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Related-Key Boomerang and Rectangle Attacks:
Theory and Experimental Analysis

Jongsung Kim, Seokhie Hong, Bart Preneel, Eli Biham, Orr Dunkelman, and Nathan Keller

Abstract— The related-key differential attack and the
boomerang attack are two of the classical techniques in crypt-
analysis of block ciphers. In 2004, we introduced the related-
key boomerang and related-key rectangle attacks, which allow
to enjoy the benefits of these two techniques simultaneously. The
new techniques proved to be very powerful, and were used to
devise the best known attacks against numerous block ciphers,
culminating with the first attack on the full AES presented in
2009 and a practical-time attack on KASUMI (the cipher used
in GSM and 3G telephony) presented in 2010.

While the claimed applications of the related-key
boomerang/rectangle technique are significant, most of
them have a major drawback: due to the extremely high
complexity of the attacks, their validity cannot be verified
experimentally. Together with the lack of rigorous justification
of the probabilistic assumptions underlying the technique, it was
claimed that these assumptions cannot be relied upon, and thus,
attacks using the related-key boomerang/rectangle technique
are not legitimate. These claims were formalized in a recent
paper by Murphy [32] who presented scenarios in which the
probabilistic assumptions fail, and questioned their validity.

In this paper we present a rigorous treatment of the
related-key boomerang/rectangle technique. In the first part
of the paper, we devise optimal algorithms for the related-
key boomerang/rectangle distinguishers using the Logarithmic
Likelihood Ratio statistics. We study the exact independence
assumptions the attacks rely upon, and compute the success
probability of the attacks under these independence assumptions.

In the second part of the paper, we address the claims against
the validity of the related-key boomerang/rectangle technique by
an extensive experimental analysis. We consider a specific case
— the block cipher KASUMI — and perform an experimental
verifications (with more than 2

48 encryptions) of a related-key
boomerang distinguisher against it. The analysis shows that in
all attacks, the overall probability of the distinguisher (when
averaged over different choices of plaintexts and keys) is close
to the theoretically predicted probability. However, it seems that
the probability depends on the key, such that for some portion
of the keys, the distinguisher holds with a higher probability
than expected, while for the rest of the keys, the distinguisher
fails completely. We conclude that the probability assumptions
underlying the technique make sense in real-life ciphers, and
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thus, related-key boomerang/rectangle attacks on block ciphers
are valid in general. On the other hand, due to the dependenceof
the probabilities on the key, it is important to verify the validity of
the attack experimentally whenever possible in order to measure
its success probability.

Index Terms— Related-key Boomerang Attack, Related-Key
Rectangle Attack, Experimental Analysis, KASUMI.

I. I NTRODUCTION

T HE related-key differentialattack, introduced by Kelsey
et al. [23] in 1996, is an extension of differential crypt-

analysis [5] in which it is assumed that the adversary has
control over the key difference, along with the control over
the plaintext/ciphertext differences. Since its introduction, the
related-key differential attack was used to break reduced-round
variants of various block ciphers, including a practical-time
attack on 10-round AES-256 [15]. Moreover, although an
attack model in which the adversary has control over the
key difference may seem unrealistic, a related-key differential
attack on the block cipher TEA [42] was used to devise a
practical attack on Microsoft’s Xbox architecture [43].1

Theboomerangattack, introduced by Wagner [40] in 1999,
is a differential-based attack in which the block cipherE is
treated as a cascade:E = E1 ◦ E0, and differentials ofE0

andE1 are combined into a distinguisher for the entire cipher
E in an adaptive chosen plaintext and ciphertext process.
The boomerang attack shows that bounding (from above) the
probability of differential characteristics throughE does not
assure immunity ofE to differential-type attacks, and the
boomerang technique was indeed used to devise practical-
time attacks against ciphers which are provably immune to
conventional differential attacks, e.g., COCONUT98.

The adaptive chosen plaintext/ciphertext nature of the
boomerang attack makes it less realistic in practical scenarios.
As a partial remedy of this issue, the attack was transformed
into a chosen plaintext variant named the amplified boomerang
attack [25] and later renamed as the rectangle attack [7]. The
transformation is done by a birthday-paradox argument, which
leads to an increase in the data complexity of the attack.

In 2004, Kim et al. [26], and independently, Biham et al. [9],
introduced therelated-key boomerang(RK-boomerang) and
related-key rectangle(RK-rectangle) attacks – a combination

1In the Xbox architecture, the block cipher TEA was used in a Davies-
Meyer mode as a compression function. In such cases, the key difference in
the block cipher is transformed into the message differenceof the compression
function, which indeed can be controlled by the adversary. In general, almost
any related-key attack on a block cipher can be converted into a chosen
message attack on a compression function based on it.
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of the boomerang technique with related-key differentials.2 It
turns out that the combination allows to enjoy the strength of
the related-key model twice, by using high-probability related-
key differentials in both subciphers,E0 andE1. This makes
the RK-boomerang/rectangle techniques much more effective
than other combined techniques, such as the related-key im-
possible differential [22] and the related-key differential-linear
[11] attacks.

Since its introduction, the RK-boomerang/rectangle tech-
nique was used to attack reduced-round variants of various
block ciphers (e.g., IDEA, MISTY1, SHACAL-1, SHACAL-
2, and XTEA), and even full versions of widely used block
ciphers such as AES [14] and KASUMI [19].

In parallel with the increasing popularity of the RK-
boomerang/rectangle technique, several researchers raised con-
cerns about its theoretical validity. The main concern is that
the technique relies on randomness assumptions which are
much stronger than the assumptions relied upon in standard
differential attacks (i.e., that the cipher is Markovian, see [6]),
and thus they can be inappropriate in real block ciphers.
Indeed, while the “Markovity” assumption was treated rig-
orously and verified experimentally in many practical cases,
the exact randomness assumptions underlying the boomerang
attack and the RK-boomerang/rectangle attack were never
treated rigorously, and in most practical cases, there was no
possibility to verify them experimentally, due to the high
complexity of the attacks.

These concerns are supported by a paper of Wang et al. [41]
published in 2008, that showed that all previously published
boomerang and related-key boomerang attacks on SHACAL-
1 fail, due to a failure of the randomness assumptions in
the specific case of SHACAL-1. In that case, the attacks fail
because oflocal inconsistency: while the attacks assume that
differential characteristics for different rounds are independent
and the probability of their concatenation is the product of
their probabilities, it appeared that some characteristics used in
subsequent rounds contradict each other, and thus, they never
co-occur.3

In a recent paper [32], Murphy presented several examples
based on a 4-round variant of DES [33] and a 2-round variant
of AES [34], in which such local inconsistencies occur in
the transition between the two sub-ciphersE0 and E1. He
concluded that there is no reason to assume that the random-
ness assumptions underlying the boomerang attack hold in real
ciphers, and thus, any boomerang (or RK-boomerang) attack
should be viewed extremely skeptically, unless it is verified
experimentally.4

2We note that this paper is written jointly by the two researchgroups who
independently introduced the related-key boomerang/rectangle technique. This
explains the term “we” which is used in the abstract when referring to the
inventors of the technique.

3We note that actually, the flaw detected in [41] is not a special feature
of the boomerang attack but rather a failure of the Markovityassumption for
the specific type of differential characteristics used in the attacks. However,
it still demonstrates the possibility of failure of the randomness assumptions
underlying the attack.

4We note that the claims of [32] are addressed not only to RK-
boomerang/rectangle attacks, but also to the boomerang andthe rectangle
attacks in the single-key model.

A. Our Contributions – Theoretical Results

In the first part of this paper we present the first rigorous
treatment of the (related-key) boomerang and rectangle dis-
tinguishers. We devise the optimal distinguishing algorithms
using the Logarithmic Likelihood Ratio metric, and compute
their success rate. We obtain and prove the following theorem:

Theorem 1: Let E = E1 ◦ E0 : {0, 1}n → {0, 1}n be a
block cipher. Consider encryptions under a secret keyK and
related-keys whose differences are chosen by the adversary.
Let

p̂ = max
α6=0,∆K0

√

∑

β

(

Pr
P

[E0,K(P )⊕ E0,K⊕∆K0
(P ⊕ α) = β]

)2

,

q̂ = max
δ 6=0,∆K1

√

∑

γ

(

Pr
C

[

E−1
1,K(C)⊕ E−1

1,K⊕∆K1
(C ⊕ δ) = γ

])2

= max
δ 6=0,∆K1

√

∑

γ

(

Pr
X

[E1,K(X)⊕ E1,K⊕∆K1
(X ⊕ γ) = δ]

)2

whereE0,K(P ) denotes the partial encryption ofP through
E0 under the keyK andE−1

1,K(C) denotes the partial decryp-
tion of C throughE1 under the keyK. Let 0 < c < 1. Under
certain independence assumptions between the differentials
that will be discussed below, given either

• 4c/(p̂q̂)2 unique adaptively chosen plaintexts and cipher-
texts, or

•
√
c · 2n/2+2/p̂q̂ unique chosen plaintexts,

encrypted under four related-keys of the form
K,K ⊕ ∆K0,K ⊕ ∆K1,K ⊕ ∆K0 ⊕ ∆K1,5 the RK-
boomerang/rectangle technique allows to distinguishE
from a random permutation. The probability of success of
the distinguisher is approximately1 − e−c/2 (when p̂q̂ is
sufficiently high).

We state explicitly the randomness assumptions required for
Theorem 1 to hold, and examine their soundness in various
scenarios.

After the theoretical treatment, we consider several improve-
ments of the related-key boomerang and rectangle attacks:

1) The Use of Structures of Keys:We use structures
of keys to overcome a wider range of key schedule
algorithms. In ciphers with a nonlinear key schedule,
a given key difference may cause many subkey differ-
ences, thus interfering with the construction of related-
key differentials. Structures of keys can be used to
reduce the effects of this event on the differentials.

2) The Use of Other Relations between the Keys:While
XOR relations are common and inherent to the majority
of differential-based related-key attacks, in some cases
there are more suitable key relations (either due to the
environment of the attack or in order to gain higher
probabilities). We show that the proposed attacks are
applicable when the XOR relations between the keys

5In some cases∆K0 = ∆K1. In these cases, there are small changes in
the analysis, most notably the use of only two related keys.
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are replaced with different kinds of relations and discuss
which relations induce feasible attacks.

We then compare the RK-boomerang/rectangle attacks with
previously proposed related-key techniques. We explore the
advantages of the new attacks, and show that in many cases
the RK-boomerang/rectangle attacks are significantly more
effective than other related-key techniques, even if in the
single-key scenario the boomerang and the rectangle attacks
are inferior to the respective non-related-key techniques.

B. Our Contributions – Experimental Results

In the second part of this paper, we examine experimentally
the validity of the randomness assumptions underlying the RK-
boomerang/rectangle attack, in a specific case of a widely
used block cipher. As stated above, most of the existing
RK-boomerang/rectangle attacks (including all the attacks on
reduced-round AES, e.g., [9], [13], [14], [27]) cannot be
verified experimentally due to their high data complexity. Even
reduced-round variants of these attacks in which the number
of rounds is not very small, have too high complexity for
being verified. On the other hand, variants with a very small
number of rounds, such as the examples studied in [32], are
non-representative, since it is clear that the rate of randomness
of variants with a very small number of rounds is much smaller
than that of the entire ciphers.

In order to obtain representative experimental results, we
choose the block cipher KASUMI [38], used in GSM and
3G telephony, and examine various RK-boomerang/rectangle
on it. We start with verifying a RK-boomerang distinguisher
on 6-round KASUMI (out of the total 8 rounds) in which
the probabilities of both differentials are relatively high.
This choice follows the intuition that the precision of the
randomness assumptions is better when the probability of
the differentials is not very low. As we expected, among
the 10,000 random keys we sample, the probability of the
distinguisher is remarkably close to the probability predicted
by Theorem 1.

Then, we experimentally verify our RK-boomerang distin-
guisher on 7-round KASUMI, which include the distinguishers
used in the attacks on the full KASUMI presented in [10],
[19]. Among these distinguishers, we check those in which the
probability of one of the differentials in the transition round
is as low as the probability of a random differential through
that round.6 By the intuition stated above, these are the cases
where the validity of the randomness assumptions can be more
problematic.

First, we check theoretically, whether there exists alocal
inconsistencyin the transition between the differentials (like
the inconsistencies presented in [32]). We found that indeed,
for many choices of the differentials such inconsistenciesexist
and lead to failure of the attack.7

6We note that in [19], the probability of the distinguisher on7-round
KASUMI was verified experimentally, and the results were very close to
the theoretical prediction. This gives additional evidence to the claim that the
randomness assumptions are sound, at least in the cases where the probabilities
of the differentials are high, like in the distinguisher checked in [19].

7We note that this dependence issue was overlooked in [10], and indeed,
the probability of the distinguisher used in [10] is far fromthe theoretical
value used in that paper.

Then we choose the differentials carefully, such that we
cannot detect any more inconsistencies, and perform an ex-
periment checking 215 random quartets of keys, with239

encrypted plaintexts under each key.8 We find out that the
overall probability of the distinguisher, when averaged over
all the 248.7 (plaintexts,keys) choices, is very close to the
theoretical probability. On the other hand, it appears thatthe
probability depends very much on the key, such that for about
5/6 of the keys, the distinguisher fails completely, while for
1/6 of the keys, it holds with an increased probability.

We conclude that in cases where the probabilities of the
differentials are not very low, it seems reasonable to assume
that the RK-boomerang/rectangle distinguisher holds withthe
theoretically predicted probability. In cases where some of the
probabilities are low, one has to make his best to check that the
distinguisher does not have local inconsistencies, and then it is
reasonable to assume that it does hold, at least for a significant
portion of the keys. However, it is clearly desirable to check
the attack experimentally in each specific case, in order to
verify its validity and to compute its success probability.

C. The Organization of the Paper

The paper is organized as follows: In Section II we present
the related-key boomerang and rectangle attacks and discuss
them theoretically. In Section III we present the experimental
results on reduced-round variants of KASUMI. Finally, Sec-
tion IV summarizes the paper.

II. T HE RELATED-KEY BOOMERANG AND RECTANGLE

ATTACKS

In this section we introduce the RK-boomerang and the
RK-rectangle attacks. We start with a brief description of
the boomerang and the rectangle attacks in the single key
model. We then introduce and analyze rigorously the RK-
boomerang and RK-rectangle attacks. We follow and examine
the randomness assumptions used in the attacks. We conclude
this section with several generalizations and comparison of the
newly proposed attacks with other techniques.

A. Boomerang and Amplified Boomerang (Rectangle) Attacks

The main idea behind the boomerang attack [40] is to use
two short differentials with high probabilities instead ofone
long differential with a low probability. We assume that a
block cipherE :{0, 1}n×{0, 1}k→{0, 1}n can be described
as a cascadeE = E1 ◦ E0, such that forE0 there exists a
differentialα → β with probabilityp, and forE1 there exists
a differentialγ → δ with probability q.9

The distinguisher is based on the following boomerang
process:

1) Ask for the encryption of a pair of plaintexts(P1, P2)
such thatP1 ⊕ P2 = α and denote the corresponding
ciphertexts by(C1, C2).

8We note that the number of plaintexts for each quartet of keyscannot be
smaller, since the theoretical probability of the distinguisher is2−39.

9We note that in the attack, the differentials are used both inthe forward
(i.e., encryption), and in the backward (i.e., decryption)directions. As the
considered differentials are not truncated differentials, the direction does not
affect the probability of the differentials.
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2) CalculateC3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask
for the decryption of the pair(C3, C4). Denote the
corresponding plaintexts by(P3, P4).

3) Check whetherP3 ⊕ P4 = α.

The boomerang attack uses the first differential (α → β) for
E0 with respect to the pairs(P1, P2) and (P3, P4), and the
second differential (γ → δ) for E1 with respect to the pairs
(C1, C3) and (C2, C4).

For a random permutation the probability that the last
condition is satisfied is2−n, wheren is the block size.10 For
E, the probability that the pair(P1, P2) is a right pair with
respect to the first differential (i.e., the probability that the
intermediate difference afterE0 equalsβ, as predicted by the
differential) isp. The probability that both pairs(C1, C3) and
(C2, C4) are right pairs with respect to the second differential
is q2. If all these are right pairs, thenE−1

1 (C3)⊕E−1
1 (C4) =

β = E0(P3)⊕E0(P4). Thus, with probabilityp, P3⊕P4 = α.
Hence, the total probability of this quartet of plaintexts and
ciphertexts to satisfy the conditionP3 ⊕ P4 = α is at least
(pq)2.

The attack can be mounted for all possibleβ’s and γ’s
simultaneously (as long asβ 6= γ). Therefore, a right quartet
for E is encountered with probability not less than(p̂q̂)2,
where:

p̂ =

√

∑

β

Pr 2[α → β], and q̂ =

√

∑

γ

Pr 2[γ → δ].

Using the boomerang process described above, the cipher
E can be distinguished from a random permutation given
O((p̂q̂)−2) adaptively chosen plaintexts and ciphertexts, pro-
vided thatp̂q̂ ≫ 2−n/2. The complete analysis is given in [7],
[8], [40]. We omit the analysis here since it is essentially
included in the analysis of the related-key boomerang attack
presented in Section II-B.

As the boomerang distinguisher requires adaptively chosen
plaintexts and ciphertexts, it cannot be combined with many
of the standard techniques for using distinguishers in key
recovery attacks. This led to the introduction of a chosen
plaintext variant of the boomerang attack called theamplified
boomerang attack[25], and later renamed as therectangle
attack [7]. The transformation of the boomerang attack into
a chosen plaintext attack relies on standard birthday-paradox
arguments. The key idea behind the transformation is to
encrypt many plaintext pairs with input differenceα, and
to look for quartets (i.e., pairs of pairs) that conform to the
requirements of the boomerang process.

In the rectangle distinguisher, the adversary considers quar-
tets of plaintexts of the form((P1, P2 = P1 ⊕ α), (P3, P4 =
P3⊕α)). A quartet is called a “right quartet” if the following
conditions are satisfied:

1) E0(P1)⊕ E0(P2) = β = E0(P3)⊕ E0(P4).
2) E0(P1) ⊕ E0(P3) = γ (which leads toE0(P2) ⊕

E0(P4) = γ if previous condition holds as well).
3) C1 ⊕ C3 = δ = C2 ⊕ C4.

10For the analysis ofE we rely on some independence assumptions,
addressed in Section II-D.

The probability of a quartet to be a right quartet is a lower
bound on the probability of the event

C1 ⊕ C3 = δ = C2 ⊕ C4. (1)

The usual assumption is that each of the above conditions
is independent of the rest, and hence the probability that a
given quartet((P1, P2), (P3, P4)) is a right quartet isp2 ·
2−n−1 · q2. Since for a random permutation, the probability
of Condition (1) is2−2n, the rectangle process can be used
to distinguishE from a random permutation ifpq ≫ 2−n/2

(like in the boomerang distinguisher).
The data complexity of the distinguisher isO(2n/2(pq)−1),

which is much higher than the complexity of the boomerang
distinguisher. The higher data complexity follows from thefact
that the eventE0(P1)⊕ E0(P3) = γ occurs with a “random”
probability of 2−n (actually, this is the birthday-paradox
argument used in the construction). The identification of right
quartets is also more complicated than in the boomerang case,
as instead of checking a condition on pairs, the adversary has
to go over all the possible quartets. At the same time, the
chosen plaintext nature allows using stronger key recovery
techniques. An optimized method of finding the right rectangle
quartets is presented in [8].

Like the boomerang attack, the rectangle attack can use all
the possibleβ’s andγ’s simultaneously. This reduces the data
complexity of the attack toO(2n/2(p̂q̂)−1), where p̂ and q̂
are as defined above. The complete analysis of the rectangle
attack is given in [7], [8].

B. The Related-Key Boomerang Attack

We now present the RK-boomerang distinguisher, and deter-
mine the conditions required for the distinguisher to succeed.
Following a rigorous treatment, we compute the optimal value
of the threshold used in the distinguisher using the Logarithmic
Likelihood Ratio (LLR) method. Then we compute the success
rate of the distinguisher using a Poisson approximation. In
order to keep this section readable, we refrain from presenting
a detailed analysis of the key-recovery attack algorithm. The
reader is referred to [8] for a generic key-recovery attack
algorithm exploiting the boomerang distinguisher (which is
easily adapted to the related-key model).
First, we recall the definition of related-key differentials and
introduce a shorthand used throughout this paper to denote
them:

Definition 1: We say that a related-key differentialα → β
with key difference∆K holds forE with probability p, if

Pr
P,K

[EK(P )⊕ EK⊕∆K(P ⊕ α) = β] = p,

where EK(·) denotes encryption throughE with the key
K. For the ease of exposition, we denote this event by
Pr
(

α
E−−→

∆K
β
)

= p. For sake of simplicity, we shall denote

the related-key differential by
(

α
E−−→

∆K
β
)

.

In order to present the independence assumption used in the
paper, we need another definition:
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Definition 2: For each related-key differential
(

α
E−−→

∆K
β
)

,

we denote the set of right pairs with respect to the differential
(for the given keyK) by GK

(

α
E−−→

∆K
β
)

. Formally, for a

block cipherE and a given keyK,

GK

(

α
E−−→

∆K
β
)

=
{

P
∣

∣

∣
EK(P )⊕ EK⊕∆K(P ⊕ α) = β

}

.

Similarly, we define the set of good ciphertexts:

G−1
K

(

α
E−−→

∆K
β
)

=
{

EK(P )
∣

∣

∣
P ∈ G

(

α
E−−→

∆K
β
)}

=
{

C
∣

∣

∣
E−1

K (C)⊕ E−1
K⊕∆K(C ⊕ β) = α

}

.

Our independence assumption asserts that the sets of the
form G

(

α
E−−→

∆K
β
)

are independent, in the following sense:

Assumption 1:For the block cipherE = E1 ◦ E0 under
consideration, for any fixed keyK, and for any set of
differencesα, γ1, δ,∆K0, and∆K1, we assume that the event
(

X ∈ GK

(

γ1
E1−−−→

∆K1

δ

))

is independent of any combination

of these three events:

1)

(

X ⊕ β1 ∈ GK⊕∆K0

(

γ2
E1−−−→

∆K1

δ

))

for all β1, γ2.

2)

(

X ∈ G−1
K

(

α
E0−−−→

∆K0

β1

))

for all β1.

3)

(

X ⊕ γ1 ∈ G−1
K⊕∆K1

(

α
E0−−−→

∆K0

β2

))

for all β2.

For example, our independence assumption asserts that

Pr

[

X ∈ GK

(

γ1
E1−−−→

∆K1

δ

)

∣

∣

∣

(

X ⊕ β1 ∈ GK⊕∆K0

(

γ2
E1−−−→

∆K1

δ

))

∧

(

X ∈ G−1
K

(

α
E0−−−→

∆K0

β1

))

∧

(

X ⊕ γ1 ∈ G−1
K⊕∆K1

(

α
E0−−−→

∆K0

β2

))]

= Pr

[

X ∈ GK

(

γ1
E1−−−→

∆K1

δ

)]

.

This assumption is used implicitly in all the statements in
the sequel. We discuss the assumption and its relation to the
randomness assumptions used in other techniques, such as
differential and linear cryptanalysis, in Section II-D.

1) The Related-Key Boomerang Distinguisher:Now we are
ready to present the RK-boomerang distinguisher. Similarly to
the boomerang attack, we treat the cipherE as a cascade of
sub-ciphers:E = E1 ◦ E0. The distinguisher involves four
different unknown (but related) keys —Ka, Kb = Ka ⊕
∆Kab, Kc = Ka ⊕∆Kac, andKd = Ka ⊕∆Kab ⊕∆Kac.
For fixed valuesα andδ, the attack algorithm is the following:

1) ChooseM plaintexts at random, and set a counterC to
zero. For each plaintextPa, perform the following:

Fig. 1. A Related-Key Boomerang Quartet

Ka Kc

Kb Kd

∆
K

a
b

∆Kac

∆Kac

∆
K

a
b

Pa

Pb

Xa

Xb

Ca

Cb

Pc

Pd

Xc

Xd

Cc

Cd

α

β

α

β

γ

γ

δ

δ

a) ComputePb = Pa ⊕ α.
b) Ask for the ciphertextsCa = EKa

(Pa) andCb =
EKb

(Pb).
c) ComputeCc = Ca ⊕ δ andCd = Cb ⊕ δ.
d) Ask for the plaintextsPc = E−1

Kc
(Cc) andPd =

E−1
Kd

(Cd).
e) Check whetherPc ⊕ Pd = α. If yes, increase the

value of the counterC by 1.

2) If C > Threshold, output “The cipherE”. Otherwise,
output “Random Permutation”.

The value ofThreshold will be specified later in this section.
See Figure 1 for an outline of a right RK-boomerang quartet.

It is easy to see that for a random permutation, the
probability that the conditionPc ⊕Pd = α is satisfied is2−n.
The probability that the condition is satisfied forE is given
in the following proposition:

Proposition 1: Consider a quartet(Pa, Pb, Pc, Pd) con-
structed by the algorithm described above. We have

Pr[Pc ⊕ Pd = α] =

∑

β1⊕β2⊕γ1⊕γ2=0

Pr

[

α
E0−−−−→

∆Kab

β1

]

· Pr
[

α
E0−−−−→

∆Kab

β2

]

·

Pr

[

γ1
E1−−−−→

∆Kac

δ

]

· Pr
[

γ2
E1−−−−→

∆Kac

δ

]

. (2)

In particular,

Pr[Pc ⊕ Pd = α] ≥ (p̂q̂)2, (3)

where

p̂ =

√

√

√

√

∑

β′

Pr

[

α
E0−−−−→

∆Kab

β′

]2

and q̂ =

√

√

√

√

∑

γ′

Pr

[

γ′ E1−−−−→
∆Kac

δ

]2

.

Proof: Consider a quartet(Pa, Pb, Pc, Pd) con-
structed by the algorithm. Denote the intermediate values
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(E0(Pa), E0(Pb), E0(Pc), E0(Pd)) (where the encryption is
under the respective keys) by(Xa, Xb, Xc, Xd), respectively.
For all β1, γ1, γ2, we say that the eventSβ1,γ1,γ2

occurs, if
the following three conditions are satisfied:

Xa ⊕Xb = β1, Xa ⊕Xc = γ1, Xb ⊕Xd = γ2.

Since the events{Sβ1,γ1,γ2
} for different values of(β1, γ1, γ2)

are disjoint and their union is the entire space, we have

Pr[Pc ⊕ Pd = α] =

∑

β1,γ1,γ2

Pr[Pc ⊕ Pd = α
∣

∣Sβ1,γ1,γ2
] · Pr[Sβ1,γ1,γ2

]. (4)

If the eventSβ1,γ1,γ2
occurs, then

Xc⊕Xd = (Xc⊕Xa)⊕(Xa⊕Xb)⊕(Xb⊕Xd) = γ1⊕β1⊕γ2.

Hence, by the independence assumptions,

Pr
[

Pc ⊕ Pd = α
∣

∣

∣
Sβ1,γ1,γ2

]

= Pr[α
E0−−−−→

∆Kab

β2], (5)

where β2 = γ1 ⊕ β1 ⊕ γ2. Similarly, the three conditions
forming the eventSβ1,γ1,γ2

are independent, and hence

Pr[Sβ1,γ1,γ2
] = Pr

[

α
E0−−−−→

∆Kab

β1

]

· Pr
[

γ1
E1−−−−→

∆Kac

δ

]

·

Pr

[

γ2
E1−−−−→

∆Kac

δ

]

. (6)

Substituting Equations (5) and (6) into Equation (4) yields
Equation (2).

∑

β1⊕β2⊕γ1⊕γ2=0

Pr

[

α
E0−−−−→

∆Kab

β1

]

· Pr
[

α
E0−−−−→

∆Kab

β2

]

·

Pr

[

γ1
E1−−−−→

∆Kac

δ

]

· Pr
[

γ2
E1−−−−→

∆Kac

δ

]

· ≥

≥
∑

β1 ⊕ β2 = 0,
γ1 ⊕ γ2 = 0

Pr

[

α
E0−−−−→

∆Kab

β1

]

· Pr
[

α
E0−−−−→

∆Kab

β2

]

·

Pr

[

γ1
E1−−−−→

∆Kac

δ

]

· Pr
[

γ2
E1−−−−→

∆Kac

δ

]

=

∑

β′

(

Pr

[

α
E0−−−−→

∆Kab

β′

]2
)

∑

γ′

(

Pr

[

γ′ E1−−−−→
∆Kac

δ

]2
)

= (p̂q̂)
2
,

and thus, Inequality (3) follows from Equation (2).

Proposition 1 shows that if̂pq̂ > 2−n/2, then the probability
that the conditionPc ⊕ Pd = α holds, is higher forE than
for a random permutation, i.e., we expect more quartets in
the case ofE. We next compute the optimal choice of the
valueThreshold used in the distinguisher.

2) The Optimal Choice ofThreshold: The optimal value
of Threshold can be found using the Likelihood Ratio test
for the distributions representingPr[Pc ⊕ Pd = α] for E and
for a random permutation. We use the following standard
result:

Proposition 2 ([1], Proposition 1): Consider two distribu-
tions D0 and D1 assuming values in a finite setZ, and a
samplezm of m independent elements ofZ (represented as
a vector inZm). The optimal test for deciding whether the
sample is distributed according toD0 or to D1 is the test
having acceptance region

AD0
= {zm ∈ Zm : LLR(zm) ≥ 0},

where

LLR(zm) =
∑

a∈Z

N(a|zm) log
PrD0

[a]

PrD1
[a]

is the logarithmic likelihood ratio (with the convention that
log(0/p) = −∞ and log(p/0) = ∞), and whereN(a|zm) is
the number of timesa occurs in the sequencezm.

Denotep0 = Pr[Pc ⊕ Pd = α] (wherePc andPd are con-
structed by the boomerang process). We apply Proposition 2,
whereD0 andD1 are the distributions representingPr[Pc ⊕
Pd = α] for E and for a random permutation, respectively.
In this case,Z = {0, 1}, m = M , and both distributions
represent Bernoulli random variables, whereD0 = Ber(p0)
andD1 = Ber(2−n). Hence,

LLR(zM) = N(0|zM) log
1− p0
1− 2−n

+N(1|zM) log
p0
2−n

.

(7)
Since in our distinguisher, the acceptance region of the test is
{zM ∈ ZM : N(1|zM ) ≥ Threshold}, the optimal value of
Threshold is min{k : f(k) ≥ 0}, where

f(k) = (M − k) log
1− p0
1− 2−n

+ k log
p0
2−n

.

A simple computation shows that the optimal value is

Threshold =









− log 1−p0

1−2−n

log p0(1−2−n)
(1−p0)2−n

M









. (8)

3) The Success Probability of the Distinguisher:We use
the following standard definition of the success probability of
a distinguisher (see, e.g., [1]):

Definition 3: Let A be a distinguisher between distribu-
tions D0 and D1, such that forj = 0, 1, the statement
[A(D) = j] corresponds to “D is distributed likeDj”. The
probability of success ofA is

Pr s(A) =
Pr[A(D) = 0|D = D0] + Pr[A(D) = 1|D = D1]

2
.

Since the distinguisher counts the number of successes
amongstM trials, it actually distinguishes between the Bi-
nomial distributionsBin(M,p0) and Bin(M, 2−n). Hence,
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given the valueThreshold (as computed in Equation 8), the
success probability of the distinguisher is given by the formula:

Pr[Success] =
1

2

[

Pr[Bin(M,p0) ≥ Threshold]+

Pr[Bin(M, 2−n) < Threshold]
]

=

=
1

2

[

M
∑

k=Threshold

(

M

k

)

pk0(1− p0)
M−k+

Threshold−1
∑

k=0

(

M

k

)

2−nk(1− 2−n)M−k

]

. (9)

For a large value ofM (like the values usually used in
attacks asM has to be at least1/p0, andp0 is in most cases
very small), the Binomial distributions can be approximated by
the Poisson distributionsPoi(p0M) andPoi(2−nM). Using
this approximation, Equation (9) is simplified to:

Pr[Success] ≈ 1

2

[

1− e−p0M
Threshold−1

∑

k=0

(p0M)k

k!
+

e−2−nM
Threshold−1

∑

k=0

(2−nM)k

k!

]

. (10)

Denotec = Mp0, andx = p0/2
−n. Equation (10) can be

reformulated into:

Pr[Success] ≈ 1

2

[

1−
(

e−c ·
Threshold−1

∑

k=0

ck

k!

)

+

(

e−c/x ·
Threshold−1

∑

k=0

(c/x)k

k!

)]

. (11)

We note that in actual attacks,c usually satisfies1 ≤ c ≤ 100,
while the valuex varies significantly between different attacks.
In Table I, we give the optimal threshold and success rate for
several common values ofc andx.

Whenx tends to infinity, Equation (11) can be simplified,
ase−c/x tends to 1. In other words, whenx ≫ 1, givenM =
c · p−1

0 quartets, a threshold of 1 is sufficient to achieve the
following success rate:

Pr[success] ≈ 1

2

(

1− e−c + 1
)

= 1− e−c

2
.

We note that while for attacks based on linear cryptanalysis,
the probability of success can be approximated using the
Normal distribution (see, e.g., [1], [37]) in attacks basedon
differential cryptanalysis (like the attacks discussed inthis
paper) the Normal approximation may be inaccurate. The
reason for the difference is that while in linear-based attacks,
the value of the measured random variable is big (close to
M/2), in differential-based attacks the value is usually very
small (e.g.,1 ≤ Threshold ≤ 10). For such small values,
the approximation of a random variable assuming only integer

values by a Normal distribution is inaccurate, and hence
approximation using a Poisson random variable is preferable.11

4) Practical Lower Bounds for̂p andq̂: In practical attacks,
the probability of the RK-boomerang distinguisher (given
by Equation 2) cannot be computed. Moreover, even the
computation of the lower bound given by Inequality (3) is
infeasible in most of the cases. Instead, the adversary finds

high-probability differential characteristics

(

α
E0−−−−→

∆Kab

β

)

and
(

γ
E1−−−−→

∆Kac

δ

)

. Then, the adversary computes lower bounds

for p̂ and q̂ by considering only part of the possibleβ′

and γ′ values. For example, she can take into consideration

all the characteristics

(

α
E0−−−−→

∆Kab

β′

)

that coincide with the

characteristic

(

α
E0−−−−→

∆Kab

β

)

in all the rounds except for the

last one, and take all possible values in the output difference
of the last round.

In certain cases, especially when a good differential cannot
be found, the following simple proposition is useful as a
generic lower bound for̂p and q̂.

Proposition 3: Consider related-key differentials through
E0 with input differenceα and key difference∆K. If there
exist only m differencesβ′ such thatPr

[

α
E0−−→
∆K

β′
]

> 0,

then p̂ ≥
√

1/m. Moreover, equality holds if and only if all
them differentials(α −−→

∆K
β′) with non-zero probability have

probability1/m each.
Proof: Recall that the Cauchy-Schwarz inequality

asserts that for any two sequences{a1, a2, . . . , am} and
{b1, b2, . . . , bm} of non-negative numbers, we have

m
∑

i=1

ai · bi ≤

√

√

√

√

m
∑

i=1

a2i ·

√

√

√

√

m
∑

i=1

b2i .

Denote the probabilities of the differentials of the form
(

α
E0−−→
∆K

β′
)

by p1, p2, . . . , pm (ignoring the differentials with

zero probability). Clearly, we have

m
∑

i=1

pi = 1, and p̂ =

√

√

√

√

m
∑

i=1

p2i .

We apply the Cauchy-Schwarz inequality for the sequences
{p1, p2, . . . , pm} and{1, 1, . . . , 1} and obtain

1 =

m
∑

i=1

pi · 1 ≤

√

√

√

√

m
∑

i=1

p2i ·

√

√

√

√

m
∑

i=1

1 = p̂
√
m,

and hencêp ≥
√

1/m, as asserted. Furthermore, since equality
in the Cauchy-Schwarz inequality holds if and only if the
sequences{ai}mi=1 and {bi}mi=1 are proportional (i.e., there

11In [37] the success probabilities of both a linear attack anda differential
attack are approximated using the Normal distribution. Theexperiments
presented in [37] show that the approximation is much more accurate in the
case of linear cryptanalysis. It is possible that using a Poisson approximation
yields a better accuracy in the differential case, as explained above.
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TABLE I

OPTIMAL THRESHOLDS ANDSUCCESSRATES FORCOMMON PARAMETERS

x c = 1 c = 2 c = 3 c = 4 c = 6 c = 8 c = 16
2 1 (61.9%) 2 (66.5%) Imp Imp Imp Imp Imp
4 1 (70.5%) 2 (75.2%) 2 (81.4%) 3 (84.1%) Imp Imp Imp
10 1 (76.8%) 1 (84.2%) 2 (88.2%) 2 (92.3%) 3 (95.7%) 4 (97.4%) Imp
16 1 (78.6%) 1 (87.4%) 2 (89.3%) 2 (94.1%) 3 (96.6%) 3 (98.6%) 6 (99.9%)
100 1 (81.1%) 1 (92.2%) 1 (96.0%) 1 (97.1%) 2 (99.0%) 2 (99.7%) 4 (99.99%)
200 1 (81.4%) 1 (92.7%) 1 (96.8%) 1 (98.1%) 2 (99.1%) 2 (99.8%) 4 (99.995%)
1000 1 (81.6%) 1 (93.1%) 1 (97.4%) 1 (98.9%) 1 (99.6%) 2 (99.8%) 3 (99.999%)
10000 1 (81.6%) 1 (93.2%) 1 (97.5%) 1 (99.1%) 1 (99.8%) 1 (99.9%) 2 (99.9998%)
The entryX(Y%) means that the optimal threshold isX and the success rate isY .
Imp — it is impossible to gather the amount of data required inthis case.

existsc such thatai = c · bi for all i), in our case equality
holds if and only if all thepi’s are equal.

The generic lower bound given by Proposition 3 can be
combined with a “good” differential for part of the rounds.

Proposition 4: Consider related-key differentials through
E0 with input differenceα and key difference∆K. Assume
that there exists a decompositionE0 = E01 ◦ E00, and a
differenceα′, such that:

1) Pr
[

α
E00−−→
∆K

α′
]

= p′, and

2) There exist onlym differencesβ′ such thatPr[α′ E01−−→
∆K

β′] > 0.

Then p̂ ≥ p′
√

1/m.
Proof: We compute a lower bound on̂p by considering

only the characteristics
(

α
E0−−→
∆K

β′
)

for E0 whose restriction

to E00 is
(

α
E00−−→
∆K

α′
)

. By the assumptions, there are onlym

such differentials (ignoring differentials with probability zero),
and the sum of their probabilities isp′. The assertion follows
from the Cauchy-Schwarz inequality by the same argument as
used in the proof of Proposition 3.

Clearly, the same arguments apply also for the computation of
q̂.

C. The Related-Key Rectangle Attack

The transformation of the RK-boomerang attack into the
RK-rectangle attack is similar to the transformation of the
boomerang attack to the rectangle attack in the single-key
model. The RK-rectangle distinguisher involves four different
unknown (but related) keys —Ka, Kb = Ka ⊕ ∆Kab,
Kc = Ka ⊕ ∆Kac, and Kd = Ka ⊕ ∆Kab ⊕ ∆Kac. For
fixed valuesα andδ, the algorithm of the distinguisher is as
follows:

1) ChooseM plaintextsPa, and computePb = Pa⊕α. Ask
for the ciphertextsCa = EKa

(Pa) andCb = EKb
(Pb).

2) ChooseM plaintextsPc, and computePd = Pc⊕α. Ask
for the ciphertextsCc = EKc

(Pc) andCd = EKd
(Pd).

3) Set a counterC to zero.
4) For each of theM2 choices for (Pa, Pc) (and the

corresponding(Pb, Pd)):

a) Check whether both conditionsCa ⊕ Cc = δ and
Cb⊕Cd = δ are satisfied. If yes, increase the value
of the counterC by 1.

5) If C > Threshold, output “The cipherE”. Otherwise,
output “Random Permutation”.

The value ofThreshold will be specified later in this section.
It is easy to see that for a random permutation, the

probability that both conditionsCa⊕Cc = δ andCb⊕Cd = δ
are satisfied is2−2n. The probability that the conditions are
satisfied forE is given in the following proposition:

Proposition 5: Consider a quartet of plain-
texts and their corresponding ciphertexts
((Pa, Ca), (Pb, Cb), (Pc, Cc), (Pd, Cd)) constructed by
the algorithm described above. We have

Pr
[

(Ca ⊕ Cc = δ) ∧ (Cb ⊕ Cd = δ)
]

≈

≈ 2−n
∑

β1⊕β2⊕γ1⊕γ2=0

Pr

[

α
E0−−−−→

∆Kab

β1

]

· Pr
[

α
E0−−−−→

∆Kab

β2

]

·

Pr

[

γ1
E1−−−−→

∆Kac

δ

]

· Pr
[

γ2
E1−−−−→

∆Kac

δ

]

. (12)

In particular,

Pr
[(

Ca ⊕ Cc = δ
)

∧
(

Cb ⊕ Cd = δ
)]

≥ 2−n(p̂q̂)2, (13)

where

p̂ =

√

∑

β′

Pr[α
E0−−−−→

∆Kab

β′]2, andq̂ =

√

∑

γ′

Pr[γ′ E1−−−−→
∆Kac

δ]2.

Proof: The proof is similar to the proof of Proposition 1.
Consider a quartet((Pa, Ca), (Pb, Cb), (Pc, Cc), (Pd, Cd))
constructed by the algorithm. Denote the intermediate val-
ues(E0(Pa), E0(Pb), E0(Pc), E0(Pd)) (where the encryption
is under the respective keys) by(Xa, Xb, Xc, Xd). For all
β1, β2, γ1, we say that the eventSβ1,β2,γ1

occurs, if the
following three conditions are satisfied:

Xa ⊕Xb = β1, Xc ⊕Xd = β2, Xa ⊕Xc = γ1.

Since the events{Sβ1,β2,γ1
} for different values of(β1, β2, γ1)

are disjoint and their union is the entire space, we have

Pr
[(

Ca ⊕ Cc = δ
)

∧
(

Cb ⊕ Cd = δ
)]

=
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=
∑

β1,β2,γ1

Pr
[(

Ca ⊕ Cc = δ
)

∧
(

Cb ⊕ Cd = δ
)∣

∣

∣
Sβ1,β2,γ1

]

·

Pr[Sβ1,β2,γ1
]. (14)

If the eventSβ1,β2,γ1
occurs, then

Xb ⊕Xd = (Xb ⊕Xa)⊕ (Xa ⊕Xc)⊕ (Xc ⊕Xd) =

β1 ⊕ γ1 ⊕ β2.

Hence, by the independence assumption,

Pr
[(

Ca ⊕ Cc = δ
)

∧
(

Cb ⊕ Cd = δ
)∣

∣

∣
Sβ1,β2,γ1

]

=

Pr

[

γ1
E1−−−−→

∆Kac

δ

]

· Pr
[

γ2
E1−−−−→

∆Kac

δ

]

, (15)

whereγ2 = β1 ⊕ γ1 ⊕ β2. Applying again the independence
assumption, we have

Pr[Sβ1,β2,γ1
] = Pr

[

Xa ∈ G−1
Ka

(

α
E0−−−−→

∆Kab

β1

)

∣

∣

∣

(

Xc ∈ G−1
Kc

(

α
E0−−−−→

∆Kab

β2

)

)

∧

(

Xa ⊕Xc = γ1

)

]

·

·Pr
[

Xc ∈ G−1
Kc

(

α
E0−−−−→

∆Kab

β2

)

∣

∣

∣
Xa ⊕Xc = γ1

]

·

Pr [Xa ⊕Xc = γ1] =

= Pr

[

α
E0−−−−→

∆Kab

β1

]

· Pr
[

α
E0−−−−→

∆Kab

β2

]

· Pr(Xa ⊕Xc = γ1).

(16)
SincePa andPc are chosen independently, then

Pr[Xa ⊕Xc = γ1] ≈ 2−n. (17)

Note that for any fixed value ofPa ⊕ Pc and γ1, this
approximation is rather inaccurate. For an ideal cipher, itis
expected that for a fractione−1/2 of the possible values of
γ1, we havePr[Xa ⊕ Xc = γ1] = 0, and for the other
values, the probability is at least2−n+1. However, when the
probability is averaged over many different pairs(Pa, Pc), the
approximation becomes reasonable.

Substituting Equations (15), (16), and (17) into Equa-
tion (14) yields Equation (12). The proof of Equation (13)
given Equation (12) is identical to the derivation of Equa-
tion (3) from Equation (2) in the proof of Proposition 1.

Proposition 5 shows that if̂pq̂ > 2−n/2, then the probability
that the conditions(Ca ⊕ Cc = δ) and (Cb ⊕ Cd = δ) hold
simultaneously, is higher forE than for a random permutation,
and hence Step 2 of the distinguisher makes sense.

The optimal choice ofThreshold and the computation of
the success probability of the distinguisher given the proba-
bility

p0 = Pr
[(

Ca ⊕ Cc = δ
)

∧
(

Cb ⊕ Cd = δ
)]

are very similar to the respective steps for the related-key
boomerang distinguisher presented in Section II-B, and hence
are omitted here. A key recovery attack based on the RK-
rectangle distinguisher is more complex than the respective

RK-boomerang attack, due to the abundance of quartets the
adversary has to examine. We do not describe the key-recovery
algorithm here, and refer the reader to the algorithm of the
rectangle key-recovery attack in [8], that can be easily adapted
to the related-key model. We note that Table I can also be
applied to the case of the rectangle attack, with a different
value for p0, c and x: For the RK-rectangle attack,p0 =
2−n(p̂q̂)2, x = p0/2

−2n, and c is the number of expected
quartets (i.e., givenM =

√

c/p0 pairs).

D. The Independence Assumptions

All statistical cryptanalytic techniques require variousran-
domness assumptions. For example, the construction of differ-
ential characteristics uses the assumption that the cipheris a
Markov cipher(see [6]), which implies that the characteristics
of single rounds are independent of each other and can be
combined. Linear cryptanalysis is based on Matsui’s Piling
up Lemma [31], which essentially asserts that linear approxi-
mations of single rounds are independent. These randomness
assumptions allow a rigorous treatment of the techniques, as
well as better applicability (since the search of differentials and
linear approximations can be done for each round separately).
It is easy to construct examples of ciphers that do not satisfy
the randomness assumptions, which would result in failure of
the differential or the linear attacks.12 However, based on many
experimental results, it is reasonable to assume that most of
the ciphers satisfy the randomness assumptions. Moreover,if
some cipher does not satisfy these assumptions, then this non-
randomness is probably exploitable in some other attack, e.g.,
an impossible differential attack. Nevertheless, it is important
to verify the attacks experimentally whenever possible in order
to assure that the assumptions indeed hold in the specific case
of interest.

The randomness assumption used in the RK-boomerang and
RK-rectangle attacks (i.e., Assumption 1) has two parts. The
second part of the assumption, that essentially asserts that
differentials of different parts of the cipher are independent, is
similar to the standard assumption that the cipher is Marko-
vian, which is used in differential cryptanalysis. However,
the first part of Assumption 1 is relatively stronger than the
assumptions used in differential cryptanalysis.

Differential cryptanalysis is based on the assumption thatfor
any fixed keyK and any (related-key) differential(α → β),
the setGK(α → β) is distributed randomly and uniformly in
the plaintext space.13 In the RK-boomerang and RK-rectangle
attacks, the assumption deals with the distribution ofpairs

of setsof the classGK

(

α
E0−−−→

∆K0

β

)

. We assume that any

two pairs of such sets are independent, i.e., the eventsX ∈
GK

(

γ1
E1−−−→

∆K1

δ

)

andX⊕β1 ∈ GK⊕∆K0

(

γ2
E1−−−→

∆K1

δ

)

are

independent, for any value ofγ1, γ2, β1, δ, andK.

12The flaw in the attacks on SHACAL-1, pointed out in [41], is such an
example for differential cryptanalysis.

13There are cases in which this cannot be satisfied even in a regular cipher
as shown in [18], where the behavior of differential characteristics with
probability lower than2−n is shown to be dependent on the key. This is also
the case for weak key classes, i.e., classes of keys which behave significantly
different than random.
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To show the problem that may exist in the independence
assumptions, we give the following simple artificial example.

Assume that for given K,α, and β, for which
MSB(β) = 0 (i.e., the most significant bit ofβ is 0),

we haveG−1
K

(

α
E0−−−→

∆K0

β

)

= {X |MSB(X) = 1} and

G−1
K⊕∆K1

(

α
E0−−−→

∆K0

β

)

= {X |MSB(X) = 0} (in particular,

it follows that Pr

[

α
E0−−−→

∆K0

β

]

= 1/2). Further assume that

for some γ such thatMSB(γ) = 0 and for someδ,

Pr

[

γ
E1−−−→

∆K1

δ

]

= 1/2. By the independence assumptions, it is

expected that the probability in a RK-boomerang distinguisher

based on the differentials

(

α
E0−−−→

∆K0

β

)

and

(

γ
E1−−−→

∆K1

δ

)

is

at least(1/4)2 = 1/16. However, consider a right quartet
with respect to this distinguisher and denote the interme-
diate encryption values by(Xa, Xb, Xc, Xd). Since Xa ∈
G−1

K

(

α
E0−−−→

∆K0

β

)

, we haveMSB(Xa) = 1, and thus, since

MSB(γ) = 0, necessarilyMSB(Xc) = 1. This implies that

Xc 6∈ G−1
K⊕∆K1

(

α
E0−−−→

∆K0

β

)

, and thus, the actual probability

of the distinguisher is zero!14

This example demonstrates failure of the first part
of Assumption 1 (independence inside the same sub-
cipher). Similarly, the second part of the assumption
fails if we assume that for someK,α, β, γ and δ, we

have G−1
K

(

α
E0−−−→

∆K0

β

)

= {X |MSB(X) = 1} and

GK

(

γ
E1−−−→

∆K1

δ

)

= {X |MSB(X) = 0}, since in this

caseXa cannot be element in bothG−1
K

(

α
E0−−−→

∆K0

β

)

and

GK

(

γ
E1−−−→

∆K1

δ

)

simultaneously.

In [32], Murphy presented several non-artificial examples,
based on a 4-round variant of DES [33] (out of the 16
rounds) and on a 2-round variant of AES [34] (out of the
10 rounds), in which the randomness assumptions fail due
to local inconsistenciesin the transition betweenE0 andE1.
In some of the examples, the boomerang distinguisher fails
completely, while in other examples, its probability is much
higher than the theoretically predicted value. Furthermore, in
several specific cases, deviations from the prediction of the
independence assumptions were detected in “real” ciphers.
Such an example is theladder switch described in [14],
wherehigher probability for the RK-boomerang distinguisher
is obtained using dependence between the differential usedin
E0 and the differential used inE1.15

However, these examples are still not sufficiently
representative. As for the examples discussed in [32],

14Actually, the probability of the distinguisher may be higher due to

differentials of the form

(

α
E0

−−−→
∆K0

β′

)

for β′ 6= β. However, if there are no

high-probability differentials of this form, the probability of the distinguisher
is still significantly lower than the predicted value1/16.

15The cases of such dependence were recently formalized in thesandwich
framework [19], and thus, we refrain from analyzing them in this paper.

they can be misleading due to the small number of rounds
in the analyzed variant. In a RK-boomerang attack on an
entire cipher (or on a variant with a significant number
of rounds), the overall probability of the distinguisher is
an average taken over many possible differentials, while
in the reduced-round variant, only a small subset of the
differentials is considered. It is possible that while the
reduced-round attack does not satisfy the independence
assumption, the full attack does satisfy it, since the deviations
from independence for different characteristics cancel each
other. As for theladder switchand related examples, they
all refer to cases in which there is a clear dependence
between the differential used inE0 and the differential
used inE1 (e.g., the output difference of theE0-differential
is equal to the input difference of theE1-differential in
one half of the state in a Feistel network), and thus, they
may not apply to cases where such dependence does not exist.

Moreover, in the RK-boomerang and RK-rectangle
attacks, there are several mechanisms which may overcome
dependence problems. The first is the fact that in the attack
we count over many differentials (allβ1, β2, γ1, γ2 such
that β1 ⊕ β2 ⊕ γ1 ⊕ γ2 = 0), which ensures that even if
there is a problem in some combination of differentials, it is
expected that other combinations still succeed. The second
one is the fact that four different keys are used (in the
case∆K0 6= ∆K1),and thus, even if there is a dependence
between the differentials, it may be countered by the different
keys.

In view of the above, it appears that the only possible way
to decide whether Assumption (1) makes sense in realistic
attacks on block ciphers is to check it experimentally, like
the way in which the Markov assumption was checked for
differential cryptanalysis. The best possibility would beto test
the validity of the assumption for each specific cipher and each
specific choice of differentials, but this is usually impossible,
due to the high complexity of the attacks.16 Therefore, we
chose a single block cipher – KASUMI – and performed
an extensive experimental analysis of various RK-boomerang
attacks on its reduced-round variants. Our analysis, presented
in Section III, suggests that when averaged over different keys,
the probability assumptions do hold, unless there is a local
inconsistency between the differentials that can be detected
manually. We thus conclude that it is reasonable to assume
that the assumptions hold in realistic scenarios; however,it
will be of course beneficial to further check the validity of the
assumptions in other block ciphers.

E. Generalizations of the Related-Key Boomerang and
Related-Key Rectangle Attacks

In this section we briefly present two generalizations of the
basic RK-boomerang and RK-rectangle attacks.

16We note that for the rectangle attack such verification is inherently
impossible: the data complexity of the attack is lower-bounded by2n/2, and
thus, its verification is infeasible for any block cipher with block size of 128
bits or more, like AES.
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1) Using Structures of Keys:The related-key differentials
used in the attack are usually based on fixedsubkeydiffer-
ences. If the key schedule of the attacked cipher is linear,
such differences can be achieved by choosing the appropriate
key difference. However, if the key schedule is nonlinear, a
fixed key difference does not ensure fixed subkey differences.
Instead, the adversary can apply differential cryptanalysis to
the key schedule. By studying the differential properties of
the key schedule, the adversary can find a key difference that
leads to the required subkey differences with a relatively high
probability. Then, the adversary can repeat the attack for many
pairs of related-keys and expect that in one of the pairs, the
required subkey differences are satisfied and the basic RK-
boomerang/rectangle attack can be applied.

Furthermore, we observe that the number of keys used in the
attack can be reduced by usingstructures of keys. Instead of
finding a single key difference leading to the required subkey
differences with a high probability, the adversary can find
many such key differences (possibly with lower probabilities).
Then, the adversary can use structures of keys such that
each structure contains many pairs of keys corresponding to
different “key characteristics”, and thus reduce the number of
keys required for the attack. Such an approach is demonstrated
in the RK-rectangle attack on AES-256 in [9].

2) Generalizing the Key Relation:While XOR relations
are common and inherent to the majority of differential-based
related-key attacks, in some cases other key relations are more
suitable (either due to the environment of the attack or in order
to obtain higher probabilities of the differentials). The RK-
boomerang and RK-rectangle attacks can be applied almost
without a change when the XOR key relations are replaced by
any relation satisfying a condition specified below.

Denote the relation between the keysK and K ′ by
R(K,K ′). We note thatR can be any relation which is
symmetric, and covers all keys. At the same time, we recall the
fact that the more complex the relationR is, the applicability
of the related-key attack may be affected. For example, in
the basic RK-boomerang and RK-rectangle attacks we can set
R(K,K ′) = K ⊕K ′.

The RK-boomerang and RK-rectangle attacks can be ap-
plied whenever the key relation satisfies the following condi-
tion:

∀(Ka,Kb,Kc,Kd),
(

R(Ka,Kc) = R(Kb,Kd)
)

=⇒
(

R(Ka,Kb) = R(Kc,Kd)
)

. (18)

Condition (18) ensures that in each of the sub-ciphers, the
same key relation is used in both differentials. For example,
for XOR differences

(Ka ⊕Kc = Kb ⊕Kd) =⇒ (Ka ⊕Kb = Kc ⊕Kd),

and hence the condition holds.
Condition (18) is satisfied for a wide variety of key rela-

tions, including additive differences (e.g.,R(K,K ′) = (K −
K ′) mod 2n) and rotations. On the other hand, the condition
does not hold if the relation used in the first sub-cipher (i.e.,
between(Ka,Kb) and(Kc,Kd)) and the relation used in the

second sub-cipher (i.e., between(Ka,Kc) and (Kb,Kd)) are
of different classes (e.g., XOR differences in the first sub-
cipher and modular differences in the second sub-cipher).

We note that the basic RK-boomerang and RK-rectangle
attacks can be extended to use different valuesα, α′ in the
related-key differentials ofE0, and δ, δ′ in the related-key
differentials ofE1. Similarly, the attack can use distinct key
differences∆K0,∆K ′

0 and∆K1,∆K ′
1 in the differentials of

E0 andE1, respectively. This allows to extend Condition (18)
to the following:

Proposition 6: The RK-boomerang attack can be ap-
plied with two key relationsR1, R2, as long as for ev-
ery quadruple(Ka,Kb,Kc,Kd) the relationsR1(Ka,Kb),
andR2(Ka,Kc), R2(Kb,Kd) imply the relationR1(Kc,Kd).
The RK-rectangle attack can be applied if the relations
R1(Ka,Kb), R1(Kc,Kd) andR2(Ka,Kc) imply the relation
R2(Kb,Kd).

Finally, even if the condition of Proposition 6 is not satisfied,
in some cases the attack can be still applied using structures
of keys, as described earlier.

F. Comparison With Other Related-Key Attacks

For any new technique constructed as a combination of
existing techniques, a natural question to ask is whether there
are cases in which the combined attack is better than each
of its components taken separately. In this section we briefly
describe several important cases in which the RK-boomerang
and RK-rectangle attacks are expected to outperform each
of their components. Concrete examples of the advantage
of related-key boomerang and rectangle attacks over other
attack techniques are the attack on the full AES [14] and the
practical-time attack on KASUMI [19].

The main advantage of the related-key differential attacks
over ordinary differential attacks is the ability of the adversary
to use the subkey differences to cancel the plaintext difference
in the input of one (or more) of the non-linear parts of the
cipher. As a result, the adversary obtains one (or more) rounds
in the differential that hold with probability 1, allowing the
extension of the differential by one (or more) rounds.

In the RK-boomerang and RK-rectangle attacks, the adver-
sary can enjoy this advantage twice, once in each of the sub-
ciphers. As a result, the overall distinguisher can be extended
by two (and in some cases even more) rounds. This is a signifi-
cant advantage of the RK-boomerang/rectangle attack over all
other differential-based related-key attacks (e.g., related-key
differential attack, related-key impossible differential attack
and related-key differential-linear attack) that can enjoy the
advantage of the related-key model only once.

The advantage of gaining a single additional round (or two
rounds) to the distinguisher is significant in ciphers in which
the number of rounds is small and each round function is rela-
tively strong. Hence, the gain of the RK-boomerang/rectangle
attack is expected to be significant in ciphers like AES [34]
and KASUMI [38].

Another property of the cipher required for the success of
RK-boomerang and RK-rectangle attacks is simplicity of the
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key schedule. The basic version of the attack is applicable only
to ciphers with a linear key schedule, but using structures of
keys, the attack can be applied to ciphers with a nonlinear key
schedule as well. However, if the key schedule of the cipher
is complex enough and does not have “good” differential
properties, then the number of keys required for the attack
becomes infeasibly large.

Summarizing the discussion above, the RK-boomerang and
RK-rectangle attacks are expected to be successful if the
attacked cipher has the following properties:

• A small number of relatively strong rounds.
• A relatively simple key schedule.

The class of ciphers satisfying these properties includes
widely used ciphers such as AES [34], KASUMI [38], and
IDEA [30]. These three ciphers can be indeed attacked effi-
ciently using the RK-boomerang/rectangle attack technique.

III. E XPERIMENTAL ANALYSIS OF THE RELATED-KEY

BOOMERANG ATTACK : A CASE STUDY

In this section we present experimental analysis of the RK-
boomerang attack, in the specific case of the block cipher
KASUMI [38]. First we describe the structure of KASUMI
and the differentials used in the RK-boomerang attacks on KA-
SUMI presented in [10], [19]. Then, we check experimentally
a RK-boomerang distinguisher of 6-round KASUMI, in which
the probability of both differentials is relatively high (and thus,
performing an extensive experiment is an easy task). Finally,
we check RK-boomerang distinguishers of 7-round KASUMI
that are similar to the distinguishers used in the attacks onthe
full KASUMI presented in [10], [19].

We note that our choice of KASUMI is motivated by several
reasons:

• It is one of the most widely used ciphers that were
attacked by the RK-boomerang technique.

• The distinguisher used in the attacks on the full KASUMI
has probability of2−38 which allows to verify it experi-
mentally with a big precision.

• There exists a large set of distinguishers that are similar to
the original distinguisher used in [10], [19]. This allows
to check all of them and find out which ones lead to local
inconsistencies.

A. The KASUMI Block Cipher

KASUMI [38] is a 64-bit block cipher with 128-bit keys,
and a recursive Feistel structure, following its ancestor,
MISTY1. The cipher has eight Feistel rounds, where each
round is composed of two functions: theFO function which
is in itself a 3-round 32-bit Feistel construction, and theFL
function that mixes a 32-bit subkey with the data in a linear
way. The order of the two functions depends on the round
number: in the even rounds theFL function is applied first,
and in the odd rounds theFO function is applied first.

The FO function also has a recursive structure: itsF -
function, calledFI, is a four-round Feistel construction. The
FI function uses two non-linear S-boxesS7 andS9 (where
S7 is a 7-bit to 7-bit permutation andS9 is a 9-bit to 9-bit

TABLE II

KASUMI’ S KEY SCHEDULE ALGORITHM

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1KIi,2KIi,3
1 K1 ≪ 1 K′

3
K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5
K′

4
K′

8

2 K2 ≪ 1 K′

4
K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6
K′

5
K′

1

3 K3 ≪ 1 K′

5
K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7
K′

6
K′

2

4 K4 ≪ 1 K′

6
K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8
K′

7
K′

3

5 K5 ≪ 1 K′

7
K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1
K′

8
K′

4

6 K6 ≪ 1 K′

8
K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2
K′

1
K′

5

7 K7 ≪ 1 K′

1
K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3
K′

2
K′

6

8 K8 ≪ 1 K′

2
K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4
K′

3
K′

7

(X ≪ i) — X rotated to the left byi bits

permutation), and accepts an additional 16-bit subkey, that is
mixed with the data. In total, a 96-bit subkey entersFO in
each round — 48 subkey bits are used in theFI functions
and 48 subkey bits are used in the key mixing stages.

The FL function accepts a 32-bit input and two 16-bit
subkey words. One subkey word affects the data using the
OR operation, while the second one affects the data using the
AND operation. We outline the structure of KASUMI and its
parts in Fig. 2.

The key schedule of KASUMI is very simple and the
subkeys are derived from the key linearly. The 128-bit key
K is divided into eight 16-bit words:K1,K2, . . . ,K8. Each
Ki is used to computeK ′

i = Ki ⊕ Ci, where theCi’s are
fixed constants (we omit these from the paper as they have no
effect on our results). We denote the bits of the subkeys by
Ki = (K15

i ,K14
i , . . . ,K0

i ), whereK15
i is the most significant

bit.
In each round, eight words are used as the round subkey

(up to some in-word rotations). Therefore, the 128-bit subkey
of each round is linearly dependent on the secret key in a very
simple way. We give the key schedule algorithm of KASUMI
in Table II.

B. Related-Key Differentials of KASUMI

The RK-boomerang distinguishers we examine are based
on three related-key differentials: a 4-round differential for
rounds 1–4, and 3-round differentials for rounds 4–6 and
rounds 5–7.

1) A 4-Round Related-Key Differential for Rounds 1–4:
The differential of rounds 1–4 of KASUMI is an extension by
one round of the related-key differential presented in [16]. The
input difference of this differential isα = (0x, 0020 0000x),
and the key difference is∆Kab = (0, 0, 1x, 0, 0, 0, 0, 0), i.e.,
only the third key word has a non-zero difference∆K3 =
0001x. The first three rounds of the characteristic have prob-
ability 1/4, and due to the Feistel structure, theα difference
can propagate to at most232 differences after round 4. Hence,
by Proposition 4, we have

p̂ ≥ 1

4
·
√
2−32 = 2−18.

We outline the differential in Figure 3. Along with this
differential, we consider a family of 15 similar differen-
tials, in which the key difference∆Kab assumes all values
in which only a single bit in∆K3 is non-zero, and the
plaintext difference is shifted accordingly. Examples of such
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Fig. 2. Outline of KASUMI
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Fig. 3. 4-Round Related-Key Differential Characteristic of KASUMI
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differentials are:α′ = (0x, 0010 0000x) with ∆Kab =
(0, 0, 8000x, 0, 0, 0, 0, 0), and α′′ = (0x, 0040 0000x) with
∆Kab = (0, 0, 2x, 0, 0, 0, 0, 0).

It was further observed in [16] that the probability of these
differentials can be increased by controlling two plaintext bits.
If the adversary assigns one bit of the plaintexts to be one (thus
fixing one bit of the output of the OR operation inFL1) and
one bit of the plaintexts to be zero (thus fixing one bit of the
output of the AND operation inFL1), then the probability
of the differential described in [16] is increased to1/2. As a

result, for our 4-round differentials we havêp ≥ 2−17.17

2) 3-Round Related-Key Differential for Rounds 5–7 :
The 3-round related-key differential used in rounds 5–7 is
the 3-round differential of [16] shifted by four rounds. The
key difference is∆Kac = (0, 0, 0, 0, 0, 0, 1x, 0), and the data
differences areγ = (0x, 0020 0000x) → (0x, 0020 0000x) =
δ. Since we use a single differential (and not count over other
possibilities), we have

q̂ = q = 1/4.

As before, along with this differential we consider 15 similar
differentials in which the key difference in∆K7 is rotated,
and the data differences are rotated correspondingly.

3) 3-Round Related-Key Differential for Rounds 4–6.:
In rounds 4–6 we use conditional related-key differential
characteristics [3], i.e., characteristics that depend onsome
unknown key bit.

Let δ0 = (0010 0000x, 0x), δ1 = (0010 0040x, 0x), and
δ′ = (0001 0000x, 0x). If K4

5 = 0 (i.e., the fifth least
significant bit ofK5 equals zero), we use the two differentials
δ0 → δ0 and δ0 ⊕ δ′ → δ0. If K4

5 = 1, we use the
differentialsδ1 → δ1 andδ1 ⊕ δ′ → δ1. The key difference of
all the characteristics is∆Kac = (0, 0, 0, 0, 0, 1x, 0, 0). Each
of the four characteristics has probability1/4, if K4

5 has the
corresponding value.

17Note that if one of the differentials is used in the backward direction, the
lower bound remains2−18 .
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For example, we describe the difference propagation in
the backward direction of the characteristicsδ0 → δ0 and
δ0 ⊕ δ′ → δ0. Consider a pair with ciphertext differenceδ0 =
(0010 0000x, 0x). In round 6 the zero difference is preserved
with probability 1/2 (i.e., the key difference is cancelled
with probability 1/2). In round 5, we need a difference of
0010 0000x afterFL5, which is then cancelled with the key
difference inKO5,1. If K4

5 = 0, then this is indeed the case
with probability 1. In round 4, the zero difference is preserved
by the FO4 function. As in round 6, it has probability 1/2
to be preserved also byFL4, and probability 1/2 to evolve
into δ0 ⊕ δ′. Thus, the input difference of the differential
characteristic is eitherδ0 or δ0⊕δ′, with probability1/4 each.

In the attack, we apply the distinguisher twice, once with
each pair of characteristics, and expect that in one of the
applications, both differentials hold with probability1/4.18 For
that application, we have

q̂ =
√

(1/4)2 + (1/4)2 = 1/
√
8.

We note that the four conditional differential characteristics
we use can be rotated along with the key difference, to produce
15 similar sets of differential characteristics with the same
probabilities.

C. First Experiment – Related-Key Boomerang Distinguisher
on 6-Round KASUMI

In this subsection we examine a RK-boomerang distin-
guisher for 6-round KASUMI that we presented in [10]. Let
E0 be rounds 1–3, and letE1 be rounds 4–6. InE0 we use the
differential α = (0x, 0020 0000x) → (0x, 0020 0000x) with
key difference∆Kab = (0, 0, 1, 0, 0, 0, 0, 0). As shown in Sec-
tion III-B.1, the probability of the differential in the forward
direction is 1/2 (after adding constraints on the plaintexts),
and the probability in the backward direction is 1/4. InE1,
we use the two pairs of differentials(δ0 → δ0, δ0 ⊕ δ′ → δ0),
and (δ1 → δ1, δ1 ⊕ δ′ → δ1), both with key difference
∆Kac = (0, 0, 0, 0, 0, 1, 0, 0). As shown in Section III-B.3,
one of the pairs of differentials yields overall probability of
q̂ = 1/

√
8 (where the “successful” pair depends on the value

of the key bitK4
5 ).

The attack essentially performs two standard related-key
boomerang distinguishers, one for each possible value of the
key bit K4

5 . To reduce the data complexity of the attack,
we share some of the chosen plaintexts between the two
distinguishers. The attack algorithm requires four keys:

Ka; Kb = Ka⊕∆Kab; Kc = Ka⊕∆Kac; Kd = Kb⊕∆Kac.

The algorithm of the distinguisher is as follows:
1) ChooseM pairs of plaintexts(Pa,i, Pb,i) (for 1 ≤ i ≤

M ) such thatPa,i⊕Pb,i = α. For each pair, ask for the
encryption ofPa,i andPb,i under the keysKa andKb,
respectively, and denote the corresponding ciphertexts
by Ca,i andCb,i.

2) For 1 ≤ i ≤ M , calculateCc,i = Ca,i ⊕ δ0 andCd,i =
Cb,i ⊕ δ0. For all i, ask for the decryption ofCc,i and

18We note that the knowledge of the “successful” pair of characteristics
reveals the value of the key bitK4

5
.

Cd,i under the keysKc andKd, respectively, and denote
the corresponding plaintexts byPc,i andPd,i.

3) For 1 ≤ i ≤ M , calculateCe,i = Ca,i ⊕ δ1 andCf,i =
Cb,i ⊕ δ1. For all i, ask for the decryption ofCe,i and
Cf,i under the keysKc andKd, respectively, and denote
the corresponding plaintexts byPe,i andPf,i.

4) Check whetherPc,i ⊕ Pd,i = α and count the number
of such occurrences.

5) Check whetherPe,i ⊕ Pf,i = α and count the number
of such occurrences.

6) If one of the two counters from Steps 4 and 5 is greater
than zero, then output “6-Round KASUMI”. Otherwise,
output “Not 6-Round KASUMI”.

The total probability of the boomerang process of this
distinguisher is19 (1/2) · (1/4) · (1/

√
8)2 = 1/64, either for

quartets counted in Step 4 or for quartets counted in Step 5.
Thus, forM = 128 we expect to find two right quartets in
Step 4 or in Step 5 (either for the quartets(Pa,i, Pb,i, Pc,i, Pd,i)
or for the quartets(Pa,i, Pb,i, Pe,i, Pf,i)). Moreover, by the
analysis presented in Section II, it is expected that the number
of right quartets is distributed like a Poisson random variable
Poi(2).

In the experiment, we sampled 10,000 random keys, and
ran the above distinguisher withM = 128. By the analysis
presented above, we expected that in 86.5% of the experiments
there will be at least one right quartet. Our experiments
revealed that in 87% there was at least one such quartet.
Moreover, the distribution of the numbers of right quartets
obtained in the experiments is indeed very close to thePoi(2)
distribution. A comparison between the experimental results
and the theoretical prediction is outlined in Table III.

This extensive experiment along with the experimental
verification of the high-probability 7-round distinguisher used
in [19] (see Section III-D), demonstrate the validity of the
probability assumptions in cases where the probabilities of
both differentials used in the distinguishers are high. However,
it will be beneficial to add more empirical evidence by
checking experimentally other boomerang-type distinguishers,
such as the boomerang distinguisher of the full COCONUT98
presented in [40] in which the probability of each of the
differentials is close to1/4.

D. Second Experiment – Related-Key Boomerang Distinguish-
ers on 7-Round KASUMI

The basic RK-boomerang distinguisher on 7-round KA-
SUMI one may consider is the distinguisher used in [10], that
is based on the main differentials presented in Sections III-
B.1 and III-B.2. Let ∆Kab = (0, 0, 1x, 0, 0, 0, 0, 0) and
∆Kac = (0, 0, 0, 0, 0, 0, 1x, 0), and letKa, Kb = Ka⊕∆Kab,
Kc = Ka ⊕∆Kac, andKd = Kc ⊕ ∆Kab be the unknown
related keys. In rounds 1–4, the related-key differential is the
one presented in Section III-B.1 that has an input difference
α = (0x, 0020 0000x), a key difference∆Kab and for which
p̂ = 2−17 in the forward direction (due to fixing plaintext bits
properly, as explained in Section III-B.1) and̂p = 2−18 in the

19Recall that the first differential has probability 1/2 for the pair (Pa, Pb)
due to fixing the plaintexts correctly.
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TABLE III

THE NUMBER OF FOUND QUARTETS IN 10,000 EXPERIMENTS

Quartets 0 1 2 3 4 5 6 7 8 9 10
Experiments 1302 2695 2692 1879 907 348 127 27 9 4 0

Poisson (mean = 2) 1353.3 2706.7 2706.7 1804.5 902.2 360.9 120.3 34.4 8.6 1.9 0.4

backward direction. In rounds 5–7, the related-key differential
is the one presented in Section III-B.2 that has an output
differenceδ = (0x, 0020 0000x), a key difference∆Kac and
for which q̂ = 2−2.

However, as was observed in [19], in this distinguisher there
is a clear dependence between the differentials used inE0

and inE1. Indeed, it is easy to see that these differentials are
equal in the entire 32-bit value that enters theF -function of
round 4. As the detailed (and experimentally verified) analysis
presented in [19] shows, this leads to a much higher probability
of the distinguisher than predicted.

In order to avoid this dependence issue, we consider the
255 distinguishers that can be obtained from the original one
by replacing one of the differentials (or both of them) with
one of their 15 rotated variants.

1) Checking for local inconsistencies:First we examine
whether the distinguisher contains a local inconsistency.A
natural candidate for such inconsistency is round 4, since it is
the only round in which one of the differentials has a very low
(i.e., “random”) probability, and since it lies in the transition
betweenE0 and E1. In order to concentrate on round 4,
we compute the probability of the distinguisher in a slightly
different way, that is clearly equivalent to the computation
presented in Section II.

We divide the differential of rounds 1–4 into a differential
of rounds 1–3 with probability2−2 (or 2−1 in the forward
direction), and round 4 in which we assume the worst-case as-
sumption that all differentials are equiprobable and countover
all the differentials. In order to isolate round 4, we compute the
probabilities of the differentials in all other rounds, andonly
then compute the “cost of the transition” in round 4.20 By the
theoretical analysis, the probability of the distinguisher (for the
differentials we examine) is:2−17 · 2−2 · 2−2 · 2−18 = 2−39.
This is equivalent to the claim that given the differentials
in rounds 1–3 and 5–7 (whose total probability is2−7), the
cost of the transition is2−32. This fact is the one that needs
verification.

Formally, let(Pa, Pb, Pc, Pd) be a plaintext quartet, denote
the corresponding ciphertexts by(Ca, Cb, Cc, Cd), and denote
the intermediate values before round 4 by(Xa, Xb, Xc, Xd).
Assume that(Pa, Pb) is a right pair for the differentialα → β
of rounds 1–3, and that(Ca, Cc), (Cb, Cd) are right quartets
with respect to the differentialγ → δ of E1. Due to the Feistel
structure of KASUMI, this implies that the right halves of
Xa, Xb, Xc, andXd satisfy:

XR
a ⊕XR

b ⊕XR
c ⊕XR

d = 0,

20We note that this kind of computation is performed in [19] in order to
compute the probability of the distinguisher in cases of dependence between
the differentials.

and thus,
XR

c ⊕XR
d = XR

a ⊕XR
b = βR.

We would like to check whether the event that indicates that
the transition in the middle occurs:

XL
a ⊕XL

b ⊕XL
c ⊕XL

d = 0,

holds with the random probability of2−32, as predicted by the
independence assumptions.

This check can be performed by examining solely the
functionFO4. Indeed, since theFL functions are linear (for
a fixed key), the conditionXL

a ⊕ XL
b ⊕ XL

c ⊕ XL
d = 0

is equivalent to the condition that the XOR of the four
intermediate values after the functionFO4 is zero.

The functionFO4 (depicted in Figure 4) is a 3-round Feistel
construction whose 32-bit values after roundj are denoted by
(Xj

a, X
j
b , X

j
c , X

j
d). The functionsFI4,1, F I4,2, andFI4,3 are

4-round Feistel constructions, and the 16-bit outputs ofFI4,j
are denoted by(Ija, I

j
b , I

j
c , I

j
d).

First, we observe that in all 255 pairs of differentials we
consider, we haveβRR = γLR = 0 (whereβRR denotes the
16 rightmost bits ofβ, andγLR denotes the right 16 bits of
the left half ofγ). Hence, if(Pa, Pb), (Ca, Cc), and(Cb, Cd)
are right pairs w.r.t. the respective differentials, as assumed,
then we have

XRR
a = XRR

b = XRR
c = XRR

d . (19)

Moreover, since in the second round ofFO4, there is no key
difference inside the key pairs(Ka,Kb) and (Kc, Dd), we
have

(I2a = I2b ) ∧ (I2c = I2d). (20)

Thus,

X3R
a ⊕X3R

b ⊕X3R
c ⊕X3R

d = I1a ⊕ I1b ⊕ I1c ⊕ I1d . (21)

Therefore, if we show that for some pair of differentials,
the assumption that(Pa, Pb), (Ca, Cc), and(Cb, Cd) are right
pairs implies

I1a ⊕ I1b ⊕ I1c ⊕ I1d 6= 0, (22)

then the probability of the transition in the middle, and thus
also of the entire distinguisher, is zero.

Now, we consider the functionFI4,1. Here we have two
possibilities:

1) The unique non-zero difference bits inβRL and γLL,
are in the same half of the input toFI4,1.

2) The non-zero difference bits are not in the same half of
the input toFI4,1. Without loss of generality, inβRL the
non-zero bit is in the left half, and inγLL, the non-zero
bit is in the right half.
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Fig. 4. Example of a Failing Related-Key Boomerang
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In order to reduce the amount of technicalities, we check
all the 2 · 63 = 126 distinguishers that correspond to the
second possibility. The analysis of the remaining differentials
is, presumably, similar.

By the structure of the pairs of differentials that belong to
the second class, the corresponding quartets of inputs toFI4,1
(divided into the two “halves”) are of the form:

(x, y, x, y), (z, z, w, w),

wherex, y, z, w are mutually distinct (see Figure 4). It follows
that the inputs to the S-boxS9 in the first round ofFI4,1 are
of the form(x, x, y, y), and the inputs to the S-boxS7 in the
second round ofFI4,1 are of the form(z, w, z, w). Hence,
the corresponding outputs are of the forms(x′, x′, y′, y′) and
(z′, w′, z′, w′), respectively. Since both these quadruples are
balanced(i.e., sum up to zero), and there is no key difference
in FI4,1, this implies that in both halves of the intermediate
value after the key addition, the quadruples are balanced.
Therefore, due to the 4-round Feistel structure, if for somepair
of differentials, the outputs of the S-boxS9 in the third round
of FI4,1 areunbalanced, this implies that the right half of the
output ofFI4,1 is unbalanced, thus proving that inequality (22)
holds and that the distinguisher fails.

Consider the four inputs to the S-boxS9 in the third round
of FI4,1. By the Feistel structure, they are of the form

(x′, x′, y′, y′)⊕(z, w, z, w)⊕(KI4,1,2,KI4,1,2,KI4,1,2,KI4,1,2),

and hence, they are balanced.
The balancedness assures that the XOR of all values is

indeed zero. At the same time, the values themselves can
be distinct (i.e., whenx′ ⊕ z 6= y′ ⊕ w), then four different
values enterS9. As a design criteria,S9 is analmost perfect
non-linear permutation, a property which implies that the four
outputs are necessarily unbalanced, which lead to the failure
of the distinguisher. These four inputs are not distinct only
if x′ ⊕ z = y′ ⊕ w, or equivalently,x′ ⊕ y′ = z ⊕ w. By

the definition ofx′, y′, this can happen only if the differential
x ⊕ y → z ⊕ w is possible through the S-box S9. This leads
us to our first conclusion:

Conclusion 1: Denote the basic differentials of rounds 1–
3 and 5–7 used in the distinguisher byα → β and γ → δ,
respectively. Let the only nonzero bit inβRL be bit7+ i, and
let the only nonzero bit inγLL bej. If the differentialei → ej
(whereei is the 9-bit vector in each the only nonzero position
is the ith position) is impossible for the S-box S9, then the
entire distinguisher fails.

Now assume that the four inputs to the S-boxS9 in the
third round ofFI4,1 are not distinct. In such case, the right
half of the output ofFI4,1 is balanced. Hence, if the output
of S7 in the fourth round ofFI4,1 is unbalanced, then the left
half of the output of the entireFI4,1 is unbalanced, and the
distinguisher fails.

Consider the four inputs to the S-box S7 in the fourth round
of FI4,1. By the Feistel structure, they are of the form

(z′, w′, z′, w′)⊕ (x′, x′, y′, y′),⊕(z, w, z, w)⊕
(KI4,1,1,KI4,1,1,KI4,1,1,KI4,1,1),

and hence, they are balanced. As in the previous case, if
they are distinct, and sinceS7 is an almost perfect non-
linear permutationas well, the four outputs are necessarily
unbalanced, and the distinguisher fails. On the other hand,
since by the assumption,x′⊕ z = y′⊕w, these inputs are not
distinct only if z′ ⊕ x′ ⊕ z = w′ ⊕ x′ ⊕ w, or equivalently,
z′ ⊕ w′ = z ⊕ w. However, by the definition ofz′, w′, this
can happen only if the differentialz⊕w → z⊕w is possible
through the S-box S7. This leads us to the second conclusion:

Conclusion 2: Denote the basic differentials of rounds 1–
3 and 5–7 used in the distinguisher byα → β and γ → δ,
respectively. Let the only nonzero bit inβRL be bit7+ i, and
let the only nonzero bit inγLL bej. If the differentialej → ej
(whereej is the 7-bit vector in each the only nonzero position
is the ith position) is impossible for the S-box S7, then the
entire distinguisher fails.
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We checked exhaustively all 126 pairs of differences(β, γ)
that belong to the class we study, and found out that the
only pairs of differences that satisfy the restrictions of the
propositions are:

β = (0x, 0001 0000x), γ = (0x, 0400 0000x),

and:

β = (0x, 0040 0000x), γ = (0x, 0080 0000x),

with appropriately chosen key differences (and the pairs of
differentials obtained from them by interchanging the roles of
β andγ).

This means that out of the 126 checked pairs of differentials,
only 4 can work theoretically! But on the other hand, as
demonstrated above, an adversary can check the local incon-
sistencies manually, and then choose one of the “possible”
pairs of differentials.

2) Verifying the transition of round 4 experimentally:
As a second step in our analysis, we choose one of the
four “possible” differentials, and verified whether there are
no further inconsistencies. An easy analysis shows that such
inconsistencies can occur only insideFI4,3, and the inputs
of the round undergo too many changes before that point, so
that the values cannot be followed easily. Instead, we observe
that if the boomerang passes the filter ofFI4,1 successfully,
then insideFI4,1, the differentialsei → ej throughS9 and
ej → ej throughS7 are satisfied. SinceS9 andS7 arealmost
perfect nonlinear permutations, there is only a single pair of
inputs toS9 that satisfies the differentialei → ej , and there is
only a single pair of inputs toS7 that satisfies the differential
ej → ej . This allows us tochoosethe four inputs to round 4
such that the functionFI4,1 is passed “for free”.

At this stage, we were ready to perform an experiment. We
fixed the quartet(Xa, Xb, Xc, Xd) to be one of the quartets
for whichFI4,1 is passed for free, and checked the probability
of the condition

XL
a ⊕XL

b ⊕XL
c ⊕XL

d = 0,

when averaged over random values of the subkeys used in
round 4.

The result of the experiment was that on average, the
probability was indeed2−16 as expected (since another2−16

are “gained” by fixing the inputs), which proves that for
the “correct” choice of differentials, the distinguisher does
work. On the other hand, the experiment revealed that the
probabilities depend quite heavily on the exact choices of
the subkeys, which leads to a conjecture that the overall
probability of the distinguisher is also key-dependent.

3) The full 7-round verification experiment:After verifying
that the transition in the fourth round is feasible, we reached
the point that we were ready to conduct a verification of the
full 7-round distinguisher. We ran a full experiment simulat-
ing the RK-boomerang distinguisher for 7-round KASUMI,
expecting that the probability of obtaining a right quartetis
2−39.

For each of the 215 keys we have checked, we took239

quartets, and counted how many of them were right quartets.

The results of the experiment are given in Table IV that lists
how many right quartets were found.

It is interesting to note that only in 35 out of the 215
experiments we encountered right quartets. This may seem
like a failure of the entire boomerang approach, but a further
analysis shows that this is not the case. First of all, the
distinguisher was found to be useful for about one out of six
keys. These keys may be considered as a set of weak keys
(i.e., a weak key class) of the cipher, but given its size, this
set cannot be disregarded.

Moreover, we note that for the keys for which right quartets
were found, significantly more quartets than expected were
found. Namely, it seems that while there are keys for which
the distinguisher fails, for the keys for which it works, it
works significantly better than predicted. For comparison,
the probability of an experiment that follows the Poisson
distribution with mean value of 1 to obtain 39 “successes”
is e−39

39! ≈ 2−153.8.
We also note that given the restrictions on the computational

power we had at our disposal (obtaining the required215 ·239
quartets, which are equivalent to248.7 encryptions using the
official KASUMI reference implementation took over a month
in three different clusters), we expect some experiments to
obtain no quartets, following the Poisson distribution (when
the mean value is 1, about1/e of the experiments are expected
to have no quartets following the randomness).

Finally, we note that checking what is the exact number
of keys for which the attack succeeds requires testing signif-
icantly more quartets per key guess to overcome the random
nature of the process. However, given the huge computation
requirements, this task seems out of our reach at the moment.

IV. CONCLUSIONS

In the first part of this paper we presented a rigorous
treatment of the related-key boomerang and related-key rect-
angle attacks. We devised optimal algorithms for the RK-
boomerang/rectangle distinguishers and computed their suc-
cess probability under explicitly stated and analyzed indepen-
dence assumptions.

In the second part of this paper we presented an extensive
experimental analysis of the RK-boomerang attack in the
specific case of the block cipher KASUMI. Our experiments
(along with previous experimentally verified results) suggest
the following heuristics:

• Boomerang-type attacks can fail due to local inconsisten-
cies, especially in the transition between the subciphers.
Hence, the designers of attacks should do their best to
check that the distinguisher used in the attack does not
contain any inconsistency.

• If the probabilities of any round in the differentials used
in the distinguisher are not extremely low, it is reasonable
to assume that the independence assumptions underlying
the boomerang-type attacks are valid.

• If the probabilities of some part of the differentials is
very low, then the overall probability of the distinguisher
can depend heavily on the key, such that the distinguisher
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TABLE IV

THE NUMBER OF FOUND QUARTETS IN 215 EXPERIMENTS

Quartets 0 2 4 5 6 7 9 10 11 12 13 14 15 16 17 22 23 28 34 35 39
Experiments 180 2 3 1 2 1 1 1 2 1 3 3 2 3 2 2 1 2 1 1 1

applies only for a relatively small portion of the keys.21

• In any case, it is very important to check the probability
of the RK-boomerang/rectangle distinguisher used in
each specific attack, whenever possible.

Apart from the immediate attacks, another outcome of the
related-key boomerang and rectangle techniques is a better
understanding of the importance of a well designed key
schedule algorithm for the security of block ciphers. While
it is commonly believed that a linear key schedule (or one
close to it), is of no security concern to a well designed block
cipher, the related-key boomerang and rectangle attacks, along
with the concept of structures of keys (that allows to bypass
nonlinear key schedule algorithms) show that this belief is
dangerous and at times may be faulty.
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