}.

Our independence assumption asserts that the sets of the
form G (a N ﬁ) are independent, in the following sense:

Assumption 1:For the block cipherE = E; o Ey under
consideration, for any fixed key<, and for any set of
differencesy, v1, 6, AKy, andA K, we assume that the event

XelGr(m AE—;> 5>) is independent of any combination

of these three events: a) ComputeP, = P, @ a.

B b) Ask for the ciphertext€’, = Ex,(P,) andC, =
1) (X DB € Graak, (72 N 5)) for all 81, 7s. Ex, (Py).
. By ¢) ComputeC, =C, ® 6 andCy = C, @ 6.
2) | X eGy (04 NN ﬂl)) for all 3. d) Ask for the plaintextsP. = E'(C.) and P; =
0 1 c
-1 Eo EKd (Cd)
3) (X &M €Grgak, (@ AKg o | | forall §,. e) Check whetheP, @ P; = a. If yes, increase the
For example, our independence assumption asserts that value of the counte€’ by 1.
2) If C > Threshold, output “The cipherE”. Otherwise,
Pr [X € Gg (71 SECIEN 6) ‘ output “Random Permutation”.
Ak The value ofl"hreshold will be specified later in this section.
B See Figure 1 for an outline of a right RK-boomerang quartet.
(X D b1 € Grenko <72 AK, 5>) /\ It is easy to see that for a random permutation, the

probability that the conditiolP. ® P; = « is satisfied i27".

<X e <a _Fo 51)) /\ The probability that the condition is satisfied fér is given
AkKo in the following proposition:

_ E
(X SROGIIS GKl@AKl (a ﬁ 52))} Proposition 1: Consider a quarte{P,, P, P., P;) con-
structed by the algorithm described above. We have
Eq
:Pr[XGGK (71?>5>] Pr[P.® Ps=a] =
Eg EO
Z Pr[aﬁﬂl]f’r[aﬁﬁgy
This assumption is used implicitly in all the statements in 8108y @v2=0 b o
the sequel. We discuss the assumption and its relation to the
. . . Eq Eq
randomness assumptions used in other techniques, such as Pr {71 N 5] -Pr [72 N 5} : (2)
differential and linear cryptanalysis, in Section II-D.
In particular,
1) The Related-Key Boomerang DistinguishBiow we are
ready to present the RK-boomerang distinguisher. Sinikarl
the boomerang attack, we treat the cipli¢ias a cascade of where
sub-ciphers:E = E; o Fy. The distinguisher involves four 3 5
different unknown (but related) keys K, K, = K. @ 5 _ Zpr [a Eo 5/] and § = Zpr [7/ Er 5] _
AKgyp, Ko = Ko ® AK,e, and Ky = Ko @ AKyp @ AKe. 7 AKap = AKqe
For fixed valuesy andd, the attack algorithm is the following:
1) ChooseM plaintexts at random, and set a countéto Proof: Consider a quartet(P,, P, P., P;) con-
zero. For each plaintex?,, perform the following: structed by the algorithm. Denote the intermediate values

Pr[P. @ Py = o] > (p9)*, ®)




IEEE TRANSACTIONS ON INFORMATION THEORY , VOL. ?, NO. ??,SEEMBER, 2009 6

(Eo(P,), Eo(Py), Eo(P.), Eo(Ps)) (where the encryption is 2) The Optimal Choice of'hreshold: The optimal value

under the respective keys) BX,, X, X., X4), respectively. of Threshold can be found using the Likelihood Ratio test

For all 81,v1,7v2, we say that the everfig, ., -, occurs, if for the distributions representii@r[P. ® P; = «] for E and

the following three conditions are satisfied: for a random permutation. We use the following standard
result:

Xo @ Xp = f1, Xo ® Xe =1, Xy & Xa = 0.

Proposition 2 ([1], Proposition 1): Consider two distribu-
tions Dy and D; assuming values in a finite set, and a
samplez™ of m independent elements d¢f (represented as
Pr[P, @ Py = a] = a vector inZ™). The optimal test for deciding whether the

sample is distributed according tB, or to D; is the test
4) having acceptance region

Since the event§S;, -, -, } for different values of 51, 1, v2)
are disjoint and their union is the entire space, we have

Z PI‘[PC S Py = a‘SBh'u,Wz] : PY[SBD'YM'YZ]'

B1,71,72 Ap, ={z™ € Z™: LLR(z™) > 0},
If the eventSg, -, 4, OCcurs, then where
LLR(z™) = Z N(a|z™)1o Prpy[d]
Xc®Xqg=(XcDXo)B(XaDXp)D(XpDXd) = 11DS1BYo. = & Prp, [a]
Hence, by the independence assumptions, is the logarithmic likelihood ratio (with the conventionath

. log(0/p) = —oo andlog(p/0) = o), and whereN (a|z™) is
Pr {Pc ®P;= a‘Sﬂlmm} = Prla ﬁ B2],  (5) the number of times occurs in the sequence”™.
ab

where 32 = 71 @ 1 @ 2. Similarly, the three conditions Denotep, = Pr[P. ® P; = a] (where P, and P; are con-
forming the eventS, ., -, are independent, and hence  structed by the boomerang process). We apply Proposition 2,
where Dy and D, are the distributions representiiy[P. &
Pr[Sp, 4, ) = Pr {a _Eo 51} .Pr {% _EB 5] . P; = a] for E and for a random permutation, respectively.
AKa AK In this case,Z = {0,1}, m = M, and both distributions

ac

represent Bernoulli random variables, whébg = Ber(pg)

Pr {72 % 5} . (6) andD; = Ber(27"). Hence,
- . . . . LLR(zM) = N(0|zM)log 1= po +N(1|zM)logp—0
Substituting Equations (5) and (6) into Equation (4) yields 1—2-n 2-n’
Equation (2). . (7)
5 5 Since in our distinguisher, the acceptance region of theiges
Z Pr {a XE“—» 51] -Pr {a X;O—» ﬂz] {zM e ZM : N(1|zM) > Threshold}, the optimal value of
ab ab

B1®B2871 Br2=0 Threshold is min{k : f(k) > 0}, where

_ 1 —po Po
Pr {71 s 5] - Pr {72 — 5}2 Jh) = (M = k) log 75 =5 + Flog 5=
- " A simple computation shows that the optimal value is
Ey Ey 1—
> Pr a—>ﬁ}-Pr[a—>ﬁ} —1lo Po_
Z |: IN . IN T Threshold = %M . (8)
p1® B2 =0, log %
NME&rr=0
Pr [71 _B 5] . Pr {72 B 5] — 3) The Success Probability of the Distinguishafle use
AKae AKae the following standard definition of the success probabdit

a distinguisher (see, e.g., [1]):

2 2
Eo ’ r En a2
Z (Pr [a AKqy B] )Z <Pr {7 AKqe 5] ) = (0", Definition 3: Let A be a distinguisher between distribu-
? K tions Dy and Di, such that forj = 0,1, the statement
and thus, Inequality (3) follows from Equation (2). B [A(D) = j] corresponds to D is distributed likeD;". The
probability of success ofl is

Proposition 1 shows that jfG > 2-7/2 then the probability Pr[A(D) = 0|D = Dy] + Pr[A(D) = 1|D = D]
that the conditionP, & P; = « holds, is higher forE than Pr.(4) = 9 :
for a random permutation, i.e., we expect more quartets in
the case ofE. We next compute the optimal choice of the Since the distinguisher counts the number of successes
value T'hreshold used in the distinguisher. amongstM trials, it actually distinguishes between the Bi-
nomial distributionsBin(M,po) and Bin(M,2~"). Hence,
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given the valuel'hreshold (as computed in Equation 8), thevalues by a Normal distribution is inaccurate, and hence
success probability of the distinguisher is given by thefeia:  approximation using a Poisson random variable is prefefabl
1 4) Practical Lower Bounds fgb andg: In practical attacks,

Pr[Success] = i{Pr[Bin(M,po) > Threshold)+ the probability of the RK-boomerang distinguisher (given

by Equation 2) cannot be computed. Moreover, even the

computation of the lower bound given by Inequality (3) is

Pr[Bin(M,27") < T}”’es}wldﬂ - infeasible in most of the cases. Instead, the adversary finds

M high-probability differential characteristidsw Lo, ﬂ) and
_ 1 Z M k(1 — po)M—F 4 Alar
- 2 k Po Po E;
ke Threshold LN 0 ). Then, the adversary computes lower bounds
Threshold—1 for p ahdcj by considering only part of the possible
Z (M)2—nk(1 _ Q_R)M_k] ) and~’ values. For example, she can take into consideration
k=0 k all the characteristics(a o, 6’) that coincide with the
ab

For a large value of\f (like the values usually used in
attacks as\/ has to be at least/py, andpy is in most cases
very small), the Binomial distributions can be approxinddtg last one, and take aII possible values in the output diffegzen
the Poisson distribution®oi(poM) and Poi(2-"M). Using of the last round.

characteristic| « ——+ G| in all the rounds except for the

this approximation, Equation (9) is simplified to: In certain cases, especially when a good differential canno
be found, the following simple proposition is useful as a
Threshold—1 . ~ ~
1 _ (poM)* generic lower bound fop andg.
~ = — o~ PoM
Pr[Success] ~ 5 ll e Po ,;_0 o

Proposition 3: Consider related-key differentials through

Threshold—1 (2 ] Ey with input differencea and key differenceA K. If there

o2 "M Z T;]!Vf)k

k=0

(10) exist only m differencess’ such thatPr [a f—f{) ﬂ’} > 0,

thenp > /1/m. Moreover, equality holds if and only if all
Denotec = Mpy, andz = po/2~". Equation (10) can be them differentials(a N B’) with non-zero probability have

reformulated into: probability 1/m each.
) Threshold—1 Proof: Recall that the Cauchy-Schwarz inequality
Pr[Success] ~ = [1— [e°- Z S asserts that for any two s_,equenc{ea;l,ag,...,am} and
2 = K {b1,b2,...,b,} of non-negative numbers, we have
Threshold—1 k
—c/x (C/I’)
<e kz u . (11)
=0

We note that in actual attackspsually satisfied < ¢ < 100, Denote the probabilities of the differentials of the form
while the valuer varies significantly between different attacks| @ ﬁ ﬂ’) by p1,p2, ..., pm (ignoring the differentials with
In Table I, we give the optimal threshold and success rate fegro probability). Clearly, we have
several common values ofand z.

When z tends to infinity, Equation (11) can be simplified, .
ase~/* tends to 1. In other words, whens 1, given M = Zpi =1 and  p=
c- pgl guartets, a threshold of 1 is sufficient to achieve the =t
following success rate: We apply the Cauchy-Schwarz inequality for the sequences
e {p1,p2,--.,pm} @and{1,1,...,1} and obtain

(&

5

We note that while for attacks based on linear cryptanalysis
the probability of success can be approximated using the

Normal distribution (see, e.g., [1], [37]) in attacks based and hence > \/1/m, as asserted. Furthermore, since equality
differential cryptanalysis (like the attacks discussedthis i the Cauchy-Schwarz inequality holds if and only if the
paper) the Normal approximation may be inaccurate. T@@quences{al}ml and {b;}'™, are proportional (i.e., there
reason for the difference is that while in linear-basedckia

the value of the measured random variable is big (close td!in [37] the success probabilities of both a linear attack ardifferential

M/2), in differential-based attacks the value is usually ve tack are approximated using the Normal distribution. Experiments
I 1 < Threshold < 1 = h I | resented in [37] show that the approximation is much mooerate in the
small (e.g.,1 < reshold < 10). For such small values, case of finear cryptanalysis. It is possible that using @$wi approximation

the approximation of a random variable assuming only integgelds a better accuracy in the differential case, as expthiabove.

Pr[success] ~ % (1—e“+1)=
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TABLE |
OPTIMAL THRESHOLDS ANDSUCCESSRATES FORCOMMON PARAMETERS

T c=1 c=2 c=3 c=4 c=6 c=28 c=16
2 1(61.9%) 2 (66.5%) Imp Imp Imp Imp Imp
4 1(70.5%) 2 (75.2%) 2 (81.4%) 3 (84.1%) Imp Imp Imp
10 1(76.8%) 1(84.2%) 2(88.2%) 2(92.3%) 3 (95.7%) 4 (97.4%) Imp

16 1(78.6%) 1(87.4%) 2(89.3%) 2 (94.1%) 3 (96.6%) 3 (98.6%) B 9%)
100 1(81.1%) 1(92.2%) 1(96.0%) 1 (97.1%) 2 (99.0%) 2 (99.7%)  9499%)
200 1(81.4%) 1(92.7%) 1(96.8%) 1(98.1%) 2(99.1%) 2 (99.8%) A4995%)
1000 | 1(81.6%) 1(93.1%) 1(97.4%) 1(98.9%) 1 (99.6%) 2 (99.8%) BI99%)
10000 | 1 (81.6%) 1(93.2%) 1(97.5%) 1(99.1%) 1(99.8%) 1 (99.9%) 29998%)
The entryX (Y %) means that the optimal threshold 1§ and the success rate ¥s.
Imp — it is impossible to gather the amount of data requirethia case.

existsc such thata; = ¢ - b; for all 7), in our case equality a) Check whether both conditioris, ® C. = § and
holds if and only if all thep,’s are equal. [ | Cy®(Cy = 6 are satisfied. If yes, increase the value
of the counterC' by 1.
The generic lower bound given by Proposition 3 can beb5) If C > Threshold, output “The cipherE”. Otherwise,
combined with a “good” differential for part of the rounds. output “Random Permutation”.
The value ofl'hreshold will be specified later in this section.

Proposition 4: Consider related-key differentials through |t is easy to see that for a random permutation, the
Ey with input differencea and key differenceA K. Assume probability that both condition§, & C. = § andC, & Cy = &
that there exists a decompositidit, = Eo1 o Ego, and a are satisfied i2~2". The probability that the conditions are
differencea’, such that: satisfied forE is given in the following proposition:

1) Pr {a %) o/] =/, and

, Eor Proposition 5: Consider a quartet of plain-

2) There exist onlyn differencess’ such thatPrla’ == texts and their corresponding ciphertexts
B8] > 0. ((Pa, Co), (Py, Cy), (Pe, Ct), (Pa, Cq)) constructed by
Thenp > p'\/1/m. the algorithm described above. We have

Proof: We compute a lower bound giby considering

. - Pri(Co,®C.=0)N(Cr®dCyqg=06)| ~
only the characterlstlcéa I 6’) for E, whose restriction 3 [( @ ) A (G @ Ca )}

to Eqgo is (a —> a ) By the assumptions, there are omly ~ 9" Z Pr [a _Fo | 51] . Pr [a _Fo | 52] )
such d|fferent|als (ignoring differentials with probatjlzero), B1®B2BY1BY2=0 Afar Afar
and the sum of their probabilities j8. The assertion follows . -
from the Cauchy-Schwarz inequality by the same argument as Pr {71 — 5] - Pr [72 — 5} . (12)
. i AKae AKqe
used in the proof of Proposition 3. ]
In particular,

q?learly, the same arguments apply also for the computafion Op,. |:(Ca &C, = 6) A (Cb ®C, = 5)} > 27" (53)%, (13)
where

C. The Related-Key Rectangle Attack \/Z Prla ﬂ 2, andg = \/Z Prly 6]

The transformation of the RK-boomerang attack into the
RK-rectangle attack is similar to the transformation of the
boomerang attack to the rectangle attack in the single-key Proof: The proof is similar to the proof of Proposition 1.
model. The RK-rectangle distinguisher involves four diiet Consider a quartet((P,, C,), (Ps, Cy), (P, C.), (P, Cy4))
unknown (but related) keys —K,, K, = K, ® AKa, constructed by the algorithm. Denote the intermediate val-
K. = K, ® AKye, and Kg = K, ® AKqyp © AKqe. FOr  ues(Eo(P,), Eo(Py), Eo(P.), Eo(Py)) (Where the encryption
fixed valuesa andd, the algorithm of the distinguisher is asis under the respective keys) HyX,, X;, X., X4). For all
follows: B1,B2,71, we say that the evenss, s,., occurs, if the
1) ChooseV/ plaintextsP,, and computé®, = P,&a. Ask following three conditions are satisfied:
for the ciphertexts’, = Fk, (FP,) andCy = Ek, (P).
2) Choosef\/FpIaintextSPc, and ((:onzputé?d = P,;@va As)k Xa®Xo =P, Xe@Xa=fs  Xa®Xe=m.
for the ciphertexts’. = Ex, (P.) andCy = Ex,(Ps).  Since the event§Ss, s, -, } for different values of 81, 82, 1)
3) Set a counte€' to zero. are disjoint and their union is the entire space, we have

4) For each of theM? choices for (P,, P.) (and the
correspondind Py, Py)): Pr KC‘& ®C. = 5) A (Cb ®Cq = 5)} =
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= Z Pr [(Ca ®C.= 6) A (Cb ®Cq= 6) ’Sﬂhmm} - RK-boomerang attack, due to the abundance of quartets the

B1,B2,71 adversary has to examine. We do not describe the key-recover
Pr[Ss, g (14) algorithm here, and refer the_ reader to the algorit_hm of the
L rectangle key-recovery attack in [8], that can be easilyptath

If the eventSg, 3,,, OCCUrs, then to the related-key model. We note that Table | can also be

applied to the case of the rectangle attack, with a different

Xp & Xa = (Xp & Xo) & (Xo @ Xe) & (X ® Xa) = value for pg,c and z: For the RK-rectangle attacky, =

Bl ® B 2-"(p§)?, © = po/272", and ¢ is the number of expected

) ) quartets (i.e., givedd = \/¢/po pairs).
Hence, by the independence assumption,

Pr [(Ca oC, = 5) A (Cb BC, = 5) ’S51=ﬁ2-,'¥1:| _ D. The Independence Assumptions

All statistical cryptanalytic techniques require variaas-
domness assumptions. For example, the construction efrdiff
ential characteristics uses the assumption that the cigher
eMarkov cipher(see [6]), which implies that the characteristics
of single rounds are independent of each other and can be
combined. Linear cryptanalysis is based on Matsui's Piling

Pr[Ss, g,0] = Pr | X, € G}l o o B8 ‘ up ITemma [31], which essenti_ally asserts that linear approx
@ AKap mations of single rounds are independent. These randomness

Eq Eq
Pr |:’}/1 m (S:| -Pr |:’)/2 m 6:| , (15)

wherevys = 81 ® v1 @ B2. Applying again the independenc
assumption, we have

assumptions allow a rigorous treatment of the technigues, a
(Xc € G}i <a Lo, ﬁg) ) /\ (Xa e X, = 71)] : well as better applicability (since the search of diffeialstand
Afar linear approximations can be done for each round sepajately
It is easy to construct examples of ciphers that do not gatisf
the randomness assumptions, which would result in failfire o
the differential or the linear attack$ However, based on many
experimental results, it is reasonable to assume that nfost o
the ciphers satisfy the randomness assumptions. Moreibver,
some cipher does not satisfy these assumptions, then this no
(16) randomness is probably exploitable in some other attagk, e.
Since P, and P, are chosen independently, then an impossible differential attack. Nevertheless, it is amant
“n to verify the attacks experimentally whenever possiblerideo
PriXe © Xe =]~ 27" (47 to ass];yre that the assSmptions inZleed hold inpthe specific cas
Note that for any fixed value of?, @ P. and vy, this of interest.
approximation is rather inaccurate. For an ideal cipheis it The randomness assumption used in the RK-boomerang and
expected that for a fractioa—!/2 of the possible values of RK-rectangle attacks (i.e., Assumption 1) has two part® Th
v1, we havePr[X, ® X. = ] = 0, and for the other second part of the assumption, that essentially asserts tha
values, the probability is at leagt "*+!. However, when the differentials of different parts of the cipher are indepemnid is
probability is averaged over many different paif3,, P.), the similar to the standard assumption that the cipher is Marko-
approximation becomes reasonable. vian, which is used in differential cryptanalysis. However
Substituting Equations (15), (16), and (17) into Equdhe first part of Assumption 1 is relatively stronger than the
tion (14) yields Equation (12). The proof of Equation (13®ssumptions used in differential cryptanalysis.
given Equation (12) is identical to the derivation of Equa- Differential cryptanalysis is based on the assumptionftrat
tion (3) from Equation (2) in the proof of Proposition 1.m any fixed keyK and any (related-key) differentigh — (),
the setG k(o — ) is distributed randomly and uniformly in
Proposition 5 shows that jf§ > 2-"/2, then the probability the plaintext spacé In the RK-boo_merang Qnd_ RK_-rectangIe
that the condition§C, & C. = §) and (C, & Cy = &) hold attacks, the assumption deals with the distributionpairs

simultaneously, is higher faf than for a random permutation,of setsof the classGx [ « B, B]. We assume that any
and hence Step 2 of the distinguisher makes sense. AKo
The optimal choice off'hreshold and the computation of

the success probability of the distinguisher given the arobGk | M AE—];> 5> andX @ 1 € Groar, <72 AE—;> 5) are

bility independent, for any value of;,v2, 51,0, and K .

PrX,® X.=m]=

E() EO
=P — -P — -Pr(X, ® X, =m).
t |:Oé AKap ﬂl:| 8 |:Oé AKap 52:| r( © 71)

two pairs of such sets are independent, i.e., the ev&nts

po = Pr |:(Ca ®C.= 5) A (Cb ®Cq= 5)} 12The flaw in the attacks on SHACAL-1, pointed out in [41], is s
o ] example for differential cryptanalysis.
are very similar to the respective steps for the related-key3There are cases in which this cannot be satisfied even in taregpher

boomerang distinguisher presented in Section 11-B. anadtd@erfs shown in [18], where the behavior of differential chastics with
' obability lower thar2~" is shown to be dependent on the key. This is also

are Omitted_ h_ere'_A keY recovery attack based on the R_B{'e case for weak key classes, i.e., classes of keys whichveedignificantly
rectangle distinguisher is more complex than the respectiifferent than random.
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To show the problem that may exist in the independentieey can be misleading due to the small number of rounds
assumptions, we give the following simple artificial examplin the analyzed variant. In a RK-boomerang attack on an

Assume that for given K,«, and [, for which entire cipher (or on a variant with a significant number
MSB(8) = 0 (i.e., the most significant bit ofs is 0), of rounds), the overall probability of the distinguisher is

we haveG}l o o 8) = {X|MSB(X) = 1} and an average taken over many possible differentials, while
AKo in the reduced-round variant, only a small subset of the

-1 20 _ _ . ; differentials is considered. It is possible that while the
Croar, (a 70>ﬁ = {XIMSB(X) = 0} (in particular reduced-round attack does not satisfy the independence
assumption, the full attack does satisfy it, since the diona
from independence for different characteristics cancehea
for some y such thatMSB(y) = 0 and for somed, other. As for theladder switchand related examples, they
Pr ,y_ﬂg = 1/2. By the independence assumptions, it iall refer to cases in which there is a clear dependence

between the differential used i, and the differential

used inE; (e.g., the output difference of thg,-differential

based on the diﬁerentialéa Lo, 6) and <7 LFiis)is s equal to the input difference of thé&;-differential in
AKo AL one half of the state in a Feistel network), and thus, they

at least(1/4)* = 1/16. However, consider a right quartetma not apply to cases where such dependence does not exist
with respect to this distinguisher and denote the interme- y ppRly P '

diate encryption values byX,, X;, X., X4). Since X, €

it follows that Pr |« AE—IZ> B| = 1/2). Further assume that
0

expected that the probability in a RK-boomerang distinigesis

Moreover, in the RK-boomerang and RK-rectangle

G (a —> B |, we haveM SB(X,) = 1, and thus, since attacks, there are several mechanisms which may overcome

MSB(y) = 0, necessarilyM SB(X.) = 1. This implies that dependence problems. The first is the fact that in the attack
o B we count over many differentials (alb, 52,7v1,72 such

Xe & Gronr, | @ N 52 and thus, the actual probabilitythat 5, @ 8, @ v, ® 4, = 0), which ensures that even if

of the distinguisher is zert there is a problem in some combination of differentialssit i

This example demonstrates failure of the first pafXpected that other combinations still succeed. The second

of Assumption 1 (independence inside the same suble€ is the fact that four different keys are used (ln the

cipher). Similarly, the second part of the assumptiof@S€eAKo # AKj).and thus, even if there is a dependence
fails if we assume that for somés,a, 3,7 and §, we between the differentials, it may be countered by the cffier

have Gy' (0‘;—;)5) = {X|MSB(X) = 1} and keys.

In view of the above, it appears that the only possible way
to decide whether Assumption (1) makes sense in realistic
attacks on block ciphers is to check it experimentally, like
the way in which the Markov assumption was checked for
differential cryptanalysis. The best possibility would toetest
the validity of the assumption for each specific cipher arahea

In [32], Murphy presented several non-artificial examplespecific choice of differentials, but this is usually impibss,
based on a 4-round variant of DES [33] (out of the 1@ue to the high complexity of the attacksTherefore, we
rounds) and on a 2-round variant of AES [34] (out of thehose a single block cipher — KASUMI — and performed
10 rounds), in which the randomness assumptions fail deg extensive experimental analysis of various RK-boongeran
to local inconsistenciem the transition betwee, and E1.  attacks on its reduced-round variants. Our analysis, ptede
In some of the examples, the boomerang distinguisher faitsSection IIl, suggests that when averaged over differepsk
completely, while in other examples, its probability is rhucthe probability assumptions do hold, unless there is a local
higher than the theoretically predicted value. Furtheenar inconsistency between the differentials that can be dedect
several specific cases, deviations from the prediction ef tmanually. We thus conclude that it is reasonable to assume
independence assumptions were detected in “real” ciphettgat the assumptions hold in realistic scenarios; however,
Such an example is théadder switch described in [14], will be of course beneficial to further check the validity bét
wherehigher probability for the RK-boomerang distinguisherassumptions in other block ciphers.
is obtained using dependence between the differential ised
E, and the differential used if;.*° E. Generalizations of the Related-Key Boomerang and

However, these examples are still not suﬁicientlpemed-Key Rectangle Attacks
representative. As for the examples discussed

Gk ('yAE—;HS) = {X|MSB(X) = 0}, since in this
case X, cannot be element in bottf?}1 <a AE—IZ> ﬂ) and
0

Gk ﬂv s simultaneously.
AKq

n [32]’In this section we briefly present two generalizations of the
pctually, the probability of the distinguisher may be highdue to Dasic RK-boomerang and RK-rectangle attacks.

differentials of the form| a AE—I:> 6/> for B’ # B. However, if there are no

high-probability differentials of%his orm, the probaibjl of the distinguisher 16We note that for the rectangle attack such verification iseiightly
is still significantly lower than the predicted valug16. impossible: the data complexity of the attack is lower-teth by27/2, and

15The cases of such dependence were recently formalized isath@wich thus, its verification is infeasible for any block cipher wiblock size of 128
framework [19], and thus, we refrain from analyzing themhis tpaper. bits or more, like AES.
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1) Using Structures of KeysThe related-key differentials second sub-cipher (i.e., betweéR,, K.) and (K3, K4)) are
used in the attack are usually based on fisedbkeydiffer- of different classes (e.g., XOR differences in the first sub-
ences. If the key schedule of the attacked cipher is lineaipher and modular differences in the second sub-cipher).
such differences can be achieved by choosing the apprepriatWe note that the basic RK-boomerang and RK-rectangle
key difference. However, if the key schedule is nonlinear, atacks can be extended to use different values’ in the
fixed key difference does not ensure fixed subkey differenceelated-key differentials ofty, and d,4’ in the related-key
Instead, the adversary can apply differential cryptanslys differentials of £;. Similarly, the attack can use distinct key
the key schedule. By studying the differential propertiés dlifferencesAKy, AK} and AK;, AK] in the differentials of
the key schedule, the adversary can find a key difference that and E4, respectively. This allows to extend Condition (18)
leads to the required subkey differences with a relativégh h to the following:
probability. Then, the adversary can repeat the attack forym
pairs of related-keys and expect that in one of the pairs, theProposition 6: The RK-boomerang attack can be ap-
required subkey differences are satisfied and the basic R¥ied with two key relationsR;, R, as long as for ev-
boomerang/rectangle attack can be applied. ery quadruple(K,, K, K., K4) the relationsR; (K, K3),

Furthermore, we observe that the number of keys used in #d R (K., K.), R2(Ky, K4) imply the relationR; (K., Kq).
attack can be reduced by usistjuctures of keydnstead of The RK-rectangle attack can be applied if the relations
finding a single key difference leading to the required sybke?: (K4, K3), R1 (K., Kq) and Ry (K, K.) imply the relation
differences with a high probability, the adversary can fin®2 (K3, Kq).
many such key differences (possibly with lower probaleiiji
Then, the adversary can use structures of keys such thRafally, even if the condition of Proposition 6 is not sagsfi
each structure contains many pairs of keys correspondingiicsome cases the attack can be still applied using stristure
different “key characteristics”, and thus reduce the nunafe of keys, as described earlier.
keys required for the attack. Such an approach is demoedtrat
in the RK-rectangle attack on AES-256 in [9]. F. Comparison With Other Related-Key Attacks

2) Generalizing the Key RelationWhile XOR relations  For any new technique constructed as a combination of
are common and inherent to the majority of differentialdzhs existing techniques, a natural question to ask is whettezeth
related-key attacks, in some cases other key relations are mare cases in which the combined attack is better than each
suitable (either due to the environment of the attack or @eor of its components taken separately. In this section we riefl
to obtain higher probabilities of the differentials). Thé&K-R describe several important cases in which the RK-boomerang
boomerang and RK-rectangle attacks can be applied almastl RK-rectangle attacks are expected to outperform each
without a change when the XOR key relations are replaced by their components. Concrete examples of the advantage
any relation satisfying a condition specified below. of related-key boomerang and rectangle attacks over other

Denote the relation between the keys and K’ by attack techniques are the attack on the full AES [14] and the
R(K,K’). We note thatR can be any relation which is practical-time attack on KASUMI [19].
symmetric, and covers all keys. At the same time, we recell th The main advantage of the related-key differential attacks
fact that the more complex the relatidhis, the applicability over ordinary differential attacks is the ability of the adsary
of the related-key attack may be affected. For example, to use the subkey differences to cancel the plaintext @iffee
the basic RK-boomerang and RK-rectangle attacks we can isethe input of one (or more) of the non-linear parts of the
R(K,K')=K& K'. cipher. As a result, the adversary obtains one (or more)dsun

The RK-boomerang and RK-rectangle attacks can be ap-the differential that hold with probability 1, allowindé
plied whenever the key relation satisfies the following dendextension of the differential by one (or more) rounds.
tion: In the RK-boomerang and RK-rectangle attacks, the adver-
sary can enjoy this advantage twice, once in each of the sub-
ciphers. As a result, the overall distinguisher can be adn
by two (and in some cases even more) rounds. This is a signifi-

(R(Ka7 Ky) = R(K., Kd))- (18) cant advantage of the RK-boomerang/rectangle attack diver a
. . . other differential-based related-key attacks (e.g.,tedikey
Condition (18) ensures that in each of the sub-ciphers, gterential attack, related-key impossible differehtatack

same key .relation is used in both differentials. For examplg, 4 related-key differential-linear attack) that can gnipe
for XOR differences advantage of the related-key model only once.

V(Ka, Ky, Ko, Ka), (R(KG,KC) - R(Kb,Kd)) —

(Ko ® Ko = K, ® Ky) = (Ko ® Ky = K, @ Kg) The advantage of gaining a single additional round (or two
’ ’ ’ rounds) to the distinguisher is significant in ciphers in athi
and hence the condition holds. the number of rounds is small and each round function is rela-

Condition (18) is satisfied for a wide variety of key relatively strong. Hence, the gain of the RK-boomerang/redang
tions, including additive differences (e.d?(K, K’) = (K — attack is expected to be significant in ciphers like AES [34]
K'’) mod 2™) and rotations. On the other hand, the conditioand KASUMI [38].
does not hold if the relation used in the first sub-cipher,(i.e Another property of the cipher required for the success of
between(K,, K;) and (K., K4)) and the relation used in theRK-boomerang and RK-rectangle attacks is simplicity of the
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TABLE Il

key schedule. The basic version of the attack is applicatdie o KASUMI' SKEY SCHEDULE ALGORITHM

to ciphers with a linear key schedule, but using structufes o

keys, the attack can be applied to ciphers with a nonlinear K&ound K., [KL.. KO,1 | KOi» | KOiz [KL KL K3
schedule as well. However, if the key schedule of the cipherl [Ki1 <1 [ Ky [Ko <5 |Ks <8 K7 <13 [ Ky [ K | Ky

i Y P T PIET Jres <1 K; |[Ks <5 |[K7 <8 |[Ks <13 | K | K | K

is complex enough and does not have “good” differentil 3 |rk; « 1 | K. |Ki <5 |[Ks < 8 |[K1 < 13 | K. | K. | K}

properties, then the number of keys required for the attack? |[K:1 <1 | Kg [K5 <5 K1 << 8 |Ky << 13 | Kg | Ky | Ky
; : 5 Ky <1 | K} K¢ <5 |Ko <8 |K3 <13 | K] | K | K
becomes infeasibly large. 6 |[Ke <1 | Kj |Kr 5 |[Kz <8 |[Ka k13 | K, | K | K}

Summarizing the discussion above, the RK-boomerang gnd [K7 <1 | Ky Ks <<5 K4 <8 |K5 <13 | K, | Ky | Ko
| K dtob ful if the e 1| Ky Ky <5 IKs <8 [Ko <18 | K | G | Ky
RK-rectangle attacks are expected to be successful if thexz ) — x romted to the eft by bits

attacked cipher has the following properties:
« A small number of relatively strong rounds.

- Arelatively S|_mple key §ch§dule. o permutation), and accepts an additional 16-bit subkey,itha
The class of ciphers satisfying these properties includggxed with the data. In total, a 96-bit subkey ent?® in
widely used ciphers such as AES [34], KASUMI [38], angach round — 48 subkey bits are used in fié functions
IDEA [30]. These three ciphers can be indeed attacked effinq 48 subkey bits are used in the key mixing stages.
ciently using the RK-boomerang/rectangle attack tech&iqu  The 7, function accepts a 32-bit input and two 16-bit
subkey words. One subkey word affects the data using the
I1l. EXPERIMENTAL ANALYSIS OF THE RELATED-KEY OR operation, while the second one affects the data using the
BOOMERANG ATTACK: A CASE STUDY AND operation. We outline the structure of KASUMI and its

In this section we present experimental analysis of the RIR&'S in Fig. 2.

boomerang attack, in the specific case of the block cipher! "€ key schedule of KASUMI is very simple and the

KASUMI [38]. First we describe the structure of KASUM|SUbkeys are derived from the key linearly. The 128-bit key
and the differentials used in the RK-boomerang attacks on KA 1S divided into eight 16-bit wordsky, K, ..., Ks. Each
SUMI presented in [10], [19]. Then, we check experimentall{i 1S used to comput&; = K; & Ci, where theC;'s are

a RK-boomerang distinguisher of 6-round KASUMI, in whic ixed constants (we omit these from the paper as they have no
the probability of both differentials is relatively highr@thus, ©ffect on our results). We denote the bits of the subkeys by
performing an extensive experiment is an easy task). Finaff: = (Ki" Ki*, ..., K7), whereK® is the most significant

we check RK-boomerang distinguishers of 7-round KASU It.

that are similar to the distinguishers used in the attackthen !N €ach round, eight words are used as the round subkey
full KASUMI presented in [10], [19]. (up to some in-word rotations). Therefore, the 128-bit sybk

We note that our choice of KASUMI is motivated by severdf €ach round is linearly dependent on the secret key in a very
simple way. We give the key schedule algorithm of KASUMI

reasons: i Table Il
. . . in Table II.
o It is one of the most widely used ciphers that were

attacked by the RK-boomerang technique.

« The distinguisher used in the attacks on the full KASUMB. Related-Key Differentials of KASUMI
has probability of2~3% which allows to verify it experi-  The RK-boomerang distinguishers we examine are based
mentally with a big precision. on three related-key differentials: a 4-round differeinfiar

» There exists a large set of distinguishers that are sintlarfounds 1-4, and 3-round differentials for rounds 4—6 and
the original distinguisher used in [10], [19]. This allowsounds 5-7.

to check all of them and find out which ones lead to local 1) A 4-Round Related-Key Differential for Rounds 1—4:

inconsistencies. The differential of rounds 1-4 of KASUMI is an extension by
one round of the related-key differential presented in [Tl
A. The KASUMI Block Cipher input difference of this differential isx = (0,,, 0020 0000,),

. , . ) ) and the key difference i K,;, = (0,0, 1,,0,0,0,0,0), i.e.,
KASUMI [38_] IS a 54'b't black cipher W't,h 12,8'b't keys, only the third key word has a non-zero differende<; =
:I/Ir;gT?( 1re$ﬁr3|v§a hFe'T]tel sFrL;]ctl::re_, f(l)llowmg its hancestqfomx_ The first three rounds of the characteristic have prob-
- The cipher has eight Feistel rounds, where ea%rf)ility 1/4, and due to the Feistel structure, thalifference

_r0L_mc_I is composed of tWO_ funf:tlons: 0 fu_nctlon which can propagate to at mot? differences after round 4. Hence,
is in itself a 3-round 32-bit Feistel construction, and #é b

. . . . . i Proposition 4, we have
function that mixes a 32-bit subkey with the data in a Imeary P

way. The order of the two functions depends on the round P> 1 V932 — 9—18,
number: in the even rounds théL function is applied first, 4
and in the odd rounds thEO function is applied first. We outline the differential in Figure 3. Along with this

The FO function also has a recursive structure: #s differential, we consider a family of 15 similar differen-
function, calledF'I, is a four-round Feistel construction. Thdials, in which the key differencé\ K,, assumes all values
FI function uses two non-linear S-box&§ and S9 (where in which only a single bit inAKj3 is non-zero, and the
ST is a 7-bit to 7-bit permutation and9 is a 9-bit to 9-bit plaintext difference is shifted accordingly. Examples otts
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Fig. 2. Outline of KASUMI

a FL6 FO6 FO function ]
FI function
KL, KO7; KI;
'
FL7 FO7 D KL, Cn
KLs KOs, KlIg A <<<D bltwwde AND
KLLQ“ bitwise OR
| FL8 FO8 a << M << <
b rotate left by one bit
KASUMI FL function
Fig. 3. 4-Round Related-Key Differential CharacteristickASUMI result, for our 4-round differentials we haye> 2-17.17
0 0020 0000, 2) 3-Round Related-Key Differential for Rounds 5-7 :
- The 3-round related-key differential used in rounds 5-7 is
Kli KOy Kh the 3-round differential of [16] shifted by four rounds. The
0 0 & p=1/2 key difference isAK,. = (0,0,0,0,0,0,1,,0), and the data
KL, KOy KI, differences arey = (0,,0020 0000,) — (0., 0020 0000,) =
0. Since we use a single differential (and not count over other
0 < n = . agegae
g 0020 0000, p =1 possibilities), we have

KL; KOs, KIs

KL, KO4 KI, As before, along with this differential we consider 15 samil
differentials in which the key difference inK7 is rotated
Yy / —32 y
g 0020 0000, p =2 and the data differences are rotated correspondingly.
y ¥ 0020 0000, 3) 3-Round Related-Key Differential for Rounds 4-6.:

In rounds 4-6 we use conditional related-key differential
characteristics [3], i.e., characteristics that dependsome
unknown key bit.

differentials are:a/ = (01-70010 0000,) with AK,, = Let 5o = (0010 00001.,01), 6, = (0010 0040,,0,), and

(0,0,8000,0,0,0,0,0), and o” = (0,,0040 0000;) with 5 — (0001 0000,,0,). If K& = 0 (ie., the fifth least

AKq = (0,0,2,,0,0,0,0,0). significant bit of K5 equals zero), we use the two differentials
do — 0o and 6y @ &' — &. If K@ = 1, we use the

It was further observed in [16] that the probability of thes
differentials can be increased by controlling two plainteixs.
If the adversary assigns one bit of the plaintexts to be dnes(t
fixing one bit of the output of the OR operation A1) and
one bit of the plaintexts to be zero (thus fixing one bit of th
output of the AND operation inF'L1), then the probability  17\ote that if one of the differentials is used in the backwairéadion, the
of the differential described in [16] is increasedt®2. As a lower bound remaing—18.

Gifferentialss; — &; ands, & &' — &;. The key difference of
all the characteristics i&nK,. = (0,0,0,0,0,1,,0,0). Each
of the four characteristics has probability4, if K2 has the
(éorresponding value.
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For example, we describe the difference propagation in  Cy; under the keys{. and K4, respectively, and denote
the backward direction of the characteristigs — Jo and the corresponding plaintexts by, ; and P ;.
do @ &' — do. Consider a pair with ciphertext differenég = 3) Forl <i< M, calculateC, ; = C,; ® 01 andCy,; =
(0010 0000,,0,). In round 6 the zero difference is preserved Ch.i @ 6. For all 4, ask for the decryption of’. ; and
with probability 1/2 (i.e., the key difference is cancelled Cy,; under the keys(. and K4, respectively, and denote
with probability 1/2). In round 5, we need a difference of the corresponding plaintexts k. ; and Py ;.
0010 0000, after F'L5, which is then cancelled with the key 4) Check whethei, ; ® P;; = « and count the number

difference inKOs ;. If K2 = 0, then this is indeed the case of such occurrences.

with probability 1. In round 4, the zero difference is preset 5) Check whether”. ; ® Py; = « and count the number
by the FO4 function. As in round 6, it has probability 1/2 of such occurrences.

to be preserved also bk L4, and probability 1/2 to evolve 6) If one of the two counters from Steps 4 and 5 is greater
into 5o @ ¢’. Thus, the input difference of the differential than zero, then output “6-Round KASUMI". Otherwise,
characteristic is eithef, or §,®¢’, with probability1/4 each. output “Not 6-Round KASUMI".

In the attack, we apply the distinguisher twice, once with The total probability of the boomerang process of this
each pair of characteristics, and expect that in one of tlgstinguisher i& (1/2) - (1/4) - (1//8)? = 1/64, either for
applications, both differentials hold with probability4.'® For - quartets counted in Step 4 or for quartets counted in Step 5.
that application, we have Thus, for M = 128 we expect to find two right quartets in

f_ 3 7 _ Step 4 or in Step 5 (either for the quartéts, ;, Py ;, P..i, Pi;)
Q= VA/?+ 147 =1/V8, or for the quartety P, ;, Py.i, P..i, P.i)). Moreover, by the

We note that the four conditional differential characties analysis presented in Section I, it is expected that thebram
we use can be rotated along with the key difference, to pr@dust right quartets is distributed like a Poisson random \#eia
15 similar sets of differential characteristics with thensa poi(2).
probabilities. In the experiment, we sampled 10,000 random keys, and

ran the above distinguisher with/ = 128. By the analysis
C. First Experiment — Related-Key Boomerang Distinguish@resented above, we expected that in 86.5% of the expelsment
on 6-Round KASUMI there will be at least one right quartet. Our experiments

In this subsection we examine a RK-boomerang distikevealed that in 87% there was at least one such quartet.
guisher for 6-round KASUMI that we presented in [10]. LetMoreover, the distribution of the numbers of right quartets
E, be rounds 1-3, and Igf; be rounds 4—6. I, we use the obtained in the experiments is indeed very close toRth§2)
differential & = (0, 0020 0000,) — (0,,0020 0000,) with distribution. A c_omparis_on_ between_the (_experimental tesul
key differenceA K, = (0,0, 1,0,0,0,0,0). As shown in Sec- and t_he theore_tlcal pred|_ct|on is outllneo_l in Table IlI. _
tion 111-B.1, the probability of the differential in the forard ~ ThiS extensive experiment along with the experimental
direction is 1/2 (after adding constraints on the plairggxt Verification of the high-probability 7-round distinguishesed
and the probability in the backward direction is 1/4. #, N [19] (see Section 11I-D), demonstrate the validity of the
we use the two pairs of differential§, — do, 5o © 6 — do), probat_)lhty as_sumpnon_s in cases where the pr_obabllltrbs o]
and (5, — 61,01 ® &' — 41), both with key difference poth.dlfferentlals_u_sed in the dlstlngwsher.s.are h|g.h. Ehoay,
AK,. = (0,0,0,0,0,1,0,0). As shown in Section I1-B.3, it WI||- be bengﬁual to add more empirical eyujencg by
one of the pairs of differentials yields overall probalilaf checking experimentally other boomerang-type distinigesis,

g = 1/+/3 (where the “successful” pair depends on the valigdch as the_ boome_rang d_lstlngwsher of t_he full COCONUT98
of the key bitK2). p_resentgd in [40] in which the probability of each of the

The attack essentially performs two standard related-k@ifferentials is close td /4.
boomerang distinguishers, one for each possible valueeof th
key bit K2. To reduce the data complexity of the attack). Second Experiment — Related-Key Boomerang Distinguish-
we share some of the chosen plaintexts between the ters on 7-Round KASUMI
distinguishers. The attack algorithm requires four keys: The basic RK-boomerang distinguisher on 7-round KA-
Ko Ky = Ky®AKop: Ko = Ko®AKpo; Ky = Ky®AK .. SUMI one may consider is the distinguisher used in [10], that

is based on the main differentials presented in Sections llI
The algorithm of the distinguisher is as follows: B.1 and llI-B.2. Let AK,, = (0,0,1,,0,0,0,0,0) and
1) ChooseM pairs of plaintext§ P, ;, Py ;) (for 1 <i < AK,. = (0,0,0,0,0,0,1,,0), and letK,, K, = K, ®AK,
M) such thatP, ; ¢ P, ; = a. For each pair, ask for the K. = K, ® AK,., and K; = K. ® AK,;, be the unknown
encryption of P, ; and P, ; under the keyds, and K;,, related keys. In rounds 1-4, the related-key differenighie
respectively, and denote the corresponding ciphertexise presented in Section I1I-B.1 that has an input diffeeenc
by Co,; and C;. a = (0,,0020 0000,), a key differenceA K ,;, and for which
2) Forl <i< M, calculateC,.; = C,; & andCy; = p = 2717 in the forward direction (due to fixing plaintext bits
Cyi @ do. For all 4, ask for the decryption of.; and properly, as explained in Section I1I-B.1) apd= 2~ in the

18e note that the knowledge of the “successful” pair of cheristics 19Recall that the first differential has probability 1/2 foetpair (Py, Py)
reveals the value of the key bﬁ’g. due to fixing the plaintexts correctly.
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TABLE Il
THE NUMBER OF FOUND QUARTETS IN 10,000 EXPERIMENTS

Quartets 0 1 2 3 4 5 6 7 8 9 10
Experiments 1302 2695 2692 1879 907 348 127 27 9 4 0
Poisson (mean = 2] 1353.3 | 2706.7 | 2706.7 | 1804.5| 902.2 | 360.9 | 120.3| 344 | 86 | 1.9 | 0.4

backward direction. In rounds 5-7, the related-key difiéied and thus,
is the one presented in Section 1l-B.2 that has an output Xtoxht=xEgx]t=p"
differenced = (0,,0020 0000,), a key differenceAK,. and
for which g = 272,
However, as was observed in [19], in this distinguisherghe
is a.clear dependgnpe between the diﬁerentia}ls useEOin XaL @XbL 69XCL @X§ —0,
and in E;. Indeed, it is easy to see that these differentials are
equal in the entire 32-bit value that enters tfidunction of holds with the random probability @32, as predicted by the
round 4. As the detailed (and experimentally verified) asialy independence assumptions.
presented in [19] shows, this leads to a much higher prababil This check can be performed by examining solely the
of the distinguisher than predicted. function FFO4. Indeed, since thé'L functions are linear (for
In order to avoid this dependence issue, we consider taefixed key), the conditionX! & X} @ XF & X = 0
255 distinguishers that can be obtained from the original ors equivalent to the condition that the XOR of the four
by replacing one of the differentials (or both of them) withntermediate values after the functidrO4 is zero.
one of their 15 rotated variants. The functionF’O4 (depicted in Figure 4) is a 3-round Feistel
1) Checking for local inconsistenciesEirst we examine construction whose 32-bit values after roundre denoted by
whether the distinguisher contains a local inconsistedcy. (X7, Xj, X7, X?7). The functionsF'I 1, FI,», and F I, 5 are
natural candidate for such inconsistency is round 4, sihie i 4-round Feistel constructions, and the 16-bit output$'éf ;
the only round in which one of the differentials has a very lowre denoted byI7, I}, 17, I7).
(i.e., “random”) probability, and since it lies in the tréin First, we observe that in all 255 pairs of differentials we
betweenE, and F;. In order to concentrate on round 4consider, we havg?®? = vLE = (0 (where 37" denotes the
we compute the probability of the distinguisher in a slightl16 rightmost bits of3, and~** denotes the right 16 bits of
different way, that is clearly equivalent to the computatiothe left half ofy). Hence, if(Py,, P»), (Ca, Ce), and (Ch, Cy)
presented in Section II. are right pairs w.r.t. the respective differentials, asuassd,
We divide the differential of rounds 1-4 into a differentiathen we have
of rounds 1-3 with probabilit2=2 (or 2! in the forward
direction), and round 4 in which we assume the worst-case as-
sumption that all differentials are equiprobable and cawer \joreover, since in the second round B4, there is no key

all the differentials. In order to isolate round 4, we congile  gifference inside the key pairek,, K3) and (K., Dg), we
probabilities of the differentials in all other rounds, amdly haye

then compute the_ “cost of the t.rgnsmon" in rqun&f’By the (I2 = I2) A (I2 = I2). (20)
theoretical analysis, the probability of the distinguistier the

differentials we examine) i2717.272.272.2718 = 2739 Thus,

This is equivalent to the claim that given the differentials
in rounds 1-3 and 5-7 (whose total probability2is7), the

cost of the transition i2~?. This fact is the one that needstherefore, if we show that for some pair of differentials,

We would like to check whether the event that indicates that
;he transition in the middle occurs:

X = xR = XER = xR (19)

XFoxPoxPoxiF=IlololleIl}. (21)

verification. the assumption thdtP,, P), (C,, C..), and (Cy, C,) are right
Formally, let(F,, Py, Pe, Pq) be a plaintext quartet, denotepajrs implies
the corresponding ciphertexts b¢.,, Cy, C., Cy), and denote ' [bl oI'e [C} £0 (22)

the intermediate values before round 4 ©Y,, X;, X., X4).
Assume thatP,, P,) is a right pair for the differentiak — 3 then the probability of the transition in the middle, andghu
of rounds 1-3, and thaiC,, C.), (C,, Cy) are right quartets also of the entire distinguisher, is zero.
with respect to the differential — § of E;. Due to the Feistel ~Now, we consider the functio#'l, ;. Here we have two
structure of KASUMI, this implies that the right halves ofpossibilities:
Xa, Xp, X, and X satisfy: 1) The unique non-zero difference bits " and v-~,

are in the same half of the input #1, ;.
2) The non-zero difference bits are not in the same half of
20We note that this kind of computation is performed in [19] imler to the input tOF 4. Without loss of generality, IﬁRL the

L CIL
compute the probability of the distinguisher in cases ofethelence between n_on-z_ero bit '_S in the left half, and m=, the non-zero
the differentials. bit is in the right half.

Xroxfoxteoxl=o,
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Fig. 4. Example of a Failing Related-Key Boomerang
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In order to reduce the amount of technicalities, we checke definition ofz’, 4/, this can happen only if the differential

all the 2 - 63 = 126 distinguishers that correspond to ther & y — =z @ w is possible through the S-box S9. This leads

second possibility. The analysis of the remaining difféilda us to our first conclusion:

is, presumably, similar. Conclusion 1: Denote the basic differentials of rounds 1—
By the structure of the pairs of differentials that belong t8 and 5-7 used in the distinguisher by— g and~y — 6,

the second class, the corresponding quartets of inputdta  respectively. Let the only nonzero bit j#** be bit7 + i, and

(divided into the two “halves”) are of the form: let the only nonzero bit in L be ;. If the differentiale; — ¢;
(wheree; is the 9-bit vector in each the only nonzero position
(@, y,2,9), (2,2, 0, w), is the ith position) is impossible for the S-box S9, then the

entire distinguisher fails.

Now assume that the four inputs to the S-b&% in the
third round of FI,; are not distinct. In such case, the right
half of the output ofF'l, ; is balanced. Hence, if the output
of S7 in the fourth round of'1, ; is unbalanced, then the left
half of the output of the entird’/,,; is unbalanced, and the

wherez, y, z, w are mutually distinct (see Figure 4). It follows
that the inputs to the S-ba%9 in the first round ofF'l, ; are
of the form(z, z, y, y), and the inputs to the S-baX7 in the
second round ofF'I,; are of the form(z,w, z,w). Hence,
the corresponding outputs are of the forn$,2’,y’,y’) and
(2, w',2',w"), respectively. Since both these quadruples arg” =" " :
balanced(i.e., sum up to zero), and there is no key dif‘ferenc‘@sungu_ISher fails. . .
in F'1, 1, this implies that in both halves of the intermediate Consider the four_ inputs to the S-box S7 in the fourth round
value after the key addition, the quadruples are balancé)é.FL*vl‘ By the Feistel structure, they are of the form
Therefore, due to the 4-round Feistel structure, if for spaie (w2 w) @ (o, 2y, ), Bz, w, 2, w)D
of differentials, the outputs of the S-b@9 in the third round (KIjqp1, KIn11, KIsq1, K1y 11),
of F'14, areunbalancedthis implies that the right half of the
output of 1, ; is unbalanced, thus proving that inequality (2
holds and that the distinguisher fails.

Consider the four inputs to the S-b&¥ in the third round
of F1, ;. By the Feistel structure, they are of the form

nd hence, they are balanced. As in the previous case, if
ey are distinct, and sincé7 is an almost perfect non-
linear permutationas well, the four outputs are necessarily
unbalanced, and the distinguisher fails. On the other hand,
since by the assumption, & z = 3’ & w, these inputs are not
Pt oo distinct only if 2/ ® 2’ @ z = w’ & 2’ § w, or equivalently,
@9y )@(Z’w’Z’w)@(KI4’1’2’KI4’1"2’KI4"1’2’KI4"1’2)’z’ ®w' = z ®w. However, by the definition of’,w’, this
and hence, they are balanced. can happen only if the differential® w — =z ® w is possible
The balancedness assures that the XOR of all valuesthsough the S-box S7. This leads us to the second conclusion:
indeed zero. At the same time, the values themselves carConclusion 2: Denote the basic differentials of rounds 1—
be distinct (i.e., whent’ @ z # ¢ @ w), then four different 3 and 5-7 used in the distinguisher by— g and~y — 4,
values enterS9. As a design criteriaS9 is analmost perfect respectively. Let the only nonzero bit #*" be bit7 + i, and
non-linear permutationa property which implies that the fourlet the only nonzero bit i~ be j. If the differentiale; — e;
outputs are necessarily unbalanced, which lead to therdailgwheree; is the 7-bit vector in each the only nonzero position
of the distinguisher. These four inputs are not distinctyonis the ith position) is impossible for the S-box S7, then the
if ' &2z =y @&w, or equivalently,z’ & y = z & w. By entire distinguisher fails.
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We checked exhaustively all 126 pairs of differen¢8sy) The results of the experiment are given in Table IV that lists
that belong to the class we study, and found out that thew many right quartets were found.
only pairs of differences that satisfy the restrictions bét It is interesting to note that only in 35 out of the 215
propositions are: experiments we encountered right quartets. This may seem
like a failure of the entire boomerang approach, but a furthe
B = (03,0001 0000), 7 = (02,0400 0000,), analysis shows that this is not the case. First of all, the
and: distinguisher was found to be useful for about one out of six
keys. These keys may be considered as a set of weak keys
B = (0z,0040 0000,), v = (04,0080 0000,), (i.e., a weak key class) of the cipher, but given its sizes thi
%?t cannot be disregarded.
differentials obtained from them by interchanging the sabé Moreover, we note that for the keys for which right quartets
3 and~). were found, S|g_n|f|cantly more q_uartets than expected were
This means that out of the 126 checked pairs ofdifferentia[ound' Namely, it seems that while there are keys for Wh'.Ch
?”Ie distinguisher fails, for the keys for which it works, it

i I
only 4 can work theoretically! But on the other hand, a\/Svlg?_rks significantly better than predicted. For comparison,

demonstrated above, an adversary can check the local incc?1 robabilit of an experiment that follows the Poisson
sistencies manually, and then choose one of the “possib} £ P y b

) f diff il delstribution with mean value of 1 to obtain 39 “successes”
pairs of differentials. i 673‘9 ~ 91538
39! :

2) Verifying the transition of round 4 experimentally: We al te that qi th tricti th tattion
As a second step in our analysis, we choose one of the € aiso note that given the restrictions on the computationa

i ini .939
four “possible” differentials, and verified whether there a pawer we had at our disposal (obtaining the requitesl-2

no further inconsistencies. An easy analysis shows thdt S&;_ar_tets, which are equwglent wo 7 eqcryptlons using the
inconsistencies can occur only insidel, 5, and the inputs 0 icial KASUMI reference implementation took overz_imonth
of the round undergo too many changes before that point, |Qoth-ree different cIusters), we expgct some gxpgrlments 0
that the values cannot be followed easily. Instead, we absePbtam no quartgts, following the PO'SSQn distribution éwh
that if the boomerang passes the filterfof, ; successfully, the mean value is 1, abolj)!_e of the experiments are expected
then insideF'l, ;, the differentialse; — e; through S9 and to have no quartets following the randomness).

e; — e; throughST are satisfied. Sinc69 andS7 arealmost Finally, we note that checking what is the exact number
perfect nonlinear permutationshere is only a single pair of of keys for which the attack succeeds requires testing fsigni

inputs to.S9 that satisfies the differential — ¢, and there is icantly more quartets per key guess to overcome the random

only a single pair of inputs t&7 that satisfies the differential "atUre of the process. However, given the huge computation
¢; = e;. This allows us tochoosethe four inputs to round 4 féguirements, this task seems out of our reach at the moment.
J J

such that the functio'l, ; is passed “for free”.

At this stage, we were ready to perform an experiment. We IV. CONCLUSIONS
fixed the quarte{X,, X, X., Xq4) to be one of the quartets
for which F'1, ; is passed for free, and checked the probability In the first part of this paper we presented a rigorous
of the condition treatment of the related-key boomerang and related-key rec
I I I I angle attacks. We devised optimal algorithms for the RK-

X, Xy @ XD Xg =0, boomerang/rectangle distinguishers and computed their su
when averaged over random values of the subkeys usedC§$S Probability under explicitly stated and analyzed pete
round 4. dence assumptions.

The result of the experiment was that on average, theln the second part of this paper we presented an extensive
probability was indee@~16 as expected (since anothr!6 €xperimental analysis of the RK-boomerang attack in the
are “gained” by fixing the inputs), which proves that fosPecific case of the block cipher KASUMI. Our experiments
the “correct’ choice of differentials, the distinguisheoess (along with previous experimentally verified results) sesig
work. On the other hand, the experiment revealed that tH¥ following heuristics:
probabilities depend quite heavily on the exact choices ofe Boomerang-type attacks can fail due to local inconsisten-
the subkeys, which leads to a conjecture that the overall cies, especially in the transition between the subciphers.
probability of the distinguisher is also key-dependent. Hence, the designers of attacks should do their best to

3) The full 7-round verification experimen#fter verifying check that the distinguisher used in the attack does not
that the transition in the fourth round is feasible, we reatch contain any inconsistency.
the point that we were ready to conduct a verification of the « If the probabilities of any round in the differentials used

with appropriately chosen key differences (and the pairs

full 7-round distinguisher. We ran a full experiment sintula in the distinguisher are not extremely low, it is reasonable

ing the RK-boomerang distinguisher for 7-round KASUMI,  to assume that the independence assumptions underlying

expecting that the probability of obtaining a right quaiiget the boomerang-type attacks are valid.

2739, « If the probabilities of some part of the differentials is
For each of the 215 keys we have checked, we t2tk very low, then the overall probability of the distinguisher

guartets, and counted how many of them were right quartets. can depend heavily on the key, such that the distinguisher
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« In any case, it is very important to check the probability

TABLE IV
THE NUMBER OF FOUND QUARTETS IN 215 EXPERIMENTS

18

Quartets 0 2145|679 11 | 12

13

Experiments| 180 | 2 [ 3 | 1|2 |1 |1 ] 1 2 1

3

applies only for a relatively small portion of the ke¥fs. [11]

of the RK-boomerang/rectangle distinguisher used in

each specific attack, whenever possible.

[12]

Apart from the immediate attacks, another outcome of the
related-key boomerang and rectangle techniques is a better
understanding of the importance of a well designed kéig]

schedule algorithm for the security of block ciphers. While

it is commonly believed that a linear key schedule (or 0Ny
close to it), is of no security concern to a well designed bloc
cipher, the related-key boomerang and rectangle attatksg a
with the concept of structures of keys (that allows to bypa
nonlinear key schedule algorithms) show that this belief Is
dangerous and at times may be faulty.
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