
A New Criterion for Nonlinearity of Block
Ciphers

Orr Dunkelman?1 Nathan Keller2

1Computer Science Department, Technion.
Haifa 32000, Israel

orrd@cs.technion.ac.il
2Einstein Institute of Mathematics, Hebrew University.

Jerusalem 91940, Israel
nkeller@math.huji.ac.il

Abstract. For years, the cryptographic community has searched for
good nonlinear functions. Bent functions, almost perfect nonlinear func-
tions, and similar constructions have been suggested as a good base for
cryptographic applications due to their highly nonlinear nature. In the
first part of this paper we study these functions as block ciphers, and
present several distinguishers between almost perfect nonlinear permu-
tations and random permutations. The data complexity of the best dis-
tinguisher is O(2n/3) and its time complexity is O(22n/3) for an n-bit
block size, independent of the key size.

In the second part of the paper we suggest a criterion to measure the
effective linearity of a given block cipher. We devise a distinguisher for
general block ciphers based on their effective linearity. Finally, we show
that for several constructions, our distinguishing attack is better than
previously known techniques.

Keywords: Almost perfect nonlinear permutations, highly nonlinear
functions, effective linearity, differential cryptanalysis

1 Introduction

For years, highly nonlinear functions were extensively used in various crypto-
graphic applications. Highly nonlinear functions were promoted since algorithms
that are close to linear are susceptible to various approximation attacks. Dif-
ferential cryptanalysis [5] and linear cryptanalysis [11] show that even partial
approximations of the encryption algorithm by a linear function are sufficient to
mount powerful distinguishing and key-recovery attacks.

In [12] the authors suggested to use (almost) perfect nonlinear functions
(functions with a maximal distance from all linear structures) in block ciphers.
The nonlinear functions can be used either as a building block in the structure
of the block cipher (such as an S-box [15–17]) or as the entire block cipher (as

? The research presented in this paper was partially supported by the Clore scholarship
programme.

discussed in [1]). Such (almost) perfect nonlinear constructions can be used to
prove security against differential and linear cryptanalysis [18].

In [15] the following construction, later named in [18], was suggested: An
almost perfect nonlinear permutation (APNP) is a permutation f : GF (2n) →
GF (2n) such that for any a 6= 0, the function g(x, a) = f(x)⊕ f(x⊕ a) assumes
exactly 2n−1 different values. It means that for any two pairs of distinct input
values with the same difference, the corresponding output pairs do not have
the same difference. Due to this property, APNPs are considered secure against
differential cryptanalysis [5] as well as against linear cryptanalysis [11].1 A per-
mutation that is very close to be an APNP is the S-box SubBytes of AES [7]. In
the SubBytes permutation, for a non-zero input difference α, there are two pairs
of inputs with difference α and the same output difference, while the other 126
pairs with input difference α have different output differences.

In the first part of this paper we analyze the concept of using highly non-
linear functions (such as APNPs) as the entire block cipher. We devise several
distinguishers between an APNP and a random permutation based on the “too
good” differential properties of APNPs. The data and memory complexities of
the best distinguisher are O(2n/3) with time complexity of O(22n/3) where n is
the block size, independent of the key size. The distinguishers are then extended
to ciphers with close to uniform difference distribution tables (that is, ciphers
that are close to APNPs). This result leads to the conclusion that despite their
favorable properties, highly nonlinear ciphers might possess inherent weakness.

In a way, the concept of this part of the paper is similar to the concept behind
impossible differential cryptanalysis [4]. Usually, differential cryptanalysis uses
differentials with high probability. The idea of impossible differential attacks is to
exploit differentials with zero probability. The attacker utilizes the fact that the
differential properties are “too strong”. In the same way, our attacks recognize
APNPs due to their “too high” level of nonlinearity.

In the second part of this paper we analyze the following encryption scheme:
Let f be a permutation, f−1 be its inverse, and K be a randomly chosen non-zero
key. We define g(x) = f−1(f(x) ⊕K), and show that g has several predictable
differential properties. Those properties are related to the level of nonlinearity
of the function f . We use those properties to define the effective linearity of the
function f , and show that the effective linearity of almost perfect nonlinear per-
mutations is 1, for random permutations it is 2, and is 2n for linear permutations
(where n is the block size). We note that the effective linearity of a block cipher
can be approximately computed with complexity O(2n/2). We present various
scenarios in which this value can be used in distinguishing and key recovery at-
tacks. For example, we show that a 2-round Feistel structure surrounded by two
key dependent decorrelation modules can be easily distinguished from random
permutations, regardless of the Feistel round function.

1 Note that there are two colliding definitions to the term nonlinearity — nonlinearity
as distance from linear functions, and nonlinearity in the sense of almost perfect
nonlinear permutations. In this paper we use the latter definition.

2

This paper is organized as follows: In Section 2 we give the definition and
theoretical background of highly nonlinear functions. In Section 3 we present
two distinguishing attacks on ciphers with uniform difference distribution tables.
Section 4 examines differential properties of the construction g = f−1(f(x)⊕K),
and defines the effective linearity of a function. In Section 5 we use the effective
linearity to mount distinguishing and key recovery attacks. In the appendices we
bring various computations and proofs. We summarize the paper in Section 6,
and discuss the implications of our findings.

2 Definitions and Theoretical Background

There are several possible notions of high nonlinearity of a boolean function. In
this paper we use the following definition, presented in [15]:

Definition 1. A function f : GF (2n) → GF (2m) is perfectly nonlinear if for
any non-zero w ∈ GF (2n) the difference f(x + w)− f(x) obtains all the values
y ∈ GF (2m) exactly 2n−m times each.

In [15] the properties of such functions were studied, and it was shown that
perfectly nonlinear functions f : GF (2n) → GF (2m) exist if and only if n ≥ 2m.
However, in real life designs many designers prefer to use functions in which
the size of the input is equal to the size of the output. Thus, perfectly nonlinear
functions cannot be used. This led to the introduction of almost perfect nonlinear
functions, defined as following:

Definition 2. A function f : GF (2n) → GF (2n) is almost perfectly nonlinear
if for any a 6= 0, the function g(x, a) = f(x) ⊕ f(x ⊕ a) assumes exactly 2n−1

different values.
If such f is also a permutation, f is called “almost perfectly nonlinear per-

mutation” (in the sequel we abbreviate this notation to “APNP”).

Note, that since the characteristic of the field GF (2n) is 2, it follows that for
any function f : GF (2n) → GF (2n), every value of g(x, a) is assumed an even
number of times. Therefore, 2n−1 is the maximal possible output size of g for a
non-zero α.

A permutation that is close to be an APNP is the S-box SubBytes of AES [7].
This S-box is a permutation f : GF (28) → GF (28) and for every a 6= 0, the
function g(x, a) = f(x)⊕ f(x⊕ a) assumes 28−1 − 1 = 127 values.

As stated before, this notion of nonlinearity is closely related to differential
properties of the function f and the definition of an APNP can be restated
in terms of the difference distribution table of the function used in differential
cryptanalysis [5]. First we recall the definition of the difference distribution table
of a function:

Definition 3. Let f : GF (2n) → GF (2m) be a general function. The difference
distribution table (DDT) of f is an (2n) × (2m) matrix whose (i, j) entry is
defined as #{x ∈ GF (2n)|f(x)⊕ f(x⊕ i) = j}.

3

A function f is considered optimally secure against differential cryptanalysis
if the entries in the DDT of f are the lowest possible ones. This is the case when
f is an almost perfect nonlinear function. We can now rephrase the definition of
an almost perfect nonlinear function in terms of the DDT:

Definition 4. A function f : GF (2n) → GF (2n) is almost perfectly nonlinear
if the highest entry in the DDT of f (except for the entry (0 → 0) that equals
2n) is 2.

This definition is closely related to the following definition of δ-uniformity:

Definition 5. For an n × s bits S-box S(·) (where n ≥ s), we denote by δ the
highest entry in the difference distribution table (except for (0,0) entry which is
always 2n), namely

δ = max
α∈{0,1}n,α 6=0,β∈{0,1}s

#{x|S(x)⊕ S(x⊕ α) = β}

S is called differentially δ-uniform.

Hence, almost perfect nonlinear permutations are differentially 2-uniform.
We recall that differential cryptanalysis is mostly interested in differentials

with high probability (or zero probability). This led various papers [17, 18, 21]
to suggest using functions that are as differentially uniform as possible. If such
functions are used, the cipher is expected to have fewer differentials with high
probability, as well as less zero probability differentials.

We stress that usually APNPs are not used in real life ciphers. However,
this is mostly due to implementation issues, as the common belief is that these
functions are better than other constructions. For example, many ciphers use
APNPs as building blocks, like the S-box used in the AES.

3 Distinguishing Highly Nonlinear Functions from
Random Permutations

In this section we present two distinguishing attacks on highly nonlinear func-
tions. Each is based on a different assumption and performs in a different model
(known plaintext or chosen plaintext). These attacks are capable of identifying
whether a given black box is a random permutation or an highly nonlinear func-
tion. Hence, if an APNP is used as the cipher, it can be distinguished from a
random permutation. We discuss the possible applications of such an attack in
Section 5.

We note that the Even-Mansour construction EK1,K2(P) = F (P ⊕K1)⊕K2

assumes that the underlying F is a pseudo random permutation [8]. Our attacks
can distinguish the case where F is an APNP from the case that F is a random
permutation, despite the commonly believed good security properties of APNPs.

4

3.1 A Chosen Plaintext Distinguisher

The first attack is a chosen plaintext attack based on the birthday paradox.
Let f : GF (2n) → GF (2n) be a black box permutation for which we have to
determine whether it is an APNP or a random permutation.

We perform the following algorithm with a parameter m (to be determined
later):

1. Encrypt m distinct pairs of plaintexts (P1, P2), such that P1 ⊕ P2 = α and
P1 < P2 for some fixed non-zero value α by f to get the ciphertext pairs of
the form (C1, C2) = (f(P1), f(P2)).

2. Store the XOR values of the ciphertexts, i.e., C1 ⊕ C2 in a hash table.
3. If we obtain a collision in the hash table (two pairs with the same ciphertext

difference), halt and conclude that f is not an APNP.
4. If no collisions are encountered, conclude that f is an APNP.

A collision is formed of two distinct pairs (P1, P2 = P1 ⊕ α) and (P3, P4 =
P3 ⊕ α), whose corresponding ciphertexts (C1, C2) and (C3, C4), respectively,
satisfy C1 ⊕ C2 = C3 ⊕ C4. Such a collision means that the equation f(x) ⊕
f(x⊕ α) = C1 ⊕ C2 = C3 ⊕ C4 has (at least) four solutions.

Recall that an APNP is a permutation for which the equation f(x)⊕ f(x⊕ α) = β
for non-zero α and β has at most two solutions (x0 and x0 ⊕ α for some x0).
Thus, for any value of m (even for m = 2n−1), no such collision is expected.

For a random permutation, however, the algorithm is expected to find such
an instance. And thus, once such an instance is found, the algorithm concludes
that f is not an APNP.

3.2 Analysis of the Chosen Plaintext Attack

Recall, that the attack is based on encrypting pairs of plaintexts (P1, P2) that
satisfy P1⊕P2 = α for some fixed arbitrary non-zero α. If there are two distinct
plaintext pairs (P1, P2) and (P3, P4) whose corresponding ciphertexts (C1, C2)
and (C3, C4), respectively, satisfy C1 ⊕ C2 = C3 ⊕ C4, then the black box per-
mutation f is not an APNP for sure.

Let us examine the number of expected quartets for f . Consider the row
corresponding to α in DDT f , the difference distribution table of f . For every
fixed output difference β, the value that corresponds to β in this row represents
the number of pairs with input difference α and output difference β (recall that
x and x ⊕ α appear as two pairs (x, x ⊕ α) and (x ⊕ α, x)). In other words,
DDT f (α, β) (entry (α, β) of DDT f) is

DDT f (α, β) = |{x ∈ GF (2n) : f(x)⊕ f(x⊕ α) = β}|.

Note that a permutation is considered APNP if and only if its difference distri-
bution table does not contain values greater than 2.

For a random permutation f , we may assume that values in any single row
of the difference distribution table behave almost as Poisson random variables.

5

That is, the values in the difference distribution table are distributed according
to 2 · Poi(1/2).2 Thus, the value 2k is expected to appear in a given row about
2n · e−1/2 · 2−k/k! times.

Collisions in Step 3 can occur only for values of β whose corresponding entry
of the difference distribution table is more than 2. Let us examine only values of
β in the difference distribution table with 4 or more. Out of the 2n possible β
entries, 0.0902·2n such entries exist. Due to the birthday paradox, when we want
to have success rate of p, we require p > 1 − e−m·(m−1)/(2·0.0902·2n). Therefore,
to ensure success probability of 0.8 we need m > 0.1618 · 2n/2 pairs of this kind.

However, the algorithm encrypts also pairs whose output difference β has
2 in the difference distribution table. Hence, the real number of pairs we need
to examine is about 4 times larger, as only one out of 4 pairs (more precisely,
about 23%) has an output difference meeting our requirement. Therefore, the
data complexity of the algorithm is N = 2m = 1.4070·2n/2 plaintexts (or queries
to the black box).

The time complexity of the algorithm is N = 1.4070 · 2n/2 encryptions and
m = 0.7035 · 2n/2 memory accesses in the worst case. The memory requirements
are m = 0.7035 · 2n/2 memory cells in the worst case.

Changing the attack scenario into a known plaintext attack does not change
the attack significantly. The data complexity is m = 1.3459 · 2n/2 queries, and
the time complexity is O(22n/3) using Wagner’s algorithm for the generalized
birthday paradox problem [24].

3.3 An Improvement to the Chosen Plaintext Attack

An improvement to the algorithm uses the fact that the above is true for any
non-zero α. The attack requires m distinct plaintexts, such that the XOR value
of any two of them is among a list of m values (for example, setting some of
the bits of all plaintexts to be zero). In this case for each pair of plaintexts
(P1, P2) we compute (P1 ⊕ P2, f(P1) ⊕ f(P2)), and insert it into a hash table.
A collision in the hash table suggests a quartet of values (P1, P2) and (P3, P4)
such that P1 ⊕ P2 = P3 ⊕ P4 and f(P1) ⊕ f(P2) = f(P3) ⊕ f(P4). This cannot
be achieved for an almost perfect nonlinear permutation, and thus, can be also
used for distinguishing.

For m plaintexts chosen in this way, we have m2/2 pairs, each producing a
string of 2n bits. Not all 22n possible 2n-bit strings are produced in this process.
More precisely, the number of possible values for this string is m·2n. If we choose
m such that (m2/2)2 > 1.17m2n, we have a chance of 50% to find a collision (in
case of a random permutation) according to the birthday paradox.

Setting m = 1.794·2n/3 we expect to find such a collision with probability 0.8.
Thus, the data complexity of this attack is m = 1.794 · 2n/3 chosen plaintexts,
and the time complexity of the attack is m2/2 = 1.609 · 22n/3 memory accesses.

2 Recall that in an XOR difference distribution table all values are even.

6

3.4 Other Kinds of Permutations

Permutations that are very close to APNPs are widely used in block ciphers. For
this kind of permutations, the above attacks still succeed with almost the same
success rate.

Another question which arises, is what happens when the permutation we
wish to distinguish is not so close to be differentially 2-uniform. That is, what if
there are many entries with value of 4 in the difference distribution table of the
permutation. Formally, out of the 2n−1 pairs, assume that at most a ratio p of
the pairs are in entries with value of 4 in the difference distribution table, while
the other non-zero entries are 2 (up to the 0 → 0 entry).

For these functions, the above algorithms fail, as the probability to have two
pairs whose output difference is the same, is no longer negligible. This can be
solved when p is far from 0.23,3 e.g., p < 0.2 or p > 0.3 (in case p > 0.3, we
require that at least p of the pairs are in entries with value of 4).

The transformation of the above algorithms to deal with such permutations
is changing the identification from “find such an instance, halt and output . . . ”
to “count how many instances there are, and compare this number to how many
should be”. The analysis of the exact number of plaintexts m needed is quite
straightforward given p and the requested success rate.

4 Differential Properties of f−1(f(x) ⊕ K) and their
Applications

In this section we consider the differential properties of some special structure
derived from a permutation f and show how to utilize these properties in order
to study the structure of f itself. Let g(x) = f−1(f(x) ⊕ K) be a permutation
where K is some fixed key. First, we show that using the properties of g we can
determine whether f is an APNP or a random permutation. Then we show how
to generalize this result in order to classify functions according to their level of
nonlinearity. We formalize this classification by defining the effective linearity
coefficient (EL) of a permutation which corresponds to the level of linearity
determined by our method.

4.1 Theoretical Background

Let f : GF (2n) → GF (2n) be a black box permutation for which we have to
determine whether it is an APNP or a random permutation. Choose an arbitrary
non-zero K ∈ GF (2n), and define the permutation g(x) = f−1(f(x)⊕K).

3 The expected ratio of 4 or more in the difference distribution table of a random
permutation is about 0.09 of the entries. However, entries with 6,8, or even more,
contribute more quartets. The total number of quartets counted by the above algo-
rithms for a random permutation is equal to the case where 0.23 of the entries of the
table that are 4 (while the remaining are 2’s and 0’s).

7

Let A,B be a pair of plaintexts with a non-zero input difference α (e.g.,
A ⊕ B = α) and consider γ = g(A) ⊕ g(B). We shall compute the probability
of the event γ = α, and show that this probability can be used to distinguish
APNPs from random permutations.

Let β = f(A)⊕ f(B). If f is an APNP, (A,B) is the only pair of plaintexts
with input difference α and output difference β. Now, consider the pair (f(A)⊕
K, f(B)⊕K). There are two cases:

1. f(A) ⊕K = f(B). In this case, we have g(A) = B and g(B) = A and thus
γ = g(A)⊕g(B) = B⊕A = α. This case occurs when β = f(A)⊕f(B) = K
which happens with probability of 2−n.

2. f(A)⊕K 6= f(B). In this case, the pairs (f(A), f(B)) and (f(A)⊕K, f(B)⊕
K) differ, but still have the same XOR difference β. Thus, if f is an APNP,
the difference γ = g(A)⊕g(B) = (f−1(f(A)⊕K))⊕(f−1(f(B)⊕K)) cannot
be equal to α. Therefore, in this case γ 6= α always.

Combining the two cases together we obtain

Pr
A,B,K∈GF (2n),A 6=B,K 6=0

[γ = α] = 2−n. (1)

The analysis presented in Appendix A shows that for a random permutation
this probability (Pr[γ = α]) equals to 2 · 2−n. The difference between the prob-
abilities can be used in order to distinguish between an APNP and a random
permutation.

We have experimentally verified that the value 2 ·2−n is the correct value for
a random permutation and that 2−n is the correct value for an APNP. This was
done by generating sets of random permutations of 8,10,12,14 and 16 bits, and
counting all possible quartets (A,B, g(A), g(B)) (for a large set of K values, for
all α values).

4.2 An Adaptive Chosen Plaintext and Ciphertext Distinguisher

The algorithm of the distinguisher is as follows: Let f : GF (2n) → GF (2n) be a
black box permutation for which we have to determine whether it is an APNP
or a random permutation and m, threshold be integers specified later.

1. Encrypt m distinct plaintexts Pi, for i = 1, . . . ,m.
2. Choose an arbitrary K ∈ GF (2n).
3. Decrypt the values f(Pi)⊕K to get g(Pi) = f−1(f(Pi)⊕K).
4. Store the m values of the form Pi ⊕ g(Pi) into a hash table.
5. Count the number of collisions in the hash table. If the number of collisions

is greater than threshold output “random permutation”. Otherwise, output
“APNP”.

We note that if P1 ⊕ g(P1) = P2 ⊕ g(P2) then we have a right quartet
((P1, P2), (g(P1), g(P2))). Starting with m plaintexts, we get m values of P ⊕

8

g(P). Once there is a collision in the hash table, the colliding values suggest a
quartet. If there are three values in the same entry of the hash table, then we
get three quartets, or generally, if there are k values in the same entry, we get
k(k − 1)/2 quartets.

For an APNP, about 2−n of the all possible quartets satisfy our conditions,
while for a random permutation, about 2 · 2−n satisfy our conditions. For m =
4 · 2n/2 and threshold = 10 the success rate is 0.816. For m = 2n/2 the success
rate of this attack is 0.594.

This attack may seem less desirable, given the attacks of the previous section,
as it has a similar data complexity but a more stern attack model. However, this
attack can be easily extended to other cases, as we present in Section 4.3.

We remark that one can make a slight change in the attack such that only
quartets of the form (A,B, g(A), g(B)) where A 6= B 6= g(A) 6= g(B) are counted.
Using this variant of the attack the number of expected collisions is 0 for APNP,
and if we get even one collision the permutation is certainly not an APNP. The
number of expected collisions for a random permutation is 1

4 · 2
−n of the total

number of possible quartets.
This can be used to increase the success probability of the attack by setting

threshold = 1. More accurately, for the same data complexity as before, the
success rate of the attack is about 0.98. We can also reduce the data complexity
by a factor of

√
2 and still have a success rate of 0.86.

4.3 The Effective Linearity of a Permutation

Following the previous attack, we define the effective linearity of a permutation.

Definition 6. Let f : GF (2n) → GF (2n) be a permutation. The effective lin-
earity of f is:

EL(f) = 2n

(
1

2n − 1

)2

·
∑

K∈GF (2n)\{0}

∑
α∈GF (2n)\{0}

Pr

[
α

g(x)=f−1(f(x)⊕K)
−−−−−−−−−−−−−→ α

]

Actually, EL(f) is the average of the probabilities Pr[α = γ] over all non-zero
K’s and α’s multiplied by 2n.

For a random permutation this value is expected to be close to 2 (as shown
in Appendix B). If this value is not close to 2, then our attacks can be applied
to the permutation and distinguish it from a random permutation.

We can either calculate EL(f) analytically when the difference distribution
table of f is known (like in the analysis for a random permutation), or by ex-
perimentally measuring it. Taking several sets of O(2n/2) messages and using
several K values, we can use statistical methods to evaluate EL(f). Note that
the O(2n/2) complexity is achieved by using many (if not all) values of α simul-
taneously.

The effective linearity of f is not lower than 1 (as when K = f(A) ⊕ f(B)
we get that g(A) = B and g(B) = A) and cannot be higher than 2n (which is

9

the value for linear permutations). As the value for a random permutation is 2,
we suggest designing ciphers with effective linearity close to 2.

It is possible to show (see Appendix B) that for a two round Feistel construc-
tion whose round functions are both APNP, the effective linearity is 3, while if
the used functions are random permutations it is expected to be at least 8. An
interesting observation regarding the effective linearity of Feistel constructions,
is that after three Feistel rounds using random permutations as round functions,
the effective linearity is 2. This might be viewed as another realization of the
Luby-Rackoff result about Feistel constructions [10].

Another interesting remark about Feistel constructions, is that if the permu-
tation of the first round p1 has effective linearity EL(p1), and the second round’s
permutation p2 has effective linearity EL(p2), then the effective linearity EL(f)
of the two round Feistel satisfies EL(f) ≥ EL(p1) · EL(p2). The exact proof is
given in Appendix B.

When the round functions are not bijective, the difference distribution table
of the 2-round Feistel construction is expected to have more zero entries than
usual. As the sum of every line in the difference distribution table is constant,
it follows that the remaining entries are expected to be higher, leading to an
higher effective linearity. Thus, the more entries having a zero value in the dif-
ference distribution table, the higher the effective linearity is expected to be. For
example, we show in Appendix B that the effective linearity of 2-round DES is
at least 220 (independent of the key).

5 Various Attacks Based on the Effective Linearity of
Permutations

In this section we present several possible scenarios in which measuring the
effective linearity of various permutations can be used in order to mount distin-
guishing and key recovery attacks.

5.1 Treating Decorrelation Modules

Let us consider a cipher of the form E = DM2 ◦ F2 ◦ F1 ◦DM1, where DMi is
a decorrelation module (with some key) [22], and Fi is a Feistel round with a
random permutation as the round function (along with some key).

We recall that once the key is set the decorrelation module is linear, but when
the key is random, the probability of any non-trivial differential going through
the decorrelation module equals 1/(2n − 1) on average. A similar condition can
be proved with respect to linear cryptanalysis as well.

Due to the nature of the decorrelation module, any differential (even a trun-
cated one) cannot have probability higher than the trivial one through the first
decorrelation module. The same is true for linear approximations as well. More-
over, it is impossible to devise a SQUARE-like property for this cipher as the
decorrelation module prevents the attacker from setting a good input set.

10

While all these methods fail, we can efficiently distinguish the above E from
a random permutation. As the decorrelation modules are linear, and as we have
two rounds of a Feistel structure, we can easily determine that the effective
linearity of E is 8, while the effective linearity of random permutations is only
2.

We note that the minimal value of the effective linearity of 2-round Feistel
construction is 3 (achieved by applying APNPs as the round function in the two
Feistel rounds). Thus, even if the Feistel round functions are replaced, our attack
still works.

Our technique is able to pass the decorrelation module as if it does not exist.
This is due to the fact that we count on many possible differentials, and we
do not restrict ourselves to differentials of some structure, or even to sets of
plaintexts of a given structure.

5.2 Distinguishing Known Ciphers and Identifying Black Box
Permutations

It is possible to precompute the effective linearity of ciphers in advance (also for
reduced round variants). Then, given a black box the attacker computes its EL
and if the black box is one of the previously known encryption schemes, he can
detect it.

However, we still do not know whether this attack is applicable against en-
cryption schemes that are actually used today. It may occur that the measured
effective linearity values are too close to 2 and the distinguishing will become
infeasible. Moreover, as we noted in Section 4.1, the number of detected quartets
in the distinguisher slightly depends on K and thus in some cases the difference
between two encryption schemes can be less than the difference between appli-
cations of the same scheme with different values of K. In this case the attack
might fail.

The effective linearity of a permutation depends on its difference distribution
table. When computing the difference distribution table of a permutation one
usually computes the average probabilities over all the possible keys and assumes
that the probability for any single key is close to the average (see [5]). However,
in some ciphers there are classes of keys for that some differential properties of
the cipher differ from the average case, like for IDEA [6]. Such classes are called
“differentially weak key classes”. Usually such classes can be detected only if
some explicit differential characteristic is known for the whole cipher.

We can use our distinguisher in order to detect such classes when the entire
differential structure differs for different keys, even if any concrete characteristic
is unknown. For example, there is a differential weak key class of IDEA. In that
weak key class there exists some differential with probability 1 of the form α → β.
For this weak key class, the effective linearity is higher by 1 than the effective
linearity of IDEA with key not in the weak key class. We note that using the
differential is easier for the purpose of distinguishing whether the key is in the
weak key class. However, if decorrelation modules are added before IDEA and

11

after it, then the differential distinguisher is not applicable anymore, while our
distinguisher still succeeds.

Our technique can be used also for key recovery attacks, by measuring the
effective linearity of reduced round versions of the cipher. Then, for a given n-
round construction, we can try all possible subkeys of the last round, and try to
peel it off. If the peeling succeeds, the effective linearity of the obtained cipher
equals to the one of (n− 1) rounds of the cipher (instead of the expected (n+1)
rounds in case of a wrong guess).

5.3 Attacks against Encryption Schemes of the Form f−1(f(x)⊕ K)

The distinguisher can be applied directly against encryption schemes of the
form h(x) = f−1(f(x)⊕K) for an arbitrary permutation f , when K is a secret
key. In this scenario, the data requirements are even less than in the original
distinguisher: the attacker can use known plaintexts instead of adaptively chosen
plaintexts.

The attack is performed essentially in the same way as the original distin-
guisher. The difference is that we already have the values of h(x) which cor-
respond to g(x) in the original distinguisher. The number of found quartets
supplies the attacker with the probability Pr[h(x)⊕ h(y) = α|x⊕ y = α]. Thus,
we know the average of the probability of the differential α → α through h(·),
even without constructing the difference distribution table of h itself.

If f is a random permutation, the expected result for h is 2 · 2−n. This,
in contrast to a random permutation h′(·) with the respective probability of
2−n. Therefore, even if f is a perfectly random permutation, the attacker can
distinguish between h and a random permutation.

We remark that constructions of the form h(x) are not so rare. For example,
two rounds of any involution cipher are of the form h(x). KHAZAD [2] is one
example of such a cipher.

Note that there is an adaptive chosen plaintext attack that requires only 2
plaintexts that distinguishes h(·) from a random permutation. Its transforma-
tion into a known plaintext attack requires O(2n/2) known plaintexts which is
equivalent to the data complexity of our attack. However, in the chosen plaintext
model our attack has a lower data complexity of O(2n/3) (instead of the O(2n/2)
required for the transformation of the basic attack into a chosen plaintext at-
tack). This last statement is true whenever f is not an APNP.

We also note that this construction covers all block ciphers with cycle 2.
This follows from the fact that all ciphers with cycle 2 can be described as
h(x) = f−1(f(x)⊕K) for some permutation f and a non-zero constant K.

6 Summary

In the first part of this paper we presented several distinguishers for highly
nonlinear permutations and random permutations. We conclude that while using

12

Construction Round Function Effective Linearty

APNP APNP 1
Random Permutation Random Permutation 2
Affine Permutation Affine Permutation 2n

2-round Feistel APNP 3
Random Permutation ≥ 8
DES ≥ 220

3-round Feistel Random Permutation 2

Table 1. Various Constructions and their Effective Linearity

APNPs as part of the encryption scheme seems desirable, using APNPs as the
entire cipher can possess inherent weakness.

In the second part of the paper we have examined the structure f−1(f(x)⊕K)
for various permutations f . We have shown how to use the differential proper-
ties of this construction in order to study the differential structure of f . We also
proved that this construction can be used to effectively determine the average
probability of a differential of f . Finally, we have defined the effective linear-
ity of a permutation that measures this probability. Table 1 contains various
constructions and their effective linearity.

The effective linearity can be used to distinguish between an f that is an
almost perfect nonlinear permutation and an f that is a random permutation.
On the other hand, it can be used to distinguish ciphers with a relatively close
to linear structure from random permutations, even if no concrete differential
is known. Our attacks have better performance compared to previously known
attacks for several structures. For example, we can distinguish between a random
permutation and a permutation formed by two Feistel rounds surrounded by two
key-dependent decorrelation modules, regardless of the round functions of the
2-round Feistel construction.

7 Acknowledgments

The authors would like to thank Osnat Ordan and Dana Cohen for their help
in conducting the experiments, which verified our claims. It is also a pleasure
to acknowledge the references and ideas expressed by Serge Vaudenay, Jennifer
Seberry, and Eli Biham. We would also like to thank the anonymous referees for
their valuable comments and insightful suggestions.

References

1. Kazumaro Aoki, Serge Vaudenay, On the Use of GF-Inversion as a Cryptographic
Primitive, proceedings of Selected Areas in Cryptography 2003, Lecture Notes in
Computer Science 3006, pp. 234–247, Springer-Verlag, 2004.

2. Paulo S.L.M. Baretto, Vincent Rijmen, The KHAZAD Block Cipher, Submitted
to NESSIE, available online at http://www.nessie.eu.org.

13

3. Thomas Beth, Cunsheng Ding, On Almost Perfect Nonlinear Permutations, Ad-
vances in Cryptography, proceedings of EUROCRYPT ’93, Lecture Notes in Com-
puter Science 765, pp. 65–76, Springer-Verlag, 1994.

4. Eli Biham, Alex Biryukov, Adi Shamir, Cryptanalysis of Skipjack reduced to 31
rounds, Advances in Cryptology, proceedings of EUROCRYPT ’99, Lecture Notes
in Computer Science 1592, pp. 12–23, Springer-Verlag, 1999.

5. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

6. Joan Daemen, Rene Govaerts, Joos Vandewalle, Weak Keys for IDEA, Advances in
Cryptology, proceedings of CRYPTO ’93, Lecture Notes in Computer Science 773,
pp. 224–231, Springer-Verlag, 1994.

7. Joan Daemen, Vincent Rijmen The design of Rijndael: AES — the Advanced En-
cryption Standard, Springer-Verlag, 2002.

8. Shimon Even, Yishay Mansour, A Construction of a Cipher from a Single Pseu-
dorandom Permutation, Journal of Cryptology, Vol. 10, Number 4, pp. 151–162,
Springer-Verlag, 1997.

9. Philip Hawkes, Gregory G. Rose, Primitive Specification for SOBER-t16 Sub-
mission to NESSIE and Primitive Specification for SOBER-t32 Submission to
NESSIE, Submitted to NESSIE, available online at http://www.nessie.eu.org.

10. Michael Luby, Charles Rackoff, How to Construct Pseudorandom Permutations
from Pseudorandom Functions, SIAM journal of Computing, Volume 17. No. 2,
pp. 373–386, 1988.

11. Mitsuru Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryp-
tology, proceedings of EUROCRYPT ’93, Lecture Notes in Computer Science 765,
pp. 386–397, Springer-Verlag, 1994.

12. Willi Meier, Othmar Staffelbach, Nonlinearity Criteria for Cryptographic Func-
tions, Advances in Cryptology, proceedings of EUROCRYPT ’89, Lecture Notes
in Computer Science 434, pp. 549–562, Springer-Verlag, 1990.

13. Willi Meier, Othmar Staffelbach, Fast Correlation Attacks on Stream Ciphers (Ex-
tended Abstract), Advances in Cryptology, proceedings of EUROCRYPT ’88, Lec-
ture Notes in Computer Science 330, pp. 300–315, Springer-Verlag, 1988.

14. US National Bureau of Standards, Data Encryption Standard, Federal Information
Processing Standards Publications No. 46, 1977.

15. Kaisa Nyberg, Perfect nonlinear S-boxes, Advances in Cryptology, proceedings of
EUROCRYPT ’91, Lecture Notes in Computer Science 547, pp. 378–386, Springer-
Verlag, 1991.

16. Kaisa Nyberg, On the construction of highly nonlinear permutations, Advances in
Cryptology, proceedings of EUROCRYPT ’92, Lecture Notes in Computer Sci-
ence 658, pp. 92–98, Springer-Verlag, 1993.

17. Kaisa Nyberg, Differentially uniform mappings for cryptography, Advances in
Cryptology, proceedings of EUROCRYPT ’93, Lecture Notes in Computer Sci-
ence 765, pp. 55–64, Springer-Verlag, 1994.

18. Kaisa Nyberg, Lars R. Knudsen, Provable Security Against Differential Crypt-
analysis, Advances in Cryptology, proceedings of CRYPTO ’92, Lecture Notes in
Computer Science 740, pp. 566–578, Springer-Verlag, 1993.

19. Oscar S. Rothaus, On Bent Functions, Journal of Combinatorial Theory, Series A,
Vol. 20 (1976), pp. 305–310, 1976.

20. Jennifer Seberry, Xian-Mo Zhang, Yuliang Zheng, Relationships Among Nonlinear-
ity Criteria (Extended Abstract), Advances in Cryptology, proceedings of EURO-
CRYPT ’94, Lecture Notes in Computer Science 950, pp. 376–388, Springer-Verlag,
1995.

14

21. Jennifer Seberry, Xian-Mo Zhang, Yuliang Zheng, Pitfalls in Designing Substitution
Boxes (Extended Abstract), Advances in Cryptology, proceedings of CRYPTO ’94,
Lecture Notes in Computer Science 839, pp. 383–396, Springer-Verlag, 1995.

22. Serge Vaudenay, Provable Security for Block Ciphers by Decorrelation, Journal of
Cryptology, Vol. 16, Number 4, pp. 249–286, Springer-Verlag, 2003.

23. David Wagner, The Boomerang Attack, proceedings of Fast Software Encryption
6, Lecture Notes in Computer Science 1636, pp. 156–170, Springer-Verlag, 1999.

24. David Wagner, A Generalized Birthday Problem (Extended Abstract), Advances
in Cryptology, proceedings of CRYPTO ’02, Lecture Notes in Computer Science
2442, pp. 288–304, Springer-Verlag, 2002.

A Theoretical Analysis of the Effective Linearity of a
Random Permutation

In this section we analyze the probability of a pair A,B and their respective
g(A), g(B) to satisfy A ⊕ B = g(A) ⊕ g(B) for a permutation f where g(x) =
f−1(f(x)⊕K). Examine the amount of quartets of the form (A,B, g(A), g(B))
such that γ = g(A)⊕ g(B) = A⊕B = α. As in the analysis for APNP, we also
have two cases:

When g(A) = B the expression γ = α holds if and only if g(B) = A. As in
the analysis of APNPs, this event occurs with probability 2−n. Note, that this
case also contains the case where g(B) = A.

When g(A) 6= B all the elements of the quartet (A,B, g(A), g(B)) are dis-
tinct. We observe that any quartet of this kind (which we denote by a right
quartet) can be uniquely represented by the two ciphertext pairs (f(A), f(B)),
(f(A)⊕K, f(B)⊕K). These two pairs satisfy the following system of equations:{

C ⊕D = β
f−1(C)⊕ f−1(D) = α

(2)

for some fixed β.
On the other hand, for any fixed value β, consider pairs of inputs to the

function f−1 that solve System 2. Every pair of such pairs (C,D), (C1, D1) can
be used if and only if one of the following holds:{

C ⊕ C1 = D ⊕D1 = K
C ⊕D1 = D ⊕ C1 = K

(3)

The probability of this event is 2 · 2−n.
For sake of simplicity we assume that this probability is independent of K.

Actually there is a measure of dependence of this value on K. Moreover, the
same computation can be rewritten in another way such that the dependence on
α is neglected and the dependence on K is computed explicitly. The resulting
formulae is similar to Equation 5 below when K is substituted instead of α.
Actually, this is the case in our distinguisher since we look for the average of
the results for different α values, that allows us to reduce the dependence on α.

15

Since the expected result considers the average for all possible keys, changing
the formulae to be dependent on K does not affect the expected result.

Denote by t the number of pairs of solutions of System 2 for a specific value
of β, summed over all possible β. Then the expected number of right quartets is
2 · 2−n · t.

In order to compute the value of t, we have to consider the function f−1. We
consider some fixed value β0 and the element of the difference distribution table
of f−1, DDT f−1

, corresponding to the pair (β0, α). If DDT f−1
(β0, α) = 2k,

there are k solutions of the system (2) and thus there are k(k − 1)/2 pairs of
solutions. Summing over all the possible values of β, we get the equation

t =
∑

β∈GF (2)n

DDT f−1
(β, α)/2 · (DDT f−1

(β, α)/2− 1)
2

, (4)

where DDT f−1
is the difference distribution table of f−1.

Recall that the difference distribution table of the function f−1 is actually
the transpose of the difference distribution table of f . Denoting the difference
distribution table of f by DDT f , we have (DDT f)T = DDT f−1

. Thus, we are
able to rewrite Equation 4 in terms of the difference distribution table of f as:

t =
∑

β∈GF (2)n

DDT f (α, β)/2 · (DDT f (α, β)/2− 1)
2

(5)

Note that the analysis which was performed for the case where f is an APNP
is a partial case of the analysis of the general case presented here. Indeed, if f
is an APNP then the elements of DDT f are all equal to 0, 2 and then we get
t = 0 since all the elements in the sum equal to zero.

Now, assume that f is a random permutation. As was stated earlier, the
elements of DDT f are distributed according to 2 · Poi(1/2). Thus, the value 2k
is expected to appear in a given row (and in particular, in the row corresponding
to α) about 2n · e−1/2 · 2−k/k! times. Substituting these figures to Equation 5,
we get

t =
2n−1∑
k=1

(2n·e−1/2·2−k/k!)·(k·(k−1)/2) = 1/2·2n

2n−1∑
k=1

k2e−1/22−k/k!︸ ︷︷ ︸
A

−
2n−1∑
k=1

ke−1/22−k/k!︸ ︷︷ ︸
B

(6)

Let X be a random variable distributed according to Poisson(1
2), then we have

A = E[X2] and B = E[X]. For such X it is known that E[X] = 1
2 and V ar[X] =

E[X2]− E[X]2 = 1
2 . Thus, E[X2] = 1

2 + 1
4 = 3

4 . Hence we get

t = 1/2·2n

2n−1∑
k=1

k2e−1/22−k/k!−
2n−1∑
k=1

ke−1/22−k/k!

 = 1/2·2n

[
3
4
− 1

2

]
= 1/8·2n

(7)

16

Therefore, the expected value of t is 1
8 · 2n, and the expected number of

quartets for a fixed value of α is 1
8 · 2

n · 2 · 2−n = 1
4 . To compute the probability

of a quartet to be a right one, we have to compute the total amount of quartets.
Each quartet is constructed by a pair (A,B) such that A ⊕ B = α. The total
number of such pairs is 2n−1. However, each quartet is suggested by the two
pairs (A,B) and (g(A), g(B)) and thus the ratio should be doubled.

Taking this into consideration, we get that the probability of a quartet to be
right is (1

4/2n−1) · 2 = 2−n. Summing this result with the result of the first case,
we get

Pr[γ = α] = 2 · 2−n (8)

Summarizing this result, the probability Pr[g(A)⊕g(B) = A⊕B] equals 2−n

for APNPs and 2 · 2−n for random permutations. This fact can be used in order
to distinguish between an APNP and a random permutation.

B Effective Linearity of Feistel Constructions

Let us examine a 2-round Feistel construction f : {0, 1}2n → {0, 1}2n with a
permutation p1 as the first round function, and a permutation p2 as the second
round function. Both permutations are defined over the space {0, 1}n.

An input difference (αL, αR) that enters this encryption scheme becomes
after the first round (without the swap, which has no effect on our results) into
(αL ⊕ β1, αR), where αR

p1→ β1. After the second round the output difference is
(αL ⊕ β1, αR ⊕ β2) where αL ⊕ β1

p2→ β2.
If the two permutations p1 and p2 are independent then the probability of the

event (αL, αR) → (αL⊕β1, αR⊕β2) is Pr[αR
p1→ β1]·Pr[αL⊕β1

p2→ β2]. Thus, the
difference distribution table of the 2-round Feistel construction contains in any
entry the multiplication of the two related entries from p1’s and p2’s difference
distribution tables.

The first observation, is that if p1 and p2 are both APNPs, we get that all
entries in the difference distribution table of the construction are either zero, 4, or
2n+1 (in 2n+1 out of the 22n entries in each row/column), up to the 0 → 0 entry.
Thus, we can compute the effective linearity of two round Feistel construction
with independent APNP round functions is 3.

Our second observation is a more general one in nature. When we inspect
the difference distribution table of the 2-round construction (from 2n bits to 2n
bits) in order to compute the effective linearity of the construction, we find that:

tf =
∑

β∈{0,1}2n

(
DDT f (α, β)/2

2

)
=

=
∑ ∑
β1,β2∈{0,1}n

(
DDT p1(αR, β1)DDT p2(αL ⊕ β1, β2)

2

)
≥

≥ 2 ·
∑

β1∈{0,1}n

(
DDT p1(αR, β1)

2

)
·
∑

β2∈{0,1}n

(
DDT p2(αL, β2)

2

)
=

17

= 2 · tp1 · tp2

We note that this is done under the assumption that the probability Pr[γ = α]
is quite independent with α (this is required in order to omit the β1 difference
from the sum).

Thus, the value of tf of the construction is at least twice the multiplied values
tp1 , tp2 of the permutations p1 and p2. As the effective linearity is related to twice
the value of t, then the effective linearity of the construction is the multiplication
of the two effective linearities. Or formally:

EL(f) ≥ EL(p1) · EL(p2)

Our third observation is that not only EL(f) ≥ EL(p1) · EL(p2), in many
cases EL(f) ≥ EL(p1) · EL(p2) + EL(p2). The proof will be given in the final
version of this paper. The definition of the effective linearity requires that the
entire value K is non-zero. In the Feistel construction, it is possible that the last
round will be canceled even if the constant is non-zero (if the left half is 0 and
the right half is non-zero). In that case, the left half remains constant during
the computation of g (i.e., the left half of g(x) is the same as the left half of x).
This case occurs with probability 2−n.

The last observation is valid only if the second permutation is not a linear
permutation. If it is a linear permutation, then the second round has no effect
on the linearity of the construction.

The same reasoning can be used when the round functions are non-bijective.
In that case, as the round functions are not bijective, the number of zero entries
in the difference distribution table is greater, and there is a possibility that
p1(x) = p1(y) even if x 6= y. Obviously, this implies that the average probability
of α = γ is higher.

For example, when considering 2-round DES, we get from [5] that the dif-
ference distribution table of a DES round contains about 80% zero entries. This
means, that given that an entry is non-zero, its expected value is 6. As the dif-
ference distribution table of 2-round DES is related to the multiplication of two
1-round difference distribution tables, the expected entry in non-zero entries is
36. After considering the number of non-zero entries, we get that the effective
linearity of such a permutation is about 220. This is done under the assumption
that the difference distribution table is uniform (all non-zero entries but the
0 → 0 one are 36). In case it is not uniform (which is more likely) the effective
linearity is higher (as the effective linearity is proportional to the sum of squares
of the entries, and by Jensen’s inequalities is expected to be higher).

Our last result regarding Feistel constructions refers to a 3-round Feistel con-
struction. If the round functions are random permutations, then the left half of
the output difference is expected to behave randomly and uniformly. Thus, the
difference distribution table, which is a multiplication of the difference distri-
bution table of the left half and the right half, should have the same behavior
as of the right side — of a random permutation. Thus, its effective linearity is
predicted to be 2.

18

