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Abstract Based on the compression function of the hash function stan-
dard SHA-256, SHACAL-2 is a 64-round block cipher with a 256-bit
block size and a variable length key of up to 512 bits. In this paper, we
present a related-key rectangle attack on 42-round SHACAL-2, which
requires 2243.38 related-key chosen plaintexts and has a running time of
2488.37. This is the best currently known attack on SHACAL-2.
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1 Introduction

In 2000, Handschuh and Naccache [7] proposed a 160-bit block cipher SHACAL
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two versions, known as SHACAL-1 and SHACAL-2 [8], where SHACAL-1 is the
same as the original SHACAL, while SHACAL-2 is a 256-bit block cipher based
on the compression function of SHA-256 [20]. Both SHACAL-1 and SHACAL-2
were submitted to the NESSIE (New European Schemes for Signatures, Integrity,
and Encryption) project [18] and selected for the second phase of the evaluation;
however, in 2003, SHACAL-1 was not recommended for a NESSIE portfolio
because of concerns about its key schedule, while SHACAL-2 was selected to be
in the NESSIE portfolio.

The published cryptanalytic results on SHACAL-2 are as follows: Hong et al.
presented an impossible differential attack [2] on 30-round SHACAL-2 [9] and
Shin et al. presented a differential-nonlinear attack on 32-round SHACAL-2 [21],
which is a variant of the differential-linear attack [15]. Shin et al. also presented
a square-nonlinear attack on 28-round SHACAL-2. Recently, Kim et al. [14]
presented a related-key differential-nonlinear attack on 35-round SHACAL-2 and
a related-key rectangle attack on 37-round SHACAL-2, where the latter attack
is based on a 33-round related-key rectangle distinguisher. As far as the number
of the attacked rounds is concerned, the Kim et al.’s related-key rectangle attack
on 37-round SHACAL-2 is the best cryptanalytic result on SHACAL-2, prior to
the work described in this paper.

Like the amplified boomerang attack [11] and the rectangle attack [3,4], the
related-key rectangle attack [5,10,13] is also a variant of the boomerang attack
[22]. As a result, it shares the same basic idea of using two short differentials with
larger probabilities instead of a long differential with a smaller probability, but
requires an additional assumption that the attacker knows the specific differences
between one or two pairs of unknown keys. This additional assumption makes it
very difficult or even infeasible to conduct in many cryptographic applications,
but as demonstrated in [12], some of the current real-world applications may
allow for practical related-key attacks [1], say key-exchange protocols and hash
functions.

In this paper, based on relatively low difference propagations for the first sev-
eral rounds in the key schedule of SHACAL-2, we explore a 34-round related-key
rectangle distinguisher. We also introduce a differential property in SHACAL-2
such that we can apply the exploited “early abort” technique to discard some
disqualified candidate quartets earlier than usual. Relying on the 34-round dis-
tinguisher and the “early abort” technique, we mount a related-key rectangle
attack on 40-round SHACAL-2 when used with a 512-bit key. Finally, based
on several more delicate observations, we eventually mount a related-key rec-
tangle attack on 42-round SHACAL-2, which requires 2243.38 related-key chosen
plaintexts and has a running time of 2488.37.

The rest of this paper is organized as follows: In the next section, we briefly
describe some notation, the SHACAL-2 cipher and the related-key rectangle at-
tack. In Sect. 3, we introduce four properties in SHACAL-2. In Sect. 4, we present
our related-key rectangle attacks on 40 and 42-round SHACAL-2, respectively.
Section 5 concludes this paper.
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2 Preliminaries

2.1 Notation

The following notation will be used throughout this paper:

– ⊕ : the bitwise logical exclusive OR (XOR) operation
– & : the bitwise logical AND operation
– � : the addition modulo 232 operation
– ¬ : the complement operation
– ej : a 32-bit word with zeros in all positions but bit j (0 ≤ j ≤ 31)
– ei1,···,ij : ei1 ⊕ · · · ⊕ eij

– ej,∼ : a 32-bit word that has 0’s in bits 0 to j−1, 1 in bit j and unconcerned
values in bits (j + 1) to 31

2.2 The SHACAL-2 Cipher

SHACAL-2 [8] uses the compression function of SHA-256 [20], where the plain-
text enters the compression function as the chaining value, and the key enters
the compression function as the message block. Its encryption procedure can be
described as follows:

1. The 256-bit plaintext P is divided into eight 32-bit words A0, B0, C0, D0,
E0, F 0, G0 and H0.

2. For i = 0 to 63:
T i+1

1 = Ki � Σ1(Ei) � Ch(Ei, F i, Gi) � Hi � W i,
T i+1

2 = Σ0(Ai) � Maj(Ai, Bi, Ci),
Hi+1 = Gi,
Gi+1 = F i,
F i+1 = Ei,
Ei+1 = Di � T i+1

1 ,
Di+1 = Ci,
Ci+1 = Bi,
Bi+1 = Ai,
Ai+1 = T i+1

1 � T i+1
2 .

3. The ciphertext is (A64, B64, C64, D64, E64, F 64, G64, H64),

where Ki is the i-th round key, W i is the i-th round constant1, and the four
functions Ch(X, Y, Z), Maj(X, Y, Z), Σ0(X) and Σ1(X) are defined as follows,
respectively,

Ch(X, Y, Z) = (X&Y )⊕ (¬X&Z),
Maj(X, Y, Z) = (X&Y )⊕ (X&Z)⊕ (Y &Z),

Σ0(X) = S2(X)⊕ S13(X)⊕ S22(X),
Σ1(X) = S6(X)⊕ S11(X)⊕ S25(X),

1 In the specifications of [8,20] the term Ki is used for the round constant, and the
term W i is used for the round subkey. In this paper, we use the more standard
notation.



4

where Sj(X) represents right rotation of X by j bits.
The key schedule of SHACAL-2 takes as input a variable length key of up

to 512 bits. Shorter keys can be used by padding them with zeros to produce a
512-bit key string; however, the proposers recommend that the key should not be
shorter than 128 bits. The 512-bit user key K is divided into sixteen 32-bit words
K0,K1, · · · ,K15, which are the round keys for the initial 16 rounds. Finally, the
i-th round key (16 ≤ i ≤ 63) is generated as

Ki = σ1(Ki−2) � Ki−7 � σ0(Ki−15) � Ki−16, (1)
with σ0(X) = S7(X)⊕ S18(X)⊕R3(X),

σ1(X) = S17(X)⊕ S19(X)⊕R10(X),

where Rj(X) represents right shift of X by j bits2.

2.3 The Related-Key Rectangle Attack

The related-key rectangle attack [5,10,13] treats the block cipher E : {0, 1}n ×
{0, 1}k → {0, 1}n as a cascade of two sub-ciphers E = E1 ◦ E0. It assumes that
there exists a related-key differential α → β with probability p∗β for E0 (i.e.,
Pr[E0

K(X)⊕E0
K∗(X∗) = β|X⊕X∗ = α] = p∗β), where K and K∗ are two related

keys with a known difference, and a regular differential γ → δ with probability qγ

for E1 (i.e., Pr[E1
K(X)⊕E1

K(X∗) = δ|X⊕X∗ = γ] = Pr[E1
K∗(X)⊕E1

K∗(X∗) =
δ|X⊕X∗ = γ] = qγ). In our attack on SHACAL-2 we use a related-key differen-
tial for the first sub-cipher and a regular differential for the second sub-cipher,
i.e., our second differential has no key difference. Note that the related-key rec-
tangle attack can also use related-key differentials for both the sub-ciphers in
similar ways.

Let a quartet of plaintexts be denoted by (Pi, P
∗
i , Pj , P

∗
j ) with Pi ⊕ P ∗

i =
Pj ⊕ P ∗

j = α, where Pi and Pj are encrypted under EK , and P ∗
i and P ∗

j are
encrypted under EK∗ . Out of N pairs of plaintexts with related-key difference α
about N · p∗β pairs have a related-key output difference β after E0. These pairs

can be combined into about (N ·p∗β)2

2 candidate quartets such that each quartet
satisfies E0

K(Pi) ⊕ E0
K∗(P ∗

i ) = β and E0
K(Pj) ⊕ E0

K∗(P ∗
j ) = β. Assuming that

the intermediate values after E0 distribute uniformly over all possible values,
the event E0

K(Pi) ⊕ E0
K(Pj) = γ holds with probability 2−n. Once this occurs,

E0
K∗(P ∗

i ) ⊕ E0
K∗(P ∗

j ) = γ holds as well, for E0
K∗(P ∗

i ) ⊕ E0
K∗(P ∗

j ) = (E0
K(Pi) ⊕

E0
K∗(P ∗

i ))⊕ (E0
K(Pj)⊕E0

K∗(P ∗
j ))⊕ (E0

K(Pi)⊕E0
K(Pj)) = β ⊕ β ⊕ γ = γ. As a

result, the expected number of the quartets satisfying both E1
K(Pi)⊕E1

K(Pj) = δ
and E1

K∗(P ∗
i )⊕ E1

K∗(P ∗
j ) = δ is

∑
β,γ

(N · p∗β)2

2
· 2−n · (qγ)2 = N2 · 2−n−1 · (p̂∗ · q̂)2,

2 We alert the reader to the somewhat confusing notation of S(·) as cyclic rotation
and of R(·) as a shift operation.
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where p̂∗ =
√∑

β′ Pr2(α → β′) and q̂ =
√∑

γ′ Pr2(γ′ → δ).
On the other hand, for a random cipher, the expected number of right quar-

tets is about N2

2 · 2−2n = N2 · 2−2n−1. Therefore, if p̂∗ · q̂ > 2−n/2 and N is
sufficiently large, the related-key rectangle distinguisher can distinguish between
E and a random cipher.

3 Properties in SHACAL-2

Property 1 (from [21]) Let Z = X � Y and Z∗ = X∗ � Y ∗ with X, Y,X∗, Y ∗

being 32-bit words. Then, the following properties hold:

1. If X ⊕ X∗ = ej and Y = Y ∗, then Z ⊕ Z∗ = ej,j+1,···,j+k−1 holds with
probability 1

2k (j < 31, k ≥ 1 and j + k − 1 ≤ 30). In addition, in case
j = 31, Z ⊕ Z∗ = e31 holds with probability 1.

2. If X ⊕X∗ = ej and Y ⊕ Y ∗ = ej, then Z ⊕ Z∗ = ej+1,···,j+k−1 holds with
probability 1

2k (j < 31, k ≥ 1 and j+k−1 ≤ 30). In addition, in case j = 31,
Z = Z∗ holds with probability 1.

3. If X ⊕X∗ = ei,∼, Y ⊕ Y ∗ = ej,∼ and i > j, then Z ⊕ Z∗ = ej,∼ holds.

A more general description of this property can be obtained from the follow-
ing theorem in [16],

Theorem 1. Given three 32-bit differences ∆X, ∆Y and ∆Z. If the probability
Pr[(∆X,∆Y ) �→ ∆Z] > 0, then

Pr[(∆X,∆Y ) �→ ∆Z] = 2−s,

where the integer s is given by s = #{i|0 ≤ i ≤ 30, not((∆X)i = (∆Y )i =
(∆Z)i)}.

Property 2 (from [21]) The two functions Ch and Maj operate in a bit-by-bit
manner, therefore, each of them can be regarded as a boolean function from a
3-bit input to a 1-bit output. Table 1 shows the distribution probability of XOR
differences through them. The first three rows represent the eight possible differ-
ences of the 3-bit inputs x, y, z, and the last two rows indicate the differences
in the outputs of the two functions, where a “0” (resp., “1”) means that the
difference will always be 0 (resp., 1), and a “0/1” means that the difference will
be 0 or 1 with probability 1

2 .

Let’s introduce two other properties in SHACAL-2, as follows.

Property 3 Consider the difference propagation between a pair of data for any
four consecutive rounds i to i + 3. If the difference (∆Ai,∆Bi, · · · ,∆Hi) just
before the i-th round is known, then we can easily learn that:

1. The differences ∆Bi+1, ∆Ci+1, ∆Di+1, ∆F i+1, ∆Gi+1 and ∆Hi+1 just
before the (i + 1)-th round can be definitely determined, which are equal to
∆Ai, ∆Bi, ∆Ci, ∆Ei, ∆F i and ∆Gi, respectively.
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Table1. Differential distribution of the functions Ch and Maj

x 0 0 0 1 0 1 1 1
y 0 0 1 0 1 0 1 1
z 0 1 0 0 1 1 0 1

Ch 0 0/1 0/1 0/1 1 0/1 0/1 0/1
Maj 0 0/1 0/1 0/1 0/1 0/1 0/1 1

2. The differences ∆Ci+2, ∆Di+2, ∆Gi+2 and ∆Hi+2 just before the (i + 2)-
th round can be definitely determined, which are equal to ∆Bi+1, ∆Ci+1,
∆F i+1 and ∆Gi+1, respectively.

3. The differences ∆Di+3 and ∆Hi+3 just before the (i + 3)-th round can be
definitely determined, which are equal to ∆Ci+2 and ∆Gi+2, respectively.

Property 4 Let the two related keys K and K∗ have the difference e31 in both
the 0-th and 9-th round keys and have all zero difference in the others of the
first 16 round keys, then we can conclude by Eq. (1) that the round keys from
16 until 23 ( i.e., K16,K17, · · · ,K23) have all zero differences, for the following
equation holds with probability 1,

K∗16 = σ1(K∗14) � K∗9 � σ0(K∗1) � K∗0

= σ1(K14) � (K9 ⊕ e31) � σ0(K1) � (K0 ⊕ e31)
= σ1(K14) � K9 � σ0(K1) � K0

= K16.

4 Related-Key Rectangle Attacks on Reduced
SHACAL-2

In this section, based on Properties 1, 2 and 4, we explore a 34-round related-key
rectangle distinguisher, which can be directly used to mount a related-key rectan-
gle attack on 38-round SHACAL-2. Furthermore, by Property 3, we can partially
determine whether a candidate quartet is a valid one earlier than usual; if not,
we can discard it immediately, which results in less computations in the left steps
and may allow us to proceed by guessing one or more round subkeys, depending
on how many candidate quartets are remaining. We call this technique “early
abort”. In the case for SHACAL-2, we find that the “early abort” technique can
allow us to break two more rounds, that is to say, 40-round SHACAL-2 can be
broken faster than an exhaustive key search. Finally, based on several delicate
observations, we mount a related-key rectangle attack on 42-round SHACAL-2.
The details are as follows.

A 34-Round Related-Key Rectangle Distinguisher The key schedule of
SHACAL-2 has low difference propagations for the first several rounds. Partic-
ularly, as exploited in [14], if the two related user keys K and K∗ have zero
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differences in the first 16 rounds (0 ∼ 15) except the eighth round key K8, one
can easily learn from Eq. (1) in the key schedule that the keys from rounds
16 until 22 (K16,K17, · · · ,K22) have all zero differences. Consequently, Kim et
al. [14] exploited a 23-round related-key differential characteristic3 α → β for
Rounds 0 ∼ 22 with probability 2−33: (0, 0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29,
e31) → (0, 0, 0, 0, 0, 0, 0, 0). This 23-round related-key differential characteristic
requires 22 fixed bits in any pair of plaintexts to increase the differential proba-
bility for Round 0.

Then, they exploited a 10-round differential characteristic γ → δ for Rounds
23 ∼ 32 with probability 2−74: (0, e9,18,29, 0, 0, e31, e6,9,18,20,25,29, 0, 0) → (e11,23,
e3,14,15,24,25, e5,27, e9,18,29, e31, 0, 0, 0).

As a result, a 33-round related-key rectangle distinguisher with probability
2−470(= (2−33 · 2−74)2 · 2−256) can be obtained by combining these two differen-
tials. Finally, by counting many possible 10-round differentials γ′ → δ for Rounds
23 ∼ 32, they obtained a lower bound 2−464.32(= (2−33 ·2−71.16)2 ·2−256) for the
probability of this 33-round distinguisher. Based on this 33-round related-key
rectangle distinguisher, Kim et al. presented a related-key rectangle attack on
37-Round SHACAL-2.

However, we find that the property that the 22-th round key is the furthest
round key such that all the round keys from Rounds 16 to 22 have all zero
differences is just for the case that the two related user keys K and K∗ have
non-zero difference in only one of the first 16 round keys. If we study the key
schedule more delicately, allowing two, three or more round keys of the first 16
round keys have non-zero differences, we can get that the 23-th round key is the
furthest round key such that all the round keys from Rounds 16 to 23 have all
zero differences, which requires that K and K∗ have the difference e31 in both the
0-th and 9-th round keys and have all zero differences in the others of the first 16
round keys. This observation has already been introduced as Property 4 in Sect.
3. Thus, we get one more round with a zero subkey difference than Kim et al..
Moreover, we observe that these related keys K and K∗ produce K24 = L0 �L1

and K∗24 = L0 � (L1 ⊕ e13,24,28), respectively, where L0 = σ1(K22) � K17 � K8

and L1 = σ0(K9).
Now, we face the problem: could these delicate properties of the key schedule

incur a 34-round related-key rectangle distinguisher such that its probability is
far greater than 2−512 ? Our answer is positive.

Note that e31 happens to be the difference in the eighth round key K8 in the
Kim et al.’s 23-round related-key differential characteristic. It follows that we
can append one more round in the beginning of the Kim et al.’s 23-round related-
key differential characteristic with the first round key difference e31, which re-
sults in a 24-round related-key differential characteristic with probability 2−66:

3 We notice that the probability of the second round of the first differential characteris-
tic presented in [14] is 2−13, and not 2−11 as claimed. Hence, the 23-round related-key
differential characteristic holds with probability 2−33, not 2−31 as claimed in [14].
However, it can be repaired with a little more complexity by the way described
below. The corrected probability 2−33 is used in our paper.
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Table2. The 24-round related-key differential characteristic for E0 (Rounds 1 to 24)
and the preceding differential for Eb (Round 0), where M = {6, 9, 18, 20, 25, 29}

Round(i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆F i ∆Gi ∆Hi ∆Ki Prob.

0 0 eM e31 · e9,13,19 e18,29 e31 · e31 ·
1 0 0 eM e31 0 e9,13,19 e18,29 e31 0 1

2 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−12

3 0 e31 0 0 e6,20,25 0 0 e9,13,19 0 2−7

4 0 0 e31 0 0 e6,20,25 0 0 0 2−4

5 0 0 0 e31 0 0 e6,20,25 0 0 2−3

6 0 0 0 0 e31 0 0 e6,20,25 0 2−4

7 0 0 0 0 0 e31 0 0 0 2−1

8 0 0 0 0 0 0 e31 0 0 2−1

9 0 0 0 0 0 0 0 e31 e31 1

10 0 0 0 0 0 0 0 0 0 1
...

...
...

...

23 0 0 0 0 0 0 0 0 0 1

24 0 0 0 0 0 0 0 0 · 2−6

25 e13,24,28 0 0 0 e13,24,28 0 0 0 · ·

(0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31, e2,3,7,8,13,16,20,26,30) → (0, 0, 0, 0, 0, 0, 0,
0). Similar to the Kim et al.’s attack, we can adopt some delicate improvements
to conduct a related-key rectangle attack on 38-round SHACAL-2 based on this
24-round related-key differential and our 10-round differential below. Neverthe-
less, to make maximal use of Property 3, we will use this appended round for
a key recovery in our following attacks on 40 and 42-round SHACAL-2. Fur-
ther, let’s consider the round key difference K24⊕K∗24 in Round 24. Obviously,
many difference possibilities are caused due to the addition modulo 232 oper-
ations in the key schedule. This round key is then taken the addition modulo
232 operation with the output of Round 23. Due to the zero difference in the
output of Round 23, we can count over the possibilities for all the additions
together when we compute p̂∗ in the following. Here, we can add one more
round to the end of the Kim et al.’s 23-round related-key differential char-
acteristic to obtain a 24-round (1 ∼ 24) related-key differential characteristic
α → β with probability 2−38: (0, 0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31) →
(e13,24,28, 0, 0, 0, e13,24,28, 0, 0, 0). See Table 2 for details. Note that our 24-round
related-key differential characteristic described in Table 2 requires the following
12-bit conditions on the two inputs to Round 1, (A1, B1, C1, D1, E1, F 1, G1,H1)
and (A∗1, B∗1, C∗1, D∗1, E∗1, F ∗1, G∗1,H∗1) whose difference is α:

a1
6 = b1

6, a1
9 = b1

9, a1
18 = b1

18, a1
20 = b1

20,
a1
25 = b1

25, a1
29 = b1

29, a1
31 = b1

31, e1
9 = 0,

e1
13 = 0, e1

18 = 1, e1
19 = 0, e1

29 = 1,
(2)
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Table3. The 10-round differential characteristic for E1 (Rounds 25 to 34), where M ′ =
{6, 9, 18, 20, 25, 29, 31}

Round(i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆F i ∆Gi ∆Hi Prob.

25 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 0 2−15

26 e31 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 2−12

27 0 e31 e31 e31 e6,20,25 0 0 e9,13,19 2−7

28 0 0 e31 e31 e31 e6,20,25 0 0 2−8

29 0 0 0 e31 e31 e31 e6,20,25 0 2−7

30 0 0 0 0 e31 e31 e31 e6,20,25 2−4

31 0 0 0 0 0 e31 e31 e31 1

32 0 0 0 0 0 0 e31 e31 2−1

33 0 0 0 0 0 0 0 e31 1

34 e31 0 0 0 e31 0 0 0 2−11

35 e6,9,18,20,25,29 e31 0 0 e6,20,25 e31 0 0 ·

where a1
i , b1

i and e1
i are the i-th bits of A1, B1 and E1, respectively. If the two

input values to Round 1 meet the α difference and Eq. (2), we can remove the
differential probabilities incurred by the Ch and Maj functions in Rounds 1 and
2 (for Round 2, only the condition a1

31 = b1
31 is used).

On the other hand, we can use the Kim et al.’s 10-round differential charac-
teristic for Rounds 25 to 34 to construct a 34-round related-key rectangle dis-
tinguisher. However, we explore a more powerful 10-round differential character-
istic γ → δ for Rounds 25 ∼ 34: (e31, e31, e6,9,18,20,25,29,31, 0, 0, e9,13,19, e18,29,31,
0) → (e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0) 4, which holds with probability
2−65. See Table 3.

To compute p̂∗ (resp., q̂) (defined in Sect. 2.3), we need to sum the square
of the probabilities of all the differentials with the input difference α through
E0 (resp., all the differentials with the output difference δ through E1), which
is computationally infeasible. As a countermeasure, to compute p̂∗, we can
count some of such possible differentials that have the same first 23-round
differences as the 24-round related-key differential characteristic in Table 2.
The 192-bit difference (∆B25,∆C25,∆D25,∆F 25,∆G25,∆H25) in such a pos-
sible output difference of Round 24 can be determined to be all 0’s by the
corresponding 192-bit difference in the input difference to Round 24, there-
fore, we only need to count the possible 64-bit output difference (∆A25,∆E25)
of Round 24. By counting 42 possible differentials, we can compute a lower
bound 2−37(≈ (2−38·2 + 6 · 2−39·2 + 15 · 2−40·2 + 20 · 2−41·2)

1
2 ) for the prob-

ability p̂∗ of the 24-round differentials α → β′. The upper part of Table 4
gathers some of these differences according to their probabilities. Similarly, we
can compute a lower bound 2−63.38(= (2 · 2−65·2 + 22 · 2−66·2 + 32 · 2−67·2)

1
2 )

for the probability q̂ of the 10-round differentials γ′ → δ by counting 56 out

4 Note that this 10-round differential can be also used to improve the Kim et al.’s
33-round related-key rectangle distinguisher.
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Table4. Possible differences in E0 and E1 with their respective probability

Prob. (∆A25, ∆E25) in E0

2−38 (e13,24,28, e13,24,28)

2−39 (e13,14,24,28, e13,24,28), (e13,24,25,28, e13,24,28), (e13,24,28,29, e13,24,28),
(e13,24,28, e13,14,24,28), (e13,24,28, e13,24,25,28), (e13,24,28, e13,24,28,29)

Prob. (∆D25, ∆H25) in E1

2−65 (0, 0), (0, e31)

(e9, e9), (e18, e18), (e29, e29), (0, e9), (0, e13), (0, e18), (e18, e31), (e9, e31),
2−66 (0, e19), (0, e29), (0, e9,31), (0, e13,31), (0, e18,31), (e29, 0), (e18, 0), (e9, 0),

(0, e19,31), (0, e29,31), (e9, e9,31), (e18, e18,31), (e29, e29,31), (e29, e31)

of those that have the same last 9-round differential as the 10-round differ-
ential in Table 3: (e31, e31, e6,9,18,20,25,29,31,∆D25, 0, e9,13,19, e18,29,31,∆H25) →
(e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0). The lower part of Table 4 lists some of
these (∆D25,∆H25) according to their probabilities. Therefore, we can obtain
a lower bound 2−456.76(= (2−37 · 2−63.38)2 · 2−256) for the probability of our
34-round related-key rectangle distinguisher (Rounds 1 to 34).

4.1 Attacking 40-Round SHACAL-2

We are now ready to explain our related-key rectangle attack on 40-round
SHACAL-2. Assume that 40-round SHACAL-2 uses related keys K and K∗

whose difference is (e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0). First, we use the 34-
round related-key rectangle distinguisher to obtain a small portion of subkey
candidates in Rounds 0, 35, 36, 37, 38 and 39. Second, we do an exhaustive
search for the obtained subkey candidates and the remaining key bits to recover
the 512-bit related keys K and K∗. In order to apply the 34-round distinguisher
to this attack, we need to collect enough input pairs to Round 1 which meet the
α difference and Eq. (2). For this, we use enough pairs of plaintext structures.
The details of our attack are as follows:

1. Choose 2178.38 structures Si of 264 plaintexts Pi,l each, i = 1, 2, · · · , 2178.38,
l = 1, 2, · · · , 264, where in each structure the 192 bits of words A, B, C, E, F,
G are fixed. With a chosen plaintext attack scenario, obtain all their corre-
sponding ciphertexts under the key K, denoted Ci,l.

2. Compute 2178.38 structures S∗
i of 264 plaintexts each by XORing the plain-

texts in Si with the 256-bit value (0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31, 0).
With a chosen plaintext attack scenario, obtain all their corresponding ci-
phertexts under the key K∗.

3. Guess a 32-bit subkey K0 in Round 0 and compute K∗0 = K0⊕e31. Encrypt
each plaintext Pi,l through Round 0 with K0 to get its intermediate value
just after Round 0. We denote the encrypted value by xi,l. Check if xi,l meets
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Eq. (2). If yes, compute x∗i,l = xi,l ⊕α and then decrypt x∗i,l through Round
0 with K∗0 to get its plaintext, denoted by P ∗

i,l. Find P ∗
i,l in S∗

i . We denote
by C∗

i,l the corresponding ciphertext for P ∗
i,l.

4. Guess a 96-bit subkey pair ((K37,K38,K39), (K∗37,K∗38,K∗39)) in Rounds
37, 38 and 39. For the guessed subkey pair, do the following:
(a) Decrypt all the ciphertexts Ci,l through Rounds 37, 38 and 39 with

K37, K38 and K39 to get their intermediate values just before Round
37. We denote these values by C37

i,l . Keep them in a table. Decrypt all
the ciphertexts C∗

i,l through Rounds 37, 38 and 39 with K∗37, K∗38 and
K∗39 to get their intermediate values just before Round 37. We denote
these values by C∗37

i,l . Keep them in another table.
(b) Check if C37

i0,l0
⊕ C37

i1,l1
and C∗37

i0,l0
⊕ C∗37

i1,l1
belong to δ(2), for all 1 ≤

i0 < i1 ≤ 2178.38, 1 ≤ l0, l1 ≤ 264 and all 1 ≤ i0 = i1 ≤ 2178.38,
1 ≤ l0 < l1 ≤ 264, where δ(2) is the set of all the possible differences
caused by the δ difference after 2 rounds. Record (K0,K37,K38,K39)
and all the qualified quartets and then go to Step 5.

5. Guess a 32-bit subkey pair (K36,K∗36) in Round 36. For the guessed subkey
pair, do the following:
(a) For each remaining quartet (C37

i0,l0
, C37

i1,l1
, C∗37

i0,l0
, C∗37

i1,l1
), decrypt C37

i0,l0

and C37
i1,l1

through Round 36 with K36 to get their intermediate val-
ues just before Round 36, and decrypt C∗37

i0,l0
and C∗37

i1,l1
through Round

36 with K∗36 to get their intermediate values just before Round 36. We
denote the decrypted quartet by (C36

i0,l0
, C36

i1,l1
, C∗36

i0,l0
, C∗36

i1,l1
).

(b) Check if C36
i0,l0

⊕C36
i1,l1

and C∗36
i0,l0

⊕C∗36
i1,l1

belong to δ(1), where δ(1) is the
set of all the possible differences caused by the δ difference after 1 round.
Record (K0,K36,K37,K38,K39) and all the qualified quartets and then
go to Step 6.

6. Guess a 32-bit subkey pair (K35,K∗35) in Round 35. For the guessed subkey
pair, do the following:
(a) For each remaining quartet (C36

i0,l0
, C36

i1,l1
, C∗36

i0,l0
, C∗36

i1,l1
), decrypt C36

i0,l0

and C36
i1,l1

through Round 35 with K35 to get their intermediate val-
ues just before Round 35, and decrypt C∗36

i0,l0
and C∗36

i1,l1
through Round

35 with K∗35 to get their intermediate values just before Round 35. We
denote the decrypted quartet by (C35

i0,l0
, C35

i1,l1
, C∗35

i0,l0
, C∗35

i1,l1
).

(b) Check if C35
i0,l0

⊕ C35
i1,l1

= C∗35
i0,l0

⊕ C∗35
i1,l1

= δ. If there exist more than
5 quartets passing this δ test, record (K0,K35,K36,K37,K38,K39) and
go to Step 7. Otherwise, repeat Step 6 with another guessed key pair (if
all the possible key pairs for Round 35 are tested, then repeat Step 5
with another guessed key pair for Round 36; if all the possible key pairs
for Round 36 are tested, then repeat Step 4 with another guessed key
pair for Rounds 37, 38 and 39; if all the possible key pairs for Rounds
37, 38 and 39 are tested, then repeat Step 3 with another guessed key
pair for Round 0).
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7. For a suggested (K0,K35,K36,K37,K38,K39), do an exhaustive search for
the remaining 320 key bits using trial encryption. If a 512-bit key is sug-
gested, output it as the master key of the 40-round SHACAL-2. Otherwise,
run the above steps with another guess of subkey pair.

This attack requires 2243.38 related-key chosen plaintexts. The required mem-
ory for this attack is dominated by Step 4, which is approximately 2243.38 · 32 ≈
2247.38 memory bytes.

The time complexities of Steps 1 and 2 are 2243.38 40-round SHACAL-2
encryptions each. The time complexity of Step 3 is about (2242.38 + 2230.38) ·
232 · 1

40 ≈ 2269.06 40-round SHACAL-2 encryptions, for Eq. (2) has a 12-bit
filtering. Moreover, for each guessed subkey pair, we have about 2230.38×2/2 =
2459.76 quartets tested in Step 4. Since the decryptions in Step 4 can be done
independent of Step 3, Step 4 requires about 2231.38 · 2192 · 3

40 ≈ 2419.64 40-round
SHACAL-2 encryptions and about 2231.38 · 2192 · 232 = 2455.38 memory accesses.

From the difference δ, we can definitely determine the differences in words C,
D, G, and H of every possible difference in the set δ(2). Moreover, we observe
that there are about 228 possible differences in word B and 217 possible differ-
ences in F . Hence, there are about 264+28+17 = 2109 possible differences in δ(2).
It follows that about 2459.76·2(−256+109)·2 = 2165.76 quartets are suggested in Step
4. Since Step 5-(a) runs about 2288 times (equivalent to the number of guessed
subkey pairs), it requires about 2165.76 ·4 ·2288 · 1

40 ≈ 2450.43 40-round SHACAL-2
encryptions. Similarly, δ(1) and δ additionally have a 64-bit and a 45-bit filter-
ings, so about 2165.76 · 2−64·2 = 237.76 and 237.76 · 2−45·2 = 2−52.24 quartets (for
each wrong guess of subkey pairs) are expected to be suggested in Steps 5 and
6, respectively, and thus Step 6 requires 237.76 · 4 · 2352 · 1

40 ≈ 2386.43 40-round
SHACAL-2 encryptions. By the Poisson distribution X ∼ Poi(λ = 2−52.24),
PrX [X > 5] ≈ 2−323, the expected number of wrong subkey pairs suggested in
Step 6 is about 2−323 ·2352 = 229. It follows that the time complexity of Step 7 is
about 2349(= 229 · 2320) 40-round SHACAL-2 encryptions. Therefore, the total
time complexity of this attack is about 2450.43 40-round SHACAL-2 encryptions.

If the guessed subkey pair is right, then the expected number of the quartets
suggested in Step 6 is about 2459.76 · 2−456.76 = 23, for about 2459.76 quartets are
tested in this attack and the 34-round related-key rectangle distinguisher holds
with probability 2−456.76. Thus, the probability that the number of remaining
quartets for the right subkey pair is more than 5 is 0.8 by the Poisson distribution,
X ∼ Poi(λ = 23), PrX [X > 5] ≈ 0.8. Hence, this attack works with a success
probability of 0.8.

Note: We can reduce the time complexity of our attack on 40-round SHACAL-2
in Section 4.1 to about 2448.43 40-round SHACAL-2 encryptions by adopting the
following two delicate improvements: First, we only guess the least significant 31
bits of the subkey K0 in Step 3, due to the fact that the most significant bit in
the key difference is fixed. Second, we guess the least significant 31 bits of the
subkey pairs (K36,K∗36) and the difference between their most significant bits
to check the δ(1) test in Step 5, instead of guessing all the 32-bit values of the
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subkey pairs. In Step 6, we guess the least significant 31 bits of the subkey pairs
(K35,K∗35) and the difference between their most significant bits to check the δ
test. Since the total time complexity of this attack is dominated by Step 5-(a),
it is reduced by a factor of 4.

4.2 Attacking 42-Round SHACAL-2

We find that the above attack can be improved to break as far as 42-round
SHACAL-2 by guessing additive differences between related subkey pairs, in-
stead of guessing actual values of them. Our improved attack is based on the
following observations.

Observation 1: If we know the actual values of (Ai, Bi, · · · ,Hi) and (A∗i, B∗i,
· · · ,H∗i), and the additive difference between Ki−1 and K∗i−1, then we know
the actual values of (Ai−1, Bi−1, · · · , Gi−1) and (A∗i−1, B∗i−1, · · · , G∗i−1), and
the additive difference between Hi−1 and H∗i−1.

Observation 2: If we know the actual values of (Ai−1, Bi−1, · · · , Gi−1) and
(A∗i−1, B∗i−1, · · · , G∗i−1), and the additive difference between Hi−1 and H∗i−1,
then we know the actual values of (Ai−5, Bi−5, Ci−5) and (A∗i−5, B∗i−5, C∗i−5),
and the additive difference between Di−5 and D∗i−5.

Observation 3: The additive difference between 32-bit words X and Y is the
same as their XOR difference if X ⊕ Y = 0 or X ⊕ Y = e31.

Based on these observations the above attack algorithm can be improved to
an attack on 42-round SHACAL-2. Here, we use the early abort technique one
step earlier. Let’s briefly describe the attack procedure as follows:

– We perform the above Steps 1, 2 and 3.
– In Step 4, we guess a 64-bit subkey pair ((K40,K41), (K∗40,K∗41)) and an

additive difference between K39 and K∗39, and then decrypt all the cipher-
texts to obtain the actual values of (A39, B39, · · · , G39) and (A∗39, B∗39, · · · ,
G∗39), and the additive difference between H39 and H∗39 (by Observation
1). It allows to know (A35, B35, C35) and (A∗35, B∗35, C∗35), and the additive
difference between D35 and D∗35 (by Observation 2), so we can discard some
wrong quartets by checking if the decrypted quartets satisfy the first half
of the δ difference. Since it has a 256-bit filtering for the decrypted quar-
tets, about 2459.76 ·2−256 = 2203.76 quartets are suggested. This step requires
about 264·2+32 · 2231.38 · 7

42 = 2388.80 42-round SHACAL-2 encryptions and
264·2+64 · 2231.38 = 2423.38 memory accesses.

– In Step 5, we guess a 64-bit subkey pair of (K38,K39) and (K∗38,K∗39) (note
the additive difference between K39 and K∗39 is fixed in the previous step),
and then decrypt all the remaining quartets to obtain their input values of
round 38. Since H38 is the same as E35, we can discard all the quartets
which do not satisfy the e6,20,25 XOR difference in H38. It has a 64-bit
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filtering for the decrypted quartets, so about 2203.76 · 2−64 = 2139.76 quartets
are suggested. This step requires about 264·4+32 · 2203.76+2 · 1

42 = 2488.37

42-round SHACAL-2 encryptions.
– In Step 6, we guess an additive difference between K37 and K∗37 to check if

the remaining quartets satisfy the e31 difference in H37, which is the same as
F 35. In Step 7, we guess a 64-bit subkey pair of (K36,K37) and (K∗36,K∗37)
(note the additive difference between K37 and K∗37 is fixed in the previous
step) to check if the remaining quartets satisfy zero difference in H36, which
is the same as G35. In Step 8, we guess a 64-bit subkey pair of (K35,K36) and
(K∗35,K∗36) (note the additive difference between K36 and K∗36 is fixed in
the previous step) to check if the remaining quartets satisfy zero difference
in H35. We go to the final step with the guessed subkey pair which has more
than 5 remaining quartets. Finally, in Step 9, we do an exhaustive search to
find the 512-bit master keys. Each of Steps 6, 7, 8 and 9 takes a dramatically
less time complexity than Step 5.

Therefore, the time complexity of the attack is dominated by Step 5, which
is about 2488.37 42-round SHACAL-2 encryptions. Obviously, the attack is faster
than an exhaustive key search.

5 Conclusions

In this paper, we exploit a 34-round related-key rectangle distinguisher after
finding a delicate property in the key schedule of SHACAL-2. We also introduce
a differential property that can allow us to apply the “early abort” technique to
discard some disqualified candidate quartets earlier than usual. Based on them,
we mount a related-key rectangle attack on 40-round SHACAL-2. Finally, based
on several more delicate observations, we improve it to a related-key rectangle
attack on 42-round SHACAL-2. Table 5 compares the results obtained in this
paper with the previous ones on SHACAL-2 when used with 512 key bits.

Table5. Comparison of our result and previous ones on SHACAL-2

Type of Attack Rounds Data T ime Memory Source

Impossible differential 30 744CP 2495.1 214.5 [9]

Differential-nonlinear 32 243.4CP 2504.2 248.4 [21]

Square-nonlinear 28 463 · 232CP 2494.1 245.9 [21]

RK differential-nonlinear 35 242.32RK-CP 2452.10 247.32 [14]

RK Rectangle 37† 2235.16RK-CP 2486.95 2240.16 [14]

40 2243.38RK-CP 2448.43 2247.38 This paper
42 2243.38RK-CP 2488.37 2247.38 This paper

RK: Related-Key, CP: Chosen Plaintexts, Memory unit: Byte, Time unit: Encryption
†: The indicated attack complexity is a corrected one
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