
A Simple Related-Key Attack on the Full
SHACAL-1

Eli Biham1?, Orr Dunkelman1,2∗, Nathan Keller??3

1Computer Science Department, Technion.
Haifa 32000, Israel

{biham,orrd}@cs.technion.ac.il
2Katholieke Universiteit Leuven, ESAT/SCD-COSIC

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
orr.dunkelman@esat.kuleuven.be

3Einstein Institute of Mathematics, Hebrew University.
Jerusalem 91904, Israel

nkeller@math.huji.ac.il

Abstract. SHACAL-1 is a 160-bit block cipher with variable key length
of up to 512-bit key based on the hash function SHA-1. It was submit-
ted to the NESSIE project and was accepted as a finalist for the 2nd
phase of evaluation. Since its introduction, SHACAL-1 withstood exten-
sive cryptanalytic efforts. The best known key recovery attack on the full
cipher up to this paper has a time complexity of about 2420 encryptions.
In this paper we use an observation due to Saarinen to present an elegant
related-key attack on SHACAL-1. The attack can be mounted using
two to eight unknown related keys, where each additional key reduces
the time complexity of retrieving the actual values of the keys by a
factor of 262. When all eight related-keys are used, the attack requires
2101.3 related-key chosen plaintexts and has a running time of 2101.3

encryptions. This is the first successful related-key key recovery attack
on a cipher with varying round constants.

1 Introduction

In 1993, NIST has issued a standard hash function called Secure Hash Algorithm
(FIPS-180) [27]. Later this version was named SHA-0, as NIST published a
small tweak to this standard called SHA-1 in 1995. Both SHA-0 and SHA-1 are
Merkle-Damgard hash functions with compression function that accept blocks
of 512 bits and chaining values of 160 bits (which is also the digest size). Later,
NIST has published three more standard hash functions as part of FIPS-180:
SHA-256, SHA-384 and SHA-512. Each of the new hash functions has a digest
size corresponding to its number, i.e., SHA-256 has a 256-bit digest, etc. Recently,
NIST has issued another hash function, SHA-224, that has a digest size of 224
bits.
? This work was supported in part by the Israel MOD Research and Technology Unit.

?? The author was supported by the Adams fellowship.

Both SHA-0 and SHA-1 were subjected to a great deal of analysis [2, 3, 12,
30, 32, 34]. In the last two years there was a major progress in the attacks on
both of the hash functions. This progress included finding a collision in SHA-0,
and devising an algorithm that can find a collision in SHA-1 in less than 263

SHA-1 applications [2, 3, 30, 32, 34]. The new techniques are based on finding
good differentials of the compression function of SHA-1 and combining them
with some novel plaintext modification techniques.

In 2000 it was suggested to use the compression function of SHA-1 as a
block cipher [15]. Later this suggestion was named SHACAL-1 and submitted
to the NESSIE project [16]. SHACAL-1 is a 160-bit block cipher with a variable
key length (0–512 bits) and 80 rounds based on the compression function of
SHA-1. The cipher was selected as a NESSIE finalist, but was not selected for
the NESSIE portfolio [25].

Several papers analyze the strength of SHACAL-1 as a block cipher [6, 17, 20,
21]. These papers apply differential, amplified boomerang, rectangle and related-
key rectangle attacks to reduced-round variants of SHACAL-1. The best known
attack on SHACAL-1 that does not use related-keys is a rectangle attack on
49-round SHACAL-1 [6].

In a recent paper a transformation of the collision-producing differentials
of SHA-1 presented in [32] was used to devise the first known attack on the full
SHACAL-1 [13]. The attack is a related-key rectangle attack that requires 2159.8

chosen plaintexts encrypted under four related keys and has a time complexity
of 2423 encryptions.

In [23], Saarinen observed that it is possible to construct slid pairs in the
compression function of SHA-1 using about 297 chosen chaining values (for two
different blocks of message). Saarinen used the slid pairs to mount a related-
key distinguishing attack against SHACAL-1 requiring 297 chosen plaintexts
encrypted under two related keys and time complexity of 297 encryptions.

In this paper we use the results of [23] to devise key-recovery attacks against
the full SHACAL-1 with much lower data and time complexities than previously
known. The attacks use between two and eight unknown related keys, where
each additional key reduces the time complexity of retrieving the actual values
of the keys by a factor of 262. When all eight related-keys are used, the attack
requires 2101.3 related-key chosen plaintexts and has a running time of 2101.3

encryptions. A comparison of the known attacks on SHACAL-1 along with our
new results is presented in Table 1.

This is the first time a related-key attack succeeds against a cipher with
varying round constants. Moreover, this is the first case, where the related-key
process is used with some probability without combining it with other attacks,
e.g., related-key differentials [19] or related-key rectangle attack [7, 20, 17].

This paper is organized as follows: In Section 2 we describe the block cipher
SHACAL-1. In Section 3 we describe the previously known results on SHACAL-
1. We shortly describe Saarinen’s main observation on SHA-1 in Section 4. In
Section 5 we present our new related-key attack on SHACAL-1. We summarize
the paper in Section 6.

2

Attack & Source Number of Rounds Complexity
Keys Rounds Data Time

Differential [21] 1 41 0–40 2141 CP 2491

Amplified Boomerang [21] 1 47 0–46 2158.5 CP 2508.4

Rectangle [6] 1 47 0–46 2151.9 CP 2482.6

Rectangle [6] 1 49 29–77 2151.9 CC 2508.5

Related-Key Rectangle [20] 2 59 0–58 2149.7 RK-CP 2498.3

Related-Key Rectangle [17] 4 70 0–69 2151.8 RK-CP 2500.1

Related-Key Rectangle [13] 4 80 0–79 2159.8 RK-CP 2423.0

Related-Key Rectangle [13] 4 80 0–79 2153.8 RK-CP 2504.2

Slide † [23] 2 80 0–79 297 RK-CP 297

Related Key (Section 5) 2 80 0–79 297 RK-CP 2447

Related Key (Section 5) 4 80 0–79 299.6 RK-CP 2321

Related Key (Section 5) 8 80 0–79 2101.3 RK-CP 2101.3

Complexity is measured in encryption units.
† – Distinguishing attack
CP — Chosen Plaintexts, CC — Chosen Ciphertexts, RK — Related-Key

Table 1. Summary of Our Results and Previously Known Results on SHACAL-1.

2 Description of SHACAL-1

SHACAL-1 [16] is a 160-bit block cipher supporting variable key lengths (0–512
bits). It is based on the compression function of the hash function SHA-1 [27].
The cipher has 80 rounds (also referred as steps) grouped into four types of 20
rounds each.1

The 160-bit plaintext is divided into five 32-bit words – A,B,C, D and E.
We denote by Xi the value of word X before the ith round, i.e., the plaintext
P is divided into A0, B0, C0, D0 and E0, and the ciphertext is composed of
A80, B80, C80, D80 and E80.

In each round the words are updated according to the following rule:

Ai+1 = Wi + ROTL5(Ai) + fi(Bi, Ci, Di) + Ei + Ki

Bi+1 = Ai

Ci+1 = ROTL30(Bi)
Di+1 = Ci

Ei+1 = Di

where + denotes addition modulo 232, ROTLj(X) represents rotation to the
left by j bits, Wi is the round subkey, and Ki is the round constant.2 There are

1 To avoid confusion, we adopt the common notations for rounds. In [16] the notation
step stands for round, where round is used for a group of 20 steps.

2 This time we adopt the notations of [16], and alert the reader of the somewhat
confusing notations.

3

three different functions fi, selected according to the round number:

fi(X, Y, Z) = fif = (X&Y)|(¬X&Z) 0 ≤ i ≤ 19
fi(X, Y, Z) = fxor = (X ⊕ Y ⊕ Z) 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X, Y, Z) = fmaj = ((X&Y)|(X&Z)|(Y &Z)) 40 ≤ i ≤ 59

There are also four round constants:

Rounds Ki Rounds Ki

0–19 5A827999x 20–39 6ED9EBA1x

40–59 8F1BBCDCx 60–79 CA62C1D6x

In [16] it is strongly advised to use keys of at least 128 bits, even though
shorter keys are supported. The first step in the key schedule algorithm is to
pad the supplied key into a 512-bit key. Then, the 512-bit key is expanded into
eighty 32-bit subkeys (or a total of 2560 bits of subkey material). The expansion
is done in a linear manner using a linear feedback shift register (over GF (232)).

The key schedule is as follows: Let M0, . . . ,M15 be the 16 key words (32
bits each). Then the round subkeys W0, . . . ,W79 are computed by the following
algorithm:

Wi =
{

Mi 0 ≤ i ≤ 15
ROTL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) 16 ≤ i ≤ 79

3 Previous Results

A preliminary differential and linear analysis of the properties of the compression
function of SHA-1 as a block cipher is presented in [15]. The found differentials
are relatively short (10 rounds) and have probabilities varying between 2−13 and
2−26 (depending on the round functions).

In [28] these differentials are improved, and 20-round differentials with prob-
ability 2−41 are presented. In [21] another set of differentials of SHACAL-1 is
presented, including a 30-round differential with probability 2−130.

In [21] a 21-round differential for rounds 0–20 and a 15-round differential for
rounds 21–35 are combined to devise an amplified boomerang distinguisher [18]
for 36-round SHACAL-1. This distinguisher is used to attack 39-round SHACAL-
1 using 2158.5 chosen plaintexts and about 2250.8 39-round SHACAL-1 encryp-
tions. The attack is based on guessing the subkeys of the three additional rounds,
and then checking whether the distinguisher succeeds. This approach is further
extended to attack 47-round SHACAL-1 before exhaustive key search becomes
faster than this attack. Another attack presented in [21] is a differential attack on
41-round SHACAL-1. The success of these attacks was questioned and resolved
in [6].

Besides resolving the problems with previous attacks, in [6] a rectangle at-
tack on 49-round SHACAL-1 is presented. The attack requires 2151.9 chosen

4

plaintexts, and has a running time equivalent to 2508.5 49-round SHACAL-1
encryptions.

In [20] a related-key rectangle attack with two keys is presented against 59-
round SHACAL-1. This attack has a data complexity of 2149.7 related-key chosen
plaintexts and a time complexity of 2498.3 59-round SHACAL-1 encryptions. This
attack is improved in [17] to a related-key rectangle attack with four keys on 70-
round SHACAL-1. The improved attack has a data complexity of 2151.8 related-
key chosen plaintexts, and a time complexity of 2500.1 70-round SHACAL-1
encryptions.

Using the improved differentials of SHA-1 found in [32] and some improved
key recovery techniques, two related-key rectangle attacks with four keys on
the full SHACAL-1 are given in [13]. The first has a data complexity of 2159.8

related-key chosen plaintexts and a time complexity of 2423.0 encryptions, and
the second has a data complexity of 2153.8 related-key chosen plaintexts and a
time complexity of 2504.2 encryptions.

Summarizing the known attacks on SHACAL-1, the best known attacks
against SHACAL-1 use the rectangle technique. The best attack in the related-
key model is applicable against the full SHACAL-1, while the best chosen plain-
text attack is applicable for a 49-round reduced variant of the cipher. Both of
the attacks require a very large amount of chosen plaintexts and a very high
time complexity.

4 Slid Pairs in the Compression Function of SHA-1

4.1 Related-Key Attacks and Slid Pairs

Related key attacks [1, 22] are attacks that exploit relations during encryption
under different keys. Let us consider an iterated block cipher whose key schedule
is simple enough such that for any key K1, it is possible to find K2 such that
the round subkeys KR1

i ,KR2
i produced by K1 and K2, respectively, satisfy:

KR1
i = KR2

i+1

Assume that like in many ciphers, all the rounds of the cipher are the same.
For such pair of keys, if a pair of plaintexts (P1, P2) satisfies P1 = fKR2

1
(P2),

where fsk(P) denotes one round encryption of P under the subkey sk, then the
corresponding ciphertexts C1 and C2 satisfy C1 = fKR1

r
(C2), where r is the

number of rounds. Given such a pair of plaintexts for these related keys, it is
possible to find the keys using a very simple attack algorithm.

In [10] Biryukov and Wagner show that the related key attacks can be applied
to ciphers that can be written as Ek = f l

k = fk ◦ fk ◦ . . . ◦ fk, where fk is a
“relatively simple” key-dependent function. The attack looks for two plaintexts
P1 and P2 satisfying the relation P2 = fk(P1). Such a pair is called a slid pair,
and can be used in an attack that is similar to the attack in the case of related
keys.

5

In the slide attack, the attacker collects 2n/2 known plaintext/ciphertext pairs
(where n is the block size). For every pair of plaintexts (P1, P2), the attacker
checks whether it is a slid pair by treating the pair as a slid pair and trying
to use it to attack fk. The time complexity of the attack is 2n applications of
the attack on fk given a slid pair. Note that the data and time complexities
are independent of the number of rounds in Ek. The slide attack was further
generalized in [8, 11, 14] to be applicable to a wider range of block ciphers.

4.2 Saarinen’s Observation

Saarinen has observed that slid pairs can be found (with some probability) in
the compression function of SHA-1, i.e., in SHACAL-1 [23]. The slid pairs are
constructed under two related message blocks, or in the case of SHACAL-1, two
related keys.

Let W = (W0,W1, . . . ,W15) be the first key, and let W ∗ = (W ∗
0 ,W ∗

1 , . . . ,W ∗
15),

such that

W ∗
i =

{
Wi+1 0 ≤ i ≤ 14
W16 = ROTL1(W13 ⊕W8 ⊕W2 ⊕W0) i = 15

These two keys satisfy W ∗
i = Wi+1 for 0 ≤ i ≤ 78.

Let P = (A0, B0, C0, D0, E0) and P ∗ = (A∗
0, B

∗
0 , C∗

0 , D∗
0 , E∗

0) be two plain-
texts encrypted under W and W ∗, respectively. We denote the input to round i
by (Ai, Bi, Ci, Di, Ei) (or with ∗ when considering the encryption of P ∗ under
W ∗). If after the first round of the encryption of P under W the following holds:

A1 = A∗
0; B1 = B∗

0 ; C1 = C∗
0 ; D1 = D∗

0 ; E1 = E∗
0 (1)

then this equality holds until round 20 of the encryption of P (or round 19 of the
encryption of P ∗). In order for the slid pair to retain its “slidness”, the following
equality must hold:

W20 + ROTL5(A20) + f20(B20, C20, D20) + E20 + K20 =

A21 = A∗
20 =

W ∗
19 + ROTL5(A∗

19) + f19(B∗
19, C

∗
19, D

∗
19) + E∗

19 + K19

As W20 = W ∗
19, A20 = A∗

19, B20 = B∗
19, C20 = C∗

19, D20 = D∗
19, E20 = E∗

19, the
above holds whenever

fxor(B20, C20, D20) + K20 = fif (B20, C20, D20) + K19. (2)

For a random permutation, this equality holds with probability 2−32. In the
case of SHACAL-1, it was verified experimentally that the probability is close
to 2−32 (see [10]).

If the transition between the IF rounds and the XOR rounds is successful,
then the equality remains until round 40 of the encryption of P . Again, with

6

probability close to 2−32 the transition in round 40 does not affect the equality
between the respective intermediate encryption values. The same holds for the
last transition in round 60.

Thus, Saarinen concluded that the probability that (P, P ∗) is a slid pair
assuming that it satisfies the condition of Equation (1) is 2−96. To achieve such
pairs, pairs of structures of 232 chosen plaintexts are chosen, such that SetP =
(A,B,C, D, x) for some fixed A,B,C, D and all possible values of x, and SetP ∗ =
(y, A,ROTL30(B), C, D) for all possible values of y. These structures ensure that
for each P ∈ SetP there exists P ∗ ∈ SetP ∗ such that the pair (P, P ∗) satisfies
the condition in Equation (1). Hence, 264 pairs of structures are expected to
contain a slid pair with a relatively high probability.

In order to detect the slid pairs, we note that for a slid pair we have

A80 = A∗
79; B80 = B∗

79; C80 = C∗
79; D80 = D∗

79; E80 = E∗
79, (3)

and this gives a 128-bit filtering on the ciphertexts that can be easily executed
using a hash table. However, since we check a total number of 2128 pairs and our
filtering is only on 128 bits, we expect that for a random permutation, one pair
can also pass the filtering. In order to overcome this problem, we take 265 pairs
of structures, thus expecting to detect two slid pairs. Then we check whether the
pairs suggest the same value for the subkey of the last round. If not, we collect
some additional structures, find another slid pair and check again. With a high
probability, the right subkey will be suggested at least twice, while for a random
permutation the probability that a subkey is suggested twice is extremely low.

Therefore, the attack can distinguish between SHACAL-1 and a random
permutation using about 298 chosen plaintexts encrypted under two related keys,
with time complexity of about 298 encryptions.

We note that Saarinen has also proposed an algorithm that requires only 232

operations to find such a slid pair in SHA-1. However, the algorithm assumes
that the attacker can control the message block (i.e., the keys) directly, and thus
it is not applicable to SHACAL-1 (unless it is in a chosen-key attack).

5 A Simple Related-Key Attack on SHACAL-1

The basic stage of our attack on SHACAL-1 is similar to the distinguishing
attack presented by Saarinen [23]. We encrypt some pairs of structures under
the two related keys and detect the candidate slid pairs. Now, each candidate
slid pair suggests a value for two key words – the subkey used in the last round
of the encryption under the key W ∗ and the subkey used in the first round of
the encryption under W . At this stage, there is a difference between our attack
and the attack in [23]: In order to reduce the data complexity of the attack we
do not wait until the same key word is suggested twice, but rather continue with
all the suggested subkey values. The wrong key values can be easily discarded in
the last stage of our attack that will be described later, and hence we only need
that the right key value will be amongst the suggested ones.

The algorithm of the basic stage of the attack is as follows:

7

1. Repeat the following M times, when M will be specified later:
– Choose A,B, C, and D at random and ask for the encryption of SetP =

(A,B,C, D, x) for all possible values of x under W and of SetP ∗ =
(y, A,ROTL30(B), C, D) for all possible values of y under W ∗.

– Search for candidate slid pairs, i.e., pairs of ciphertexts T = (a, b, c, d, e) ∈
SetP and T ∗ = (a∗, b∗, c∗, d∗, e∗) ∈ SetP ∗ such that b∗ = a, c∗ =
ROTL30(b), d∗ = c, and e∗ = d. Pass to the next stage all the can-
didate slid pairs, and the respective plaintext pairs denoted by P =
(A,B,C, D, X) and P ∗ = (Y ∗, A, ROTL30(B), C,D), respectively.

2. For each candidate slid pair, compute W0 and W80 using the formulas:

W0 = Y ∗ − [ROTL5(A) + fif (B,C,D) + X + K0] (4)
W80 = a∗ − [ROTL5(a) + fxor(b, c, d) + e + K79] (5)

3. Output all the pairs of values (W0,W80) suggested by candidate pairs.

After using the pair of related keys (W,W ∗), we can repeat the attack with
the related keys (W ∗,W ∗∗) that satisfy the relation

W ∗∗
i =

{
W ∗

i+1 0 ≤ i ≤ 14
W ∗

16 = ROTL1(W ∗
13 ⊕W ∗

8 ⊕W ∗
2 ⊕W ∗

0) i = 15

to retrieve two additional key words. This time the attack retrieves W ∗
0 and

W ∗
80, but due to the relation between W and W ∗, these values are equal to W1

and W81, respectively. Then, the attack can be applied again. As all the keys
are linearly dependent of each other, it is possible to combine the knowledge of
each instance of the attack into a knowledge on the original key W . Therefore,
if we repeat the attack 7 times, thus requiring 8 related keys, we get 64 · 7 = 448
linear equations in the bits of the key, and the rest of the key can be found
by exhaustive search with time complexity of only 264 encryptions. Note that
if several candidates for the subkey values were suggested in some of the basic
attacks, we perform the last stage of the attack for all the possible candidates,
and still the time complexity is much below 2100 encryptions.

Now we want to compute the minimal possible value of M such that, with a
high probability, in all the 7 applications of the basic stage of the attack the right
key will be amongst the suggested ones. Using a Poisson approximation we get
that if M = 264 · t then the probability that in a single application of the basic
attack no real slid pair will be found is e−t. Hence, assuming that the basic stages
are independent we get that the probability that in all the applications there will
be at least one real slid pair is (1− e−t)7. For t = 21.5, we get (1− e−t)7 ≈ 0.65,
and hence the success probability of the attack is about 0.65. If we want a greater
success probability, we can increase the data complexity. For example, for t = 4
the success probability is about 0.88 and for t = 8, the success probability is
greater than 0.99.

Therefore, the total data complexity of the attack is 21.5 · 264 · 233 · 7 ≈ 2101.3

related-key chosen plaintexts, and the time complexity is dominated solely by
the encryption time.

8

The data complexity can be slightly reduced using an adaptive attack. We
can ask for structures of plaintexts to be encrypted under two related keys, until
two candidate slid pairs suggest the same subkeys (thus, with high probability,
these are the right subkeys). Once this happens, there is no need to further
encrypt plaintexts under these two related keys.

If only a smaller number of k < 8 related keys is available, we can perform
the basic stage of the attack k − 1 times and find the rest of the key bits using
exhaustive key search. We note that it is possible to reduce the time complexity
of this search by a factor of four, by considering the fact that for slid pairs there
is a special relation between the intermediate encryption values in round 20
(presented in Equation (2)). If this relation is not satisfied, the key can be easily
discarded without completing the full encryption.

Note that if the attack is performed less than seven times, we can reduce
the number of chosen plaintexts and still expect that with a high probability, in
all the applications of the basic attack there will be at least one slid pair. For
example, for k = 2 we can take t = 1 and get success probability of 0.63, and
for k = 4 we can take t = 2 and get success probability of 0.65.

The exact time complexity of the last stage depends on the number of sub-
key candidates suggested in the basic stages. Assuming that in each stage, be-
sides the right subkey we encounter three wrong candidate values (that can-
not be discarded) at most, the total time complexity of the attack is at most
2510+2(k−1)−64(k−1) = 2510−62(k−1) trial encryptions.

We conclude that our attack with k related keys has a data complexity of at
most (k− 1) · 298.5 related-key chosen plaintexts, and a running time of at most
max{(k − 1) · 298.5, 2510−62(k−1)} trial encryptions.

6 Summary and Conclusions

In this paper we presented a simple related-key attack on SHACAL-1. The at-
tack can be performed using between two and eight related-keys. The variant
of the attack with eight related keys requires 2101.3 chosen plaintexts and has
time complexity of 2101.3 encryptions. The attack is by far better than all the
previously known related-key attacks on SHACAL-1.

Our results, following the results in [23], are based on the original variant of
the related-key attack presented by Biham in 1993 [1].3 Usually, slid pairs or their
equivalent related-key counterparts can be found only if the round functions of
the cipher are identical (for all the rounds). Hence, inserting a round constant
to the round function of a block cipher seems to be sufficient to protect it with
respect to related-key attacks.

3 In 1996, Kelsey et al.[19] presented the related-key differential attack. This attack
uses different ideas and the only similarity between it and Biham’s attack is the
fact that both attacks perform in the related-key model. The related-key rectangle
technique, that was used in previous attacks on SHACAL-1, is an expansion of the
related-key differential attack.

9

In SHACAL-1, round constants are used in all the round functions but the
fact that the constants are changed only once every 20 rounds and the fact that
the round functions are also slightly changed in the same places can be used
to construct the required pairs of plaintexts. Hence, the results of [23] and our
attack show that related-key attacks can be mounted also on ciphers using round
constants, if the constants are not chosen carefully.

We conclude that our key-recovery attack demonstrates, once again, that
using a linear key schedule algorithm and relatively similar round functions is
not a good way to design a secure block cipher.

References

1. Eli Biham, New Types of Cryptanalytic Attacks Using Related Keys, Journal of
Cryptology, Vol. 7, No. 4, pp. 229–246, Springer-Verlag, 1994.

2. Eli Biham, Rafi Chen, Near-Collisions of SHA-0, Advances in Cryptology, pro-
ceedings of CRYPTO 2004, Lecture Notes in Computer Science 3152, pp. 290–305,
Springer-Verlag, 2004.

3. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet,
William Jalby, Collisions of SHA-0 and Reduced SHA-1, Advances in Cryptol-
ogy, proceedings of EUROCRYPT 2005, Lecture Notes in Computer Science 3621,
pp. 36–57, 2005.

4. Eli Biham, Orr Dunkelman, Nathan Keller, The Rectangle Attack – Rectangling
the Serpent, Advances in Cryptology, proceedings of EUROCRYPT ’01, Lecture
Notes in Computer Science 2045, pp. 340–357, Springer-Verlag, 2001.

5. Eli Biham, Orr Dunkelman, Nathan Keller, New Results on Boomerang and Rect-
angle Attacks, proceedings of Fast Software Encryption 9, Lecture Notes in Com-
puter Science 2365, pp. 1–16, Springer-Verlag, 2002.

6. Eli Biham, Orr Dunkelman, Nathan Keller, Rectangle Attacks on 49-Round
SHACAL-1, proceedings of Fast Software Encryption 10, Lecture Notes in Com-
puter Science 2887, pp. 22–35, Springer-Verlag, 2003.

7. Eli Biham, Orr Dunkelman, Nathan Keller, Related-Key Boomerang and Rectangle
Attacks, Advances in Cryptology, proceedings of EUROCRYPT ’05, Lecture Notes
in Computer Science 3494, pp. 507–525, Springer-Verlag, 2005.

8. Eli Biham, Orr Dunkelman, Nathan Keller, Improved Slide Attacks, private com-
munication.

9. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

10. Alex Biryukov, David Wagner, Slide Attacks, proceedings of Fast Software Encryp-
tion 6, Lecture Notes in Computer Science 1636, pp. 245–259, Springer-Verlag,
1999.

11. Alex Biryukov, David Wagner, Advanced Slide Attacks, Advances in Cryptology,
proceedings of EUROCRYPT 2000, Lecture Notes in Computer Science 1807,
pp. 586–606, Springer-Verlag, 2000.

12. Florent Chabaud, Antoine Joux, Differential Collisions in SHA-0, Advances in
Cryptology, proceedings of CRYPTO 1998, Lecture Notes in Computer Science
1462, pp. 56–71, Springer-Verlag, 1998.

13. Orr Dunkelman, Nathan Keller, Jongsung Kim, Related-Key Rectangle Attack on
the Full SHACAL-1, accepted to Selected Areas in Cryptography 2006, to appear
in Lecture Notes in Computer Science.

10

14. Soichi Furuya, Slide Attacks with a Known-Plaintext Cryptanalysis, proceedings
of Information and Communication Security 2001, Lecture Notes in Computer
Science 2288, pp. 214–225, Springer-Verlag, 2002.

15. Helena Handschuh, Lars R. Knudsen, Matthew J. Robshaw, Analysis of SHA-1 in
Encryption Mode, proceedings of CT-RSA 2001, Springer-Verlag Lecture Notes in
Computer Science, vol. 2020, pp. 70–83, 2001.

16. Helena Handschuh, David Naccache, SHACAL, preproceedings of NESSIE first
workshop, Leuven, 2000.

17. Seokhie Hong, Jongsung Kim, Guil Kim, Sangjin Lee, Bart Preneel, Related-Key
Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192, proceedings
of Fast Software Encryption 12, Lecture Notes in Computer Science 3557, pp. 368–
383, Springer-Verlag, 2005.

18. John Kelsey, Tadayoshi Kohno, Bruce Schneier, Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent, proceedings of Fast Software Encryp-
tion 7, Lecture Notes in Computer Science 1978, pp. 75–93, Springer-Verlag, 2000.

19. John Kelsey, Bruce Schneier, David Wagner, Key-Schedule Cryptoanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES, Advances in Cryptology, pro-
ceedings of CRYPTO ’96, Lecture Notes in Computer Science 1109, pp. 237–251,
Springer-Verlag, 1996.

20. Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, Dowon Hong, The Related-
Key Rectangle Attack — Application to SHACAL-1, proceedings of ACISP 2004,
Lecture Notes in Computer Science 3108, pp. 123–136, Springer-Verlag, 2004.

21. Jongsung Kim, Dukjae Moon, Wonil Lee, Seokhie Hong, Sangjin Lee, Seokwon
Jung, Amplified Boomerang Attack against Reduced-Round SHACAL, Advances in
Cryptology, proceedings of ASIACRYPT 2002, Lecture Notes in Computer Science
2501, pp. 243-253, Springer-Verlag, 2002.

22. Lars R. Knudsen, Cryptanalysis of LOKI91, proceedings of Auscrypt 1992, Lecture
Notes in Computer Science 718, pp. 196–208, Springer-Verlag, 1993.

23. Markku-Juhani O. Saarinen, Cryptanalysis of Block Ciphers Based on SHA-1 and
MD5, proceedings of Fast Software Encryption 10, Lecture Notes in Computer
Science 2887, pp. 36–44, Springer-Verlag, 2003.

24. NESSIE – New European Schemes for Signatures, Integrity and Encryption.
http://www.nessie.eu.org/nessie

25. NESSIE, Portfolio of recommended cryptographic primitives.
26. NESSIE, Performance of Optimized Implementations of the NESSIE Primitives,

NES/DOC/TEC/WP6/D21/2.
27. US National Bureau of Standards, Secure Hash Standard, Federal Information Pro-

cessing Standards Publications No. 180-2, 2002.
28. Eteinee Van Den Bogeart, Vincent Rijmen, Differential Analysis of SHACAL,

NESSIE internal report NES/DOC/KUL/WP3/009/a, 2001.
29. David Wagner, The Boomerang Attack, proceedings of Fast Software Encryption 6,

Lecture Notes in Computer Science 1636, pp. 156–170, 1999.
30. Xiaoyun Wang, Andrew C. Yao, Frances Yao, Cryptanalysis on SHA-1, Crypto-

graphic Hash Workshop, NIST, Gaithersburg, 2005.
31. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu, Cryptanalysis

of the Hash Functions MD4 and RIPEMD, Advances in Cryptology, proceedings
of EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pp. 1–18, 2005.

32. Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu, Finding Collisions in the Full SHA-1,
Advances in Cryptology, proceedings of CRYPTO 2005, Lecture Notes in Com-
puter Science 3621, pp. 17–36, 2005.

11

33. Xiaoyun Wang, Hongbo Yu, How to Break MD5 and Other Hash Functions, Ad-
vances in Cryptology, proceedings of EUROCRYPT 2005, Lecture Notes in Com-
puter Science 3494, pp. 19–35, 2005.

34. Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin, Efficient Collision Search Attacks on
SHA-0, Advances in Cryptology, proceedings of CRYPTO 2005, Lecture Notes in
Computer Science 3621, pp. 1–16, 2005.

12

